xref: /openbmc/qemu/include/exec/cpu-all.h (revision 1fd6bb44)
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "qemu-common.h"
23 #include "qemu/tls.h"
24 #include "exec/cpu-common.h"
25 #include "qemu/thread.h"
26 
27 /* some important defines:
28  *
29  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30  * memory accesses.
31  *
32  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33  * otherwise little endian.
34  *
35  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36  *
37  * TARGET_WORDS_BIGENDIAN : same for target cpu
38  */
39 
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
43 
44 #ifdef BSWAP_NEEDED
45 
46 static inline uint16_t tswap16(uint16_t s)
47 {
48     return bswap16(s);
49 }
50 
51 static inline uint32_t tswap32(uint32_t s)
52 {
53     return bswap32(s);
54 }
55 
56 static inline uint64_t tswap64(uint64_t s)
57 {
58     return bswap64(s);
59 }
60 
61 static inline void tswap16s(uint16_t *s)
62 {
63     *s = bswap16(*s);
64 }
65 
66 static inline void tswap32s(uint32_t *s)
67 {
68     *s = bswap32(*s);
69 }
70 
71 static inline void tswap64s(uint64_t *s)
72 {
73     *s = bswap64(*s);
74 }
75 
76 #else
77 
78 static inline uint16_t tswap16(uint16_t s)
79 {
80     return s;
81 }
82 
83 static inline uint32_t tswap32(uint32_t s)
84 {
85     return s;
86 }
87 
88 static inline uint64_t tswap64(uint64_t s)
89 {
90     return s;
91 }
92 
93 static inline void tswap16s(uint16_t *s)
94 {
95 }
96 
97 static inline void tswap32s(uint32_t *s)
98 {
99 }
100 
101 static inline void tswap64s(uint64_t *s)
102 {
103 }
104 
105 #endif
106 
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
116 
117 /* CPU memory access without any memory or io remapping */
118 
119 /*
120  * the generic syntax for the memory accesses is:
121  *
122  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
123  *
124  * store: st{type}{size}{endian}_{access_type}(ptr, val)
125  *
126  * type is:
127  * (empty): integer access
128  *   f    : float access
129  *
130  * sign is:
131  * (empty): for floats or 32 bit size
132  *   u    : unsigned
133  *   s    : signed
134  *
135  * size is:
136  *   b: 8 bits
137  *   w: 16 bits
138  *   l: 32 bits
139  *   q: 64 bits
140  *
141  * endian is:
142  * (empty): target cpu endianness or 8 bit access
143  *   r    : reversed target cpu endianness (not implemented yet)
144  *   be   : big endian (not implemented yet)
145  *   le   : little endian (not implemented yet)
146  *
147  * access_type is:
148  *   raw    : host memory access
149  *   user   : user mode access using soft MMU
150  *   kernel : kernel mode access using soft MMU
151  */
152 
153 /* target-endianness CPU memory access functions */
154 #if defined(TARGET_WORDS_BIGENDIAN)
155 #define lduw_p(p) lduw_be_p(p)
156 #define ldsw_p(p) ldsw_be_p(p)
157 #define ldl_p(p) ldl_be_p(p)
158 #define ldq_p(p) ldq_be_p(p)
159 #define ldfl_p(p) ldfl_be_p(p)
160 #define ldfq_p(p) ldfq_be_p(p)
161 #define stw_p(p, v) stw_be_p(p, v)
162 #define stl_p(p, v) stl_be_p(p, v)
163 #define stq_p(p, v) stq_be_p(p, v)
164 #define stfl_p(p, v) stfl_be_p(p, v)
165 #define stfq_p(p, v) stfq_be_p(p, v)
166 #else
167 #define lduw_p(p) lduw_le_p(p)
168 #define ldsw_p(p) ldsw_le_p(p)
169 #define ldl_p(p) ldl_le_p(p)
170 #define ldq_p(p) ldq_le_p(p)
171 #define ldfl_p(p) ldfl_le_p(p)
172 #define ldfq_p(p) ldfq_le_p(p)
173 #define stw_p(p, v) stw_le_p(p, v)
174 #define stl_p(p, v) stl_le_p(p, v)
175 #define stq_p(p, v) stq_le_p(p, v)
176 #define stfl_p(p, v) stfl_le_p(p, v)
177 #define stfq_p(p, v) stfq_le_p(p, v)
178 #endif
179 
180 /* MMU memory access macros */
181 
182 #if defined(CONFIG_USER_ONLY)
183 #include <assert.h>
184 #include "exec/user/abitypes.h"
185 
186 /* On some host systems the guest address space is reserved on the host.
