xref: /openbmc/qemu/include/exec/cpu-all.h (revision 14a650ec)
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "qemu-common.h"
23 #include "exec/cpu-common.h"
24 #include "qemu/thread.h"
25 #include "qom/cpu.h"
26 
27 /* some important defines:
28  *
29  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30  * memory accesses.
31  *
32  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33  * otherwise little endian.
34  *
35  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36  *
37  * TARGET_WORDS_BIGENDIAN : same for target cpu
38  */
39 
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
43 
44 #ifdef BSWAP_NEEDED
45 
46 static inline uint16_t tswap16(uint16_t s)
47 {
48     return bswap16(s);
49 }
50 
51 static inline uint32_t tswap32(uint32_t s)
52 {
53     return bswap32(s);
54 }
55 
56 static inline uint64_t tswap64(uint64_t s)
57 {
58     return bswap64(s);
59 }
60 
61 static inline void tswap16s(uint16_t *s)
62 {
63     *s = bswap16(*s);
64 }
65 
66 static inline void tswap32s(uint32_t *s)
67 {
68     *s = bswap32(*s);
69 }
70 
71 static inline void tswap64s(uint64_t *s)
72 {
73     *s = bswap64(*s);
74 }
75 
76 #else
77 
78 static inline uint16_t tswap16(uint16_t s)
79 {
80     return s;
81 }
82 
83 static inline uint32_t tswap32(uint32_t s)
84 {
85     return s;
86 }
87 
88 static inline uint64_t tswap64(uint64_t s)
89 {
90     return s;
91 }
92 
93 static inline void tswap16s(uint16_t *s)
94 {
95 }
96 
97 static inline void tswap32s(uint32_t *s)
98 {
99 }
100 
101 static inline void tswap64s(uint64_t *s)
102 {
103 }
104 
105 #endif
106 
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
116 
117 /* CPU memory access without any memory or io remapping */
118 
119 /*
120  * the generic syntax for the memory accesses is:
121  *
122  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
123  *
124  * store: st{type}{size}{endian}_{access_type}(ptr, val)
125  *
126  * type is:
127  * (empty): integer access
128  *   f    : float access
129  *
130  * sign is:
131  * (empty): for floats or 32 bit size
132  *   u    : unsigned
133  *   s    : signed
134  *
135  * size is:
136  *   b: 8 bits
137  *   w: 16 bits
138  *   l: 32 bits
139  *   q: 64 bits
140  *
141  * endian is:
142  * (empty): target cpu endianness or 8 bit access
143  *   r    : reversed target cpu endianness (not implemented yet)
144  *   be   : big endian (not implemented yet)
145  *   le   : little endian (not implemented yet)
146  *
147  * access_type is:
148  *   raw    : host memory access
149  *   user   : user mode access using soft MMU
150  *   kernel : kernel mode access using soft MMU
151  */
152 
153 /* target-endianness CPU memory access functions */
154 #if defined(TARGET_WORDS_BIGENDIAN)
155 #define lduw_p(p) lduw_be_p(p)
156 #define ldsw_p(p) ldsw_be_p(p)
157 #define ldl_p(p) ldl_be_p(p)
158 #define ldq_p(p) ldq_be_p(p)
159 #define ldfl_p(p) ldfl_be_p(p)
160 #define ldfq_p(p) ldfq_be_p(p)
161 #define stw_p(p, v) stw_be_p(p, v)
162 #define stl_p(p, v) stl_be_p(p, v)
163 #define stq_p(p, v) stq_be_p(p, v)
164 #define stfl_p(p, v) stfl_be_p(p, v)
165 #define stfq_p(p, v) stfq_be_p(p, v)
166 #else
167 #define lduw_p(p) lduw_le_p(p)
168 #define ldsw_p(p) ldsw_le_p(p)
169 #define ldl_p(p) ldl_le_p(p)
170 #define ldq_p(p) ldq_le_p(p)
171 #define ldfl_p(p) ldfl_le_p(p)
172 #define ldfq_p(p) ldfq_le_p(p)
173 #define stw_p(p, v) stw_le_p(p, v)
174 #define stl_p(p, v) stl_le_p(p, v)
175 #define stq_p(p, v) stq_le_p(p, v)
176 #define stfl_p(p, v) stfl_le_p(p, v)
177 #define stfq_p(p, v) stfq_le_p(p, v)
178 #endif
179 
180 /* MMU memory access macros */
181 
182 #if defined(CONFIG_USER_ONLY)
183 #include <assert.h>
184 #include "exec/user/abitypes.h"
185 
186 /* On some host systems the guest address space is reserved on the host.
