xref: /openbmc/qemu/include/exec/cpu-all.h (revision 083fab02)
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "qemu-common.h"
23 #include "exec/cpu-common.h"
24 #include "exec/memory.h"
25 #include "qemu/thread.h"
26 #include "qom/cpu.h"
27 #include "qemu/rcu.h"
28 
29 #define EXCP_INTERRUPT 	0x10000 /* async interruption */
30 #define EXCP_HLT        0x10001 /* hlt instruction reached */
31 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
32 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
33 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
34 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
35 
36 /* some important defines:
37  *
38  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
39  * otherwise little endian.
40  *
41  * TARGET_WORDS_BIGENDIAN : same for target cpu
42  */
43 
44 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
45 #define BSWAP_NEEDED
46 #endif
47 
48 #ifdef BSWAP_NEEDED
49 
50 static inline uint16_t tswap16(uint16_t s)
51 {
52     return bswap16(s);
53 }
54 
55 static inline uint32_t tswap32(uint32_t s)
56 {
57     return bswap32(s);
58 }
59 
60 static inline uint64_t tswap64(uint64_t s)
61 {
62     return bswap64(s);
63 }
64 
65 static inline void tswap16s(uint16_t *s)
66 {
67     *s = bswap16(*s);
68 }
69 
70 static inline void tswap32s(uint32_t *s)
71 {
72     *s = bswap32(*s);
73 }
74 
75 static inline void tswap64s(uint64_t *s)
76 {
77     *s = bswap64(*s);
78 }
79 
80 #else
81 
82 static inline uint16_t tswap16(uint16_t s)
83 {
84     return s;
85 }
86 
87 static inline uint32_t tswap32(uint32_t s)
88 {
89     return s;
90 }
91 
92 static inline uint64_t tswap64(uint64_t s)
93 {
94     return s;
95 }
96 
97 static inline void tswap16s(uint16_t *s)
98 {
99 }
100 
101 static inline void tswap32s(uint32_t *s)
102 {
103 }
104 
105 static inline void tswap64s(uint64_t *s)
106 {
107 }
108 
109 #endif
110 
111 #if TARGET_LONG_SIZE == 4
112 #define tswapl(s) tswap32(s)
113 #define tswapls(s) tswap32s((uint32_t *)(s))
114 #define bswaptls(s) bswap32s(s)
115 #else
116 #define tswapl(s) tswap64(s)
117 #define tswapls(s) tswap64s((uint64_t *)(s))
118 #define bswaptls(s) bswap64s(s)
119 #endif
120 
121 /* Target-endianness CPU memory access functions. These fit into the
122  * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
123  */
124 #if defined(TARGET_WORDS_BIGENDIAN)
125 #define lduw_p(p) lduw_be_p(p)
126 #define ldsw_p(p) ldsw_be_p(p)
127 #define ldl_p(p) ldl_be_p(p)
128 #define ldq_p(p) ldq_be_p(p)
129 #define ldfl_p(p) ldfl_be_p(p)
130 #define ldfq_p(p) ldfq_be_p(p)
131 #define stw_p(p, v) stw_be_p(p, v)
132 #define stl_p(p, v) stl_be_p(p, v)
133 #define stq_p(p, v) stq_be_p(p, v)
134 #define stfl_p(p, v) stfl_be_p(p, v)
135 #define stfq_p(p, v) stfq_be_p(p, v)
136 #else
137 #define lduw_p(p) lduw_le_p(p)
138 #define ldsw_p(p) ldsw_le_p(p)
139 #define ldl_p(p) ldl_le_p(p)
140 #define ldq_p(p) ldq_le_p(p)
141 #define ldfl_p(p) ldfl_le_p(p)
142 #define ldfq_p(p) ldfq_le_p(p)
143 #define stw_p(p, v) stw_le_p(p, v)
144 #define stl_p(p, v) stl_le_p(p, v)
145 #define stq_p(p, v) stq_le_p(p, v)
146 #define stfl_p(p, v) stfl_le_p(p, v)
147 #define stfq_p(p, v) stfq_le_p(p, v)
148 #endif
149 
150 /* MMU memory access macros */
151 
152 #if defined(CONFIG_USER_ONLY)
153 #include "exec/user/abitypes.h"
154 
155 /* On some host systems the guest address space is reserved on the host.