187  * This allows the guest address space to be offset to a convenient location.
188  */
189 #if defined(CONFIG_USE_GUEST_BASE)
190 extern unsigned long guest_base;
191 extern int have_guest_base;
192 extern unsigned long reserved_va;
193 #define GUEST_BASE guest_base
194 #define RESERVED_VA reserved_va
195 #else
196 #define GUEST_BASE 0ul
197 #define RESERVED_VA 0ul
198 #endif
199 
200 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
201 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
202 
203 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
204 #define h2g_valid(x) 1
205 #else
206 #define h2g_valid(x) ({ \
207     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
208     (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
209     (!RESERVED_VA || (__guest < RESERVED_VA)); \
210 })
211 #endif
212 
213 #define h2g(x) ({ \
214     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
215     /* Check if given address fits target address space */ \
216     assert(h2g_valid(x)); \
217     (abi_ulong)__ret; \
218 })
219 
220 #define saddr(x) g2h(x)
221 #define laddr(x) g2h(x)
222 
223 #else /* !CONFIG_USER_ONLY */
224 /* NOTE: we use double casts if pointers and target_ulong have
225    different sizes */
226 #define saddr(x) (uint8_t *)(intptr_t)(x)
227 #define laddr(x) (uint8_t *)(intptr_t)(x)
228 #endif
229 
230 #define ldub_raw(p) ldub_p(laddr((p)))
231 #define ldsb_raw(p) ldsb_p(laddr((p)))
232 #define lduw_raw(p) lduw_p(laddr((p)))
233 #define ldsw_raw(p) ldsw_p(laddr((p)))
234 #define ldl_raw(p) ldl_p(laddr((p)))
235 #define ldq_raw(p) ldq_p(laddr((p)))
236 #define ldfl_raw(p) ldfl_p(laddr((p)))
237 #define ldfq_raw(p) ldfq_p(laddr((p)))
238 #define stb_raw(p, v) stb_p(saddr((p)), v)
239 #define stw_raw(p, v) stw_p(saddr((p)), v)
240 #define stl_raw(p, v) stl_p(saddr((p)), v)
241 #define stq_raw(p, v) stq_p(saddr((p)), v)
242 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
243 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
244 
245 
246 #if defined(CONFIG_USER_ONLY)
247 
248 /* if user mode, no other memory access functions */
249 #define ldub(p) ldub_raw(p)
250 #define ldsb(p) ldsb_raw(p)
251 #define lduw(p) lduw_raw(p)
252 #define ldsw(p) ldsw_raw(p)
253 #define ldl(p) ldl_raw(p)
254 #define ldq(p) ldq_raw(p)
255 #define ldfl(p) ldfl_raw(p)
256 #define ldfq(p) ldfq_raw(p)
257 #define stb(p, v) stb_raw(p, v)
258 #define stw(p, v) stw_raw(p, v)
259 #define stl(p, v) stl_raw(p, v)
260 #define stq(p, v) stq_raw(p, v)
261 #define stfl(p, v) stfl_raw(p, v)
262 #define stfq(p, v) stfq_raw(p, v)
263 
264 #define cpu_ldub_code(env1, p) ldub_raw(p)
265 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
266 #define cpu_lduw_code(env1, p) lduw_raw(p)
267 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
268 #define cpu_ldl_code(env1, p) ldl_raw(p)
269 #define cpu_ldq_code(env1, p) ldq_raw(p)
270 
271 #define cpu_ldub_data(env, addr) ldub_raw(addr)
272 #define cpu_lduw_data(env, addr) lduw_raw(addr)
273 #define cpu_ldsw_data(env, addr) ldsw_raw(addr)
274 #define cpu_ldl_data(env, addr) ldl_raw(addr)
275 #define cpu_ldq_data(env, addr) ldq_raw(addr)
276 
277 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
278 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
279 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
280 #define cpu_stq_data(env, addr, data) stq_raw(addr, data)
281 
282 #define cpu_ldub_kernel(env, addr) ldub_raw(addr)
283 #define cpu_lduw_kernel(env, addr) lduw_raw(addr)
284 #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