187  * This allows the guest address space to be offset to a convenient location.
188  */
189 #if defined(CONFIG_USE_GUEST_BASE)
190 extern unsigned long guest_base;
191 extern int have_guest_base;
192 extern unsigned long reserved_va;
193 #define GUEST_BASE guest_base
194 #define RESERVED_VA reserved_va
195 #else
196 #define GUEST_BASE 0ul
197 #define RESERVED_VA 0ul
198 #endif
199 
200 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
201 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
202 
203 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
204 #define h2g_valid(x) 1
205 #else
206 #define h2g_valid(x) ({ \
207     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
208     (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
209     (!RESERVED_VA || (__guest < RESERVED_VA)); \
210 })
211 #endif
212 
213 #define h2g_nocheck(x) ({ \
214     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
215     (abi_ulong)__ret; \
216 })
217 
218 #define h2g(x) ({ \
219     /* Check if given address fits target address space */ \
220     assert(h2g_valid(x)); \
221     h2g_nocheck(x); \
222 })
223 
224 #define saddr(x) g2h(x)
225 #define laddr(x) g2h(x)
226 
227 #else /* !CONFIG_USER_ONLY */
228 /* NOTE: we use double casts if pointers and target_ulong have
229    different sizes */
230 #define saddr(x) (uint8_t *)(intptr_t)(x)
231 #define laddr(x) (uint8_t *)(intptr_t)(x)
232 #endif
233 
234 #define ldub_raw(p) ldub_p(laddr((p)))
235 #define ldsb_raw(p) ldsb_p(laddr((p)))
236 #define lduw_raw(p) lduw_p(laddr((p)))
237 #define ldsw_raw(p) ldsw_p(laddr((p)))
238 #define ldl_raw(p) ldl_p(laddr((p)))
239 #define ldq_raw(p) ldq_p(laddr((p)))
240 #define ldfl_raw(p) ldfl_p(laddr((p)))
241 #define ldfq_raw(p) ldfq_p(laddr((p)))
242 #define stb_raw(p, v) stb_p(saddr((p)), v)
243 #define stw_raw(p, v) stw_p(saddr((p)), v)
244 #define stl_raw(p, v) stl_p(saddr((p)), v)
245 #define stq_raw(p, v) stq_p(saddr((p)), v)
246 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
247 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
248 
249 
250 #if defined(CONFIG_USER_ONLY)
251 
252 /* if user mode, no other memory access functions */
253 #define ldub(p) ldub_raw(p)
254 #define ldsb(p) ldsb_raw(p)
255 #define lduw(p) lduw_raw(p)
256 #define ldsw(p) ldsw_raw(p)
257 #define ldl(p) ldl_raw(p)
258 #define ldq(p) ldq_raw(p)
259 #define ldfl(p) ldfl_raw(p)
260 #define ldfq(p) ldfq_raw(p)
261 #define stb(p, v) stb_raw(p, v)
262 #define stw(p, v) stw_raw(p, v)
263 #define stl(p, v) stl_raw(p, v)
264 #define stq(p, v) stq_raw(p, v)
265 #define stfl(p, v) stfl_raw(p, v)
266 #define stfq(p, v) stfq_raw(p, v)
267 
268 #define cpu_ldub_code(env1, p) ldub_raw(p)
269 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
270 #define cpu_lduw_code(env1, p) lduw_raw(p)
271 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
272 #define cpu_ldl_code(env1, p) ldl_raw(p)
273 #define cpu_ldq_code(env1, p) ldq_raw(p)
274 
275 #define cpu_ldub_data(env, addr) ldub_raw(addr)
276 #define cpu_lduw_data(env, addr) lduw_raw(addr)
277 #define cpu_ldsw_data(env, addr) ldsw_raw(addr)
278 #define cpu_ldl_data(env, addr) ldl_raw(addr)
279 #define cpu_ldq_data(env, addr) ldq_raw(addr)
280 
281 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