156  * This allows the guest address space to be offset to a convenient location.
157  */
158 extern unsigned long guest_base;
159 extern int have_guest_base;
160 extern unsigned long reserved_va;
161 
162 #define GUEST_ADDR_MAX (reserved_va ? reserved_va : \
163                                     (1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1)
164 #else
165 
166 #include "exec/hwaddr.h"
167 uint32_t lduw_phys(AddressSpace *as, hwaddr addr);
168 uint32_t ldl_phys(AddressSpace *as, hwaddr addr);
169 uint64_t ldq_phys(AddressSpace *as, hwaddr addr);
170 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val);
171 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val);
172 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val);
173 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val);
174 
175 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
176                             MemTxAttrs attrs, MemTxResult *result);
177 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
178                             MemTxAttrs attrs, MemTxResult *result);
179 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
180                             MemTxAttrs attrs, MemTxResult *result);
181 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
182                             MemTxAttrs attrs, MemTxResult *result);
183 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
184                             MemTxAttrs attrs, MemTxResult *result);
185 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
186                             MemTxAttrs attrs, MemTxResult *result);
187 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
188                             MemTxAttrs attrs, MemTxResult *result);
189 
190 uint32_t lduw_phys_cached(MemoryRegionCache *cache, hwaddr addr);
191 uint32_t ldl_phys_cached(MemoryRegionCache *cache, hwaddr addr);
192 uint64_t ldq_phys_cached(MemoryRegionCache *cache, hwaddr addr);
193 void stl_phys_notdirty_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
194 void stw_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
195 void stl_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
196 void stq_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
197 
198 uint32_t address_space_lduw_cached(MemoryRegionCache *cache, hwaddr addr,
199                             MemTxAttrs attrs, MemTxResult *result);
200 uint32_t address_space_ldl_cached(MemoryRegionCache *cache, hwaddr addr,
201                             MemTxAttrs attrs, MemTxResult *result);
202 uint64_t address_space_ldq_cached(MemoryRegionCache *cache, hwaddr addr,
203                             MemTxAttrs attrs, MemTxResult *result);
204 void address_space_stl_notdirty_cached(MemoryRegionCache *cache, hwaddr addr,
205                             uint32_t val, MemTxAttrs attrs, MemTxResult *result);
206 void address_space_stw_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
207                             MemTxAttrs attrs, MemTxResult *result);
208 void address_space_stl_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
209                             MemTxAttrs attrs, MemTxResult *result);
210 void address_space_stq_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
211                             MemTxAttrs attrs, MemTxResult *result);
212 #endif
213 
214 /* page related stuff */
215 
216 #ifdef TARGET_PAGE_BITS_VARY
217 extern bool target_page_bits_decided;
218 extern int target_page_bits;
219 #define TARGET_PAGE_BITS ({ assert(target_page_bits_decided); \
220                             target_page_bits; })
221 #else
222 #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
223 #endif
224 
225 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
226 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
227 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
228 
229 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
230  * when intptr_t is 32-bit and we are aligning a long long.