285 #define cpu_ldl_kernel(env, addr) ldl_raw(addr)
286 #define cpu_ldq_kernel(env, addr) ldq_raw(addr)
287 
288 #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
289 #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
290 #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
291 #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
292 
293 #define ldub_kernel(p) ldub_raw(p)
294 #define ldsb_kernel(p) ldsb_raw(p)
295 #define lduw_kernel(p) lduw_raw(p)
296 #define ldsw_kernel(p) ldsw_raw(p)
297 #define ldl_kernel(p) ldl_raw(p)
298 #define ldq_kernel(p) ldq_raw(p)
299 #define ldfl_kernel(p) ldfl_raw(p)
300 #define ldfq_kernel(p) ldfq_raw(p)
301 #define stb_kernel(p, v) stb_raw(p, v)
302 #define stw_kernel(p, v) stw_raw(p, v)
303 #define stl_kernel(p, v) stl_raw(p, v)
304 #define stq_kernel(p, v) stq_raw(p, v)
305 #define stfl_kernel(p, v) stfl_raw(p, v)
306 #define stfq_kernel(p, vt) stfq_raw(p, v)
307 
308 #define cpu_ldub_data(env, addr) ldub_raw(addr)
309 #define cpu_lduw_data(env, addr) lduw_raw(addr)
310 #define cpu_ldl_data(env, addr) ldl_raw(addr)
311 
312 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
313 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
314 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
315 #endif /* defined(CONFIG_USER_ONLY) */
316 
317 /* page related stuff */
318 
319 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
320 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
321 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
322 
323 /* ??? These should be the larger of uintptr_t and target_ulong.  */
324 extern uintptr_t qemu_real_host_page_size;
325 extern uintptr_t qemu_host_page_size;
326 extern uintptr_t qemu_host_page_mask;
327 
328 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
329 
330 /* same as PROT_xxx */
331 #define PAGE_READ      0x0001
332 #define PAGE_WRITE     0x0002
333 #define PAGE_EXEC      0x0004
334 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
335 #define PAGE_VALID     0x0008
336 /* original state of the write flag (used when tracking self-modifying
337    code */
338 #define PAGE_WRITE_ORG 0x0010
339 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
340 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
341 #define PAGE_RESERVED  0x0020
342 #endif
343 
344 #if defined(CONFIG_USER_ONLY)
345 void page_dump(FILE *f);
346 
347 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
348                                       abi_ulong, unsigned long);
349 int walk_memory_regions(void *, walk_memory_regions_fn);
350 
351 int page_get_flags(target_ulong address);
352 void page_set_flags(target_ulong start, target_ulong end, int flags);
353 int page_check_range(target_ulong start, target_ulong len, int flags);
354 #endif
355 
356 CPUArchState *cpu_copy(CPUArchState *env);
357 
358 #define CPU_DUMP_CODE 0x00010000
359 #define CPU_DUMP_FPU 0x00020000 /* dump FPU register state, not just integer */
360 /* dump info about TCG QEMU's condition code optimization state */
361 #define CPU_DUMP_CCOP 0x00040000
362 
363 void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
364                     int flags);
365 void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
366                          int flags);
367 
368 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
369     GCC_FMT_ATTR(2, 3);
370 extern CPUArchState *first_cpu;
371 DECLARE_TLS(CPUArchState *,cpu_single_env);
372 #define cpu_single_env tls_var(cpu_single_env)
373 
374 /* Flags for use in ENV->INTERRUPT_PENDING.