282 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
283 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
284 #define cpu_stq_data(env, addr, data) stq_raw(addr, data)
285 
286 #define cpu_ldub_kernel(env, addr) ldub_raw(addr)
287 #define cpu_lduw_kernel(env, addr) lduw_raw(addr)
288 #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
289 #define cpu_ldl_kernel(env, addr) ldl_raw(addr)
290 #define cpu_ldq_kernel(env, addr) ldq_raw(addr)
291 
292 #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
293 #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
294 #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
295 #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
296 
297 #define ldub_kernel(p) ldub_raw(p)
298 #define ldsb_kernel(p) ldsb_raw(p)
299 #define lduw_kernel(p) lduw_raw(p)
300 #define ldsw_kernel(p) ldsw_raw(p)
301 #define ldl_kernel(p) ldl_raw(p)
302 #define ldq_kernel(p) ldq_raw(p)
303 #define ldfl_kernel(p) ldfl_raw(p)
304 #define ldfq_kernel(p) ldfq_raw(p)
305 #define stb_kernel(p, v) stb_raw(p, v)
306 #define stw_kernel(p, v) stw_raw(p, v)
307 #define stl_kernel(p, v) stl_raw(p, v)
308 #define stq_kernel(p, v) stq_raw(p, v)
309 #define stfl_kernel(p, v) stfl_raw(p, v)
310 #define stfq_kernel(p, vt) stfq_raw(p, v)
311 
312 #define cpu_ldub_data(env, addr) ldub_raw(addr)
313 #define cpu_lduw_data(env, addr) lduw_raw(addr)
314 #define cpu_ldl_data(env, addr) ldl_raw(addr)
315 
316 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
317 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
318 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
319 #endif /* defined(CONFIG_USER_ONLY) */
320 
321 /* page related stuff */
322 
323 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
324 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
325 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
326 
327 /* ??? These should be the larger of uintptr_t and target_ulong.  */
328 extern uintptr_t qemu_real_host_page_size;
329 extern uintptr_t qemu_host_page_size;
330 extern uintptr_t qemu_host_page_mask;
331 
332 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
333 
334 /* same as PROT_xxx */
335 #define PAGE_READ      0x0001
336 #define PAGE_WRITE     0x0002
337 #define PAGE_EXEC      0x0004
338 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
339 #define PAGE_VALID     0x0008
340 /* original state of the write flag (used when tracking self-modifying
341    code */
342 #define PAGE_WRITE_ORG 0x0010
343 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
344 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
345 #define PAGE_RESERVED  0x0020
346 #endif
347 
348 #if defined(CONFIG_USER_ONLY)
349 void page_dump(FILE *f);
350 
351 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
352                                       abi_ulong, unsigned long);
353 int walk_memory_regions(void *, walk_memory_regions_fn);
354 
355 int page_get_flags(target_ulong address);
356 void page_set_flags(target_ulong start, target_ulong end, int flags);
357 int page_check_range(target_ulong start, target_ulong len, int flags);
358 #endif
359 
360 CPUArchState *cpu_copy(CPUArchState *env);
361 
362 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
363     GCC_FMT_ATTR(2, 3);
364 
365 /* Flags for use in ENV->INTERRUPT_PENDING.
366 
367    The numbers assigned here are non-sequential in order to preserve
368    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
369    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
370    the vmstate dump.  */
371 
372 /* External hardware interrupt pending.  This is typically used for
373    interrupts from devices.  */
374 #define CPU_INTERRUPT_HARD        0x0002
375 
376 /* Exit the current TB.  This is typically used when some system-level device
377    makes some change to the memory mapping.  E.g. the a20 line change.  */
378 #define CPU_INTERRUPT_EXITTB      0x0004
379 
380 /* Halt the CPU.  */
381 #define CPU_INTERRUPT_HALT        0x0020
382 
383 /* Debug event pending.  */
384 #define CPU_INTERRUPT_DEBUG       0x0080
385 
386 /* Several target-specific external hardware interrupts.  Each target/cpu.h
387    should define proper names based on these defines.  */
388 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
389 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
390 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
391 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
392 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
393 
394 /* Several target-specific internal interrupts.  These differ from the
395    preceding target-specific interrupts in that they are intended to
396    originate from within the cpu itself, typically in response to some
397    instruction being executed.  These, therefore, are not masked while
398    single-stepping within the debugger.  */
399 #define CPU_INTERRUPT_TGT_INT_0   0x0100
400 #define CPU_INTERRUPT_TGT_INT_1   0x0400
401 #define CPU_INTERRUPT_TGT_INT_2   0x0800
402 #define CPU_INTERRUPT_TGT_INT_3   0x2000
403 
404 /* First unused bit: 0x4000.  */
405 
406 /* The set of all bits that should be masked when single-stepping.  */
407 #define CPU_INTERRUPT_SSTEP_MASK \
408     (CPU_INTERRUPT_HARD          \
409      | CPU_INTERRUPT_TGT_EXT_0   \
410      | CPU_INTERRUPT_TGT_EXT_1   \
411      | CPU_INTERRUPT_TGT_EXT_2   \
412      | CPU_INTERRUPT_TGT_EXT_3   \
413      | CPU_INTERRUPT_TGT_EXT_4)
414 
415 /* Breakpoint/watchpoint flags */
416 #define BP_MEM_READ           0x01
417 #define BP_MEM_WRITE          0x02
418 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
419 #define BP_STOP_BEFORE_ACCESS 0x04
420 #define BP_WATCHPOINT_HIT     0x08
421 #define BP_GDB                0x10
422 #define BP_CPU                0x20
423 
424 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
425                           CPUBreakpoint **breakpoint);
426 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
427 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
428 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
429 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
430                           int flags, CPUWatchpoint **watchpoint);
431 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
432                           target_ulong len, int flags);
433 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
434 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
435 
436 #if !defined(CONFIG_USER_ONLY)
437 
438 /* memory API */
439 
440 extern ram_addr_t ram_size;
441 
442 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
443 #define RAM_PREALLOC_MASK   (1 << 0)
444 
445 typedef struct RAMBlock {
446     struct MemoryRegion *mr;
447     uint8_t *host;
448     ram_addr_t offset;
449     ram_addr_t length;
450     uint32_t flags;
451     char idstr[256];
452     /* Reads can take either the iothread or the ramlist lock.
453      * Writes must take both locks.
454      */
455     QTAILQ_ENTRY(RAMBlock) next;
456     int fd;
457 } RAMBlock;
458 
459 typedef struct RAMList {
460     QemuMutex mutex;
461     /* Protected by the iothread lock.  */
462     uint8_t *phys_dirty;
463     RAMBlock *mru_block;
464     /* Protected by the ramlist lock.  */
465     QTAILQ_HEAD(, RAMBlock) blocks;
466     uint32_t version;
467 } RAMList;
468 extern RAMList ram_list;
469 
470 extern const char *mem_path;
471 extern int mem_prealloc;
472 
473 /* Flags stored in the low bits of the TLB virtual address.  These are
474    defined so that fast path ram access is all zeros.  */
475 /* Zero if TLB entry is valid.  */
476 #define TLB_INVALID_MASK   (1 << 3)
477 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
478    contain the page physical address.  */
479 #define TLB_NOTDIRTY    (1 << 4)
480 /* Set if TLB entry is an IO callback.  */
481 #define TLB_MMIO        (1 << 5)
482 
483 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
484 ram_addr_t last_ram_offset(void);
485 void qemu_mutex_lock_ramlist(void);
486 void qemu_mutex_unlock_ramlist(void);
487 #endif /* !CONFIG_USER_ONLY */
488 
489 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
490                         uint8_t *buf, int len, int is_write);
491 
492 #endif /* CPU_ALL_H */
493