231  */
232 extern uintptr_t qemu_host_page_size;
233 extern intptr_t qemu_host_page_mask;
234 
235 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
236 #define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \
237                                     qemu_real_host_page_mask)
238 
239 /* same as PROT_xxx */
240 #define PAGE_READ      0x0001
241 #define PAGE_WRITE     0x0002
242 #define PAGE_EXEC      0x0004
243 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
244 #define PAGE_VALID     0x0008
245 /* original state of the write flag (used when tracking self-modifying
246    code */
247 #define PAGE_WRITE_ORG 0x0010
248 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
249 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
250 #define PAGE_RESERVED  0x0020
251 #endif
252 
253 #if defined(CONFIG_USER_ONLY)
254 void page_dump(FILE *f);
255 
256 typedef int (*walk_memory_regions_fn)(void *, target_ulong,
257                                       target_ulong, unsigned long);
258 int walk_memory_regions(void *, walk_memory_regions_fn);
259 
260 int page_get_flags(target_ulong address);
261 void page_set_flags(target_ulong start, target_ulong end, int flags);
262 int page_check_range(target_ulong start, target_ulong len, int flags);
263 #endif
264 
265 CPUArchState *cpu_copy(CPUArchState *env);
266 
267 /* Flags for use in ENV->INTERRUPT_PENDING.
268 
269    The numbers assigned here are non-sequential in order to preserve
270    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
271    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
272    the vmstate dump.  */
273 
274 /* External hardware interrupt pending.  This is typically used for
275    interrupts from devices.  */
276 #define CPU_INTERRUPT_HARD        0x0002
277 
278 /* Exit the current TB.  This is typically used when some system-level device
279    makes some change to the memory mapping.  E.g. the a20 line change.  */
280 #define CPU_INTERRUPT_EXITTB      0x0004
281 
282 /* Halt the CPU.  */
283 #define CPU_INTERRUPT_HALT        0x0020
284 
285 /* Debug event pending.  */
286 #define CPU_INTERRUPT_DEBUG       0x0080
287 
288 /* Reset signal.  */
289 #define CPU_INTERRUPT_RESET       0x0400
290 
291 /* Several target-specific external hardware interrupts.  Each target/cpu.h
292    should define proper names based on these defines.  */
293 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
294 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
295 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
296 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
297 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
298 
299 /* Several target-specific internal interrupts.  These differ from the
300    preceding target-specific interrupts in that they are intended to
301    originate from within the cpu itself, typically in response to some
302    instruction being executed.  These, therefore, are not masked while
303    single-stepping within the debugger.  */
304 #define CPU_INTERRUPT_TGT_INT_0   0x0100
305 #define CPU_INTERRUPT_TGT_INT_1   0x0800
306 #define CPU_INTERRUPT_TGT_INT_2   0x2000
307 
308 /* First unused bit: 0x4000.  */
309 
310 /* The set of all bits that should be masked when single-stepping.  */
311 #define CPU_INTERRUPT_SSTEP_MASK \
312     (CPU_INTERRUPT_HARD          \
313      | CPU_INTERRUPT_TGT_EXT_0   \
314      | CPU_INTERRUPT_TGT_EXT_1   \
315      | CPU_INTERRUPT_TGT_EXT_2   \
316      | CPU_INTERRUPT_TGT_EXT_3   \
317      | CPU_INTERRUPT_TGT_EXT_4)
318 
319 #if !defined(CONFIG_USER_ONLY)
320 
321 /* Flags stored in the low bits of the TLB virtual address.  These are
322  * defined so that fast path ram access is all zeros.
323  * The flags all must be between TARGET_PAGE_BITS and
324  * maximum address alignment bit.
325  */
326 /* Zero if TLB entry is valid.  */
327 #define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS - 1))
328 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
329    contain the page physical address.  */
330 #define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS - 2))
331 /* Set if TLB entry is an IO callback.  */
332 #define TLB_MMIO            (1 << (TARGET_PAGE_BITS - 3))
333 
334 /* Use this mask to check interception with an alignment mask
335  * in a TCG backend.
336  */
337 #define TLB_FLAGS_MASK  (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO)
338 
339 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
340 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf);
341 #endif /* !CONFIG_USER_ONLY */
342 
343 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
344                         uint8_t *buf, int len, int is_write);
345 
346 int cpu_exec(CPUState *cpu);
347 
348 #endif /* CPU_ALL_H */
349