1 /* 2 * QEMU aio implementation 3 * 4 * Copyright IBM, Corp. 2008 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_AIO_H 15 #define QEMU_AIO_H 16 17 #include "qemu-common.h" 18 #include "qemu/queue.h" 19 #include "qemu/event_notifier.h" 20 #include "qemu/thread.h" 21 #include "qemu/timer.h" 22 23 typedef struct BlockAIOCB BlockAIOCB; 24 typedef void BlockCompletionFunc(void *opaque, int ret); 25 26 typedef struct AIOCBInfo { 27 void (*cancel_async)(BlockAIOCB *acb); 28 AioContext *(*get_aio_context)(BlockAIOCB *acb); 29 size_t aiocb_size; 30 } AIOCBInfo; 31 32 struct BlockAIOCB { 33 const AIOCBInfo *aiocb_info; 34 BlockDriverState *bs; 35 BlockCompletionFunc *cb; 36 void *opaque; 37 int refcnt; 38 }; 39 40 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 41 BlockCompletionFunc *cb, void *opaque); 42 void qemu_aio_unref(void *p); 43 void qemu_aio_ref(void *p); 44 45 typedef struct AioHandler AioHandler; 46 typedef void QEMUBHFunc(void *opaque); 47 typedef void IOHandler(void *opaque); 48 49 struct ThreadPool; 50 struct LinuxAioState; 51 52 struct AioContext { 53 GSource source; 54 55 /* Protects all fields from multi-threaded access */ 56 QemuRecMutex lock; 57 58 /* The list of registered AIO handlers */ 59 QLIST_HEAD(, AioHandler) aio_handlers; 60 61 /* This is a simple lock used to protect the aio_handlers list. 62 * Specifically, it's used to ensure that no callbacks are removed while 63 * we're walking and dispatching callbacks. 64 */ 65 int walking_handlers; 66 67 /* Used to avoid unnecessary event_notifier_set calls in aio_notify; 68 * accessed with atomic primitives. If this field is 0, everything 69 * (file descriptors, bottom halves, timers) will be re-evaluated 70 * before the next blocking poll(), thus the event_notifier_set call 71 * can be skipped. If it is non-zero, you may need to wake up a 72 * concurrent aio_poll or the glib main event loop, making 73 * event_notifier_set necessary. 74 * 75 * Bit 0 is reserved for GSource usage of the AioContext, and is 1 76 * between a call to aio_ctx_prepare and the next call to aio_ctx_check. 77 * Bits 1-31 simply count the number of active calls to aio_poll 78 * that are in the prepare or poll phase. 79 * 80 * The GSource and aio_poll must use a different mechanism because 81 * there is no certainty that a call to GSource's prepare callback 82 * (via g_main_context_prepare) is indeed followed by check and 83 * dispatch. It's not clear whether this would be a bug, but let's 84 * play safe and allow it---it will just cause extra calls to 85 * event_notifier_set until the next call to dispatch. 86 * 87 * Instead, the aio_poll calls include both the prepare and the 88 * dispatch phase, hence a simple counter is enough for them. 89 */ 90 uint32_t notify_me; 91 92 /* lock to protect between bh's adders and deleter */ 93 QemuMutex bh_lock; 94 95 /* Anchor of the list of Bottom Halves belonging to the context */ 96 struct QEMUBH *first_bh; 97 98 /* A simple lock used to protect the first_bh list, and ensure that 99 * no callbacks are removed while we're walking and dispatching callbacks. 100 */ 101 int walking_bh; 102 103 /* Used by aio_notify. 104 * 105 * "notified" is used to avoid expensive event_notifier_test_and_clear 106 * calls. When it is clear, the EventNotifier is clear, or one thread 107 * is going to clear "notified" before processing more events. False 108 * positives are possible, i.e. "notified" could be set even though the 109 * EventNotifier is clear. 110 * 111 * Note that event_notifier_set *cannot* be optimized the same way. For 112 * more information on the problem that would result, see "#ifdef BUG2" 113 * in the docs/aio_notify_accept.promela formal model. 114 */ 115 bool notified; 116 EventNotifier notifier; 117 118 /* Thread pool for performing work and receiving completion callbacks */ 119 struct ThreadPool *thread_pool; 120 121 #ifdef CONFIG_LINUX_AIO 122 /* State for native Linux AIO. Uses aio_context_acquire/release for 123 * locking. 124 */ 125 struct LinuxAioState *linux_aio; 126 #endif 127 128 /* TimerLists for calling timers - one per clock type */ 129 QEMUTimerListGroup tlg; 130 131 int external_disable_cnt; 132 133 /* epoll(7) state used when built with CONFIG_EPOLL */ 134 int epollfd; 135 bool epoll_enabled; 136 bool epoll_available; 137 }; 138 139 /** 140 * aio_context_new: Allocate a new AioContext. 