375 
376    The numbers assigned here are non-sequential in order to preserve
377    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
378    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
379    the vmstate dump.  */
380 
381 /* External hardware interrupt pending.  This is typically used for
382    interrupts from devices.  */
383 #define CPU_INTERRUPT_HARD        0x0002
384 
385 /* Exit the current TB.  This is typically used when some system-level device
386    makes some change to the memory mapping.  E.g. the a20 line change.  */
387 #define CPU_INTERRUPT_EXITTB      0x0004
388 
389 /* Halt the CPU.  */
390 #define CPU_INTERRUPT_HALT        0x0020
391 
392 /* Debug event pending.  */
393 #define CPU_INTERRUPT_DEBUG       0x0080
394 
395 /* Several target-specific external hardware interrupts.  Each target/cpu.h
396    should define proper names based on these defines.  */
397 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
398 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
399 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
400 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
401 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
402 
403 /* Several target-specific internal interrupts.  These differ from the
404    preceding target-specific interrupts in that they are intended to
405    originate from within the cpu itself, typically in response to some
406    instruction being executed.  These, therefore, are not masked while
407    single-stepping within the debugger.  */
408 #define CPU_INTERRUPT_TGT_INT_0   0x0100
409 #define CPU_INTERRUPT_TGT_INT_1   0x0400
410 #define CPU_INTERRUPT_TGT_INT_2   0x0800
411 #define CPU_INTERRUPT_TGT_INT_3   0x2000
412 
413 /* First unused bit: 0x4000.  */
414 
415 /* The set of all bits that should be masked when single-stepping.  */
416 #define CPU_INTERRUPT_SSTEP_MASK \
417     (CPU_INTERRUPT_HARD          \
418      | CPU_INTERRUPT_TGT_EXT_0   \
419      | CPU_INTERRUPT_TGT_EXT_1   \
420      | CPU_INTERRUPT_TGT_EXT_2   \
421      | CPU_INTERRUPT_TGT_EXT_3   \
422      | CPU_INTERRUPT_TGT_EXT_4)
423 
424 void cpu_exit(CPUArchState *s);
425 
426 /* Breakpoint/watchpoint flags */
427 #define BP_MEM_READ           0x01
428 #define BP_MEM_WRITE          0x02
429 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
430 #define BP_STOP_BEFORE_ACCESS 0x04
431 #define BP_WATCHPOINT_HIT     0x08
432 #define BP_GDB                0x10
433 #define BP_CPU                0x20
434 
435 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
436                           CPUBreakpoint **breakpoint);
437 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
438 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
439 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
440 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
441                           int flags, CPUWatchpoint **watchpoint);
442 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
443                           target_ulong len, int flags);
444 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
445 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
446 
447 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
448 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
449 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
450 
451 void cpu_single_step(CPUArchState *env, int enabled);
452 
453 #if !defined(CONFIG_USER_ONLY)
454 
455 /* Return the physical page corresponding to a virtual one. Use it
456    only for debugging because no protection checks are done. Return -1
457    if no page found. */
458 hwaddr cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
459 
460 /* memory API */
461 
462 extern int phys_ram_fd;
463 extern ram_addr_t ram_size;
464 
465 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
466 #define RAM_PREALLOC_MASK   (1 << 0)
467 
468 typedef struct RAMBlock {
469     struct MemoryRegion *mr;
470     uint8_t *host;
471     ram_addr_t offset;
472     ram_addr_t length;
473     uint32_t flags;
474     char idstr[256];
475     /* Reads can take either the iothread or the ramlist lock.
476      * Writes must take both locks.
477      */
478     QTAILQ_ENTRY(RAMBlock) next;
479 #if defined(__linux__) && !defined(TARGET_S390X)
480     int fd;
481 #endif
482 } RAMBlock;
483 
484 typedef struct RAMList {
485     QemuMutex mutex;
486     /* Protected by the iothread lock.  */
487     uint8_t *phys_dirty;
488     RAMBlock *mru_block;
489     /* Protected by the ramlist lock.  */
490     QTAILQ_HEAD(, RAMBlock) blocks;
491     uint32_t version;
492 } RAMList;
493 extern RAMList ram_list;
494 
495 extern const char *mem_path;
496 extern int mem_prealloc;
497 
498 /* Flags stored in the low bits of the TLB virtual address.  These are
499    defined so that fast path ram access is all zeros.  */
500 /* Zero if TLB entry is valid.  */
501 #define TLB_INVALID_MASK   (1 << 3)
502 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
503    contain the page physical address.  */
504 #define TLB_NOTDIRTY    (1 << 4)
505 /* Set if TLB entry is an IO callback.  */
506 #define TLB_MMIO        (1 << 5)
507 
508 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
509 ram_addr_t last_ram_offset(void);
510 void qemu_mutex_lock_ramlist(void);
511 void qemu_mutex_unlock_ramlist(void);
512 #endif /* !CONFIG_USER_ONLY */
513 
514 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
515                         uint8_t *buf, int len, int is_write);
516 
517 #endif /* CPU_ALL_H */
518