141 * 142 * AioContext provide a mini event-loop that can be waited on synchronously. 143 * They also provide bottom halves, a service to execute a piece of code 144 * as soon as possible. 145 */ 146 AioContext *aio_context_new(Error **errp); 147 148 /** 149 * aio_context_ref: 150 * @ctx: The AioContext to operate on. 151 * 152 * Add a reference to an AioContext. 153 */ 154 void aio_context_ref(AioContext *ctx); 155 156 /** 157 * aio_context_unref: 158 * @ctx: The AioContext to operate on. 159 * 160 * Drop a reference to an AioContext. 161 */ 162 void aio_context_unref(AioContext *ctx); 163 164 /* Take ownership of the AioContext. If the AioContext will be shared between 165 * threads, and a thread does not want to be interrupted, it will have to 166 * take ownership around calls to aio_poll(). Otherwise, aio_poll() 167 * automatically takes care of calling aio_context_acquire and 168 * aio_context_release. 169 * 170 * Access to timers and BHs from a thread that has not acquired AioContext 171 * is possible. Access to callbacks for now must be done while the AioContext 172 * is owned by the thread (FIXME). 173 */ 174 void aio_context_acquire(AioContext *ctx); 175 176 /* Relinquish ownership of the AioContext. */ 177 void aio_context_release(AioContext *ctx); 178 179 /** 180 * aio_bh_schedule_oneshot: Allocate a new bottom half structure that will run 181 * only once and as soon as possible. 182 */ 183 void aio_bh_schedule_oneshot(AioContext *ctx, QEMUBHFunc *cb, void *opaque); 184 185 /** 186 * aio_bh_new: Allocate a new bottom half structure. 187 * 188 * Bottom halves are lightweight callbacks whose invocation is guaranteed 189 * to be wait-free, thread-safe and signal-safe. The #QEMUBH structure 190 * is opaque and must be allocated prior to its use. 191 */ 192 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque); 193 194 /** 195 * aio_notify: Force processing of pending events. 196 * 197 * Similar to signaling a condition variable, aio_notify forces 198 * aio_wait to exit, so that the next call will re-examine pending events. 199 * The caller of aio_notify will usually call aio_wait again very soon, 200 * or go through another iteration of the GLib main loop. Hence, aio_notify 201 * also has the side effect of recalculating the sets of file descriptors 202 * that the main loop waits for. 203 * 204 * Calling aio_notify is rarely necessary, because for example scheduling 205 * a bottom half calls it already. 206 */ 207 void aio_notify(AioContext *ctx); 208 209 /** 210 * aio_notify_accept: Acknowledge receiving an aio_notify. 211 * 212 * aio_notify() uses an EventNotifier in order to wake up a sleeping 213 * aio_poll() or g_main_context_iteration(). Calls to aio_notify() are 214 * usually rare, but the AioContext has to clear the EventNotifier on 215 * every aio_poll() or g_main_context_iteration() in order to avoid 216 * busy waiting. This event_notifier_test_and_clear() cannot be done 217 * using the usual aio_context_set_event_notifier(), because it must 218 * be done before processing all events (file descriptors, bottom halves, 219 * timers). 220 * 221 * aio_notify_accept() is an optimized event_notifier_test_and_clear() 222 * that is specific to an AioContext's notifier; it is used internally 223 * to clear the EventNotifier only if aio_notify() had been called. 224 */ 225 void aio_notify_accept(AioContext *ctx); 226 227 /** 228 * aio_bh_call: Executes callback function of the specified BH. 229 */ 230 void aio_bh_call(QEMUBH *bh); 231 232 /** 233 * aio_bh_poll: Poll bottom halves for an AioContext. 234 * 235 * These are internal functions used by the QEMU main loop. 236 * And notice that multiple occurrences of aio_bh_poll cannot 237 * be called concurrently 238 */ 239 int aio_bh_poll(AioContext *ctx); 240 241 /** 242 * qemu_bh_schedule: Schedule a bottom half. 243 * 244 * Scheduling a bottom half interrupts the main loop and causes the 245 * execution of the callback that was passed to qemu_bh_new. 246 * 247 * Bottom halves that are scheduled from a bottom half handler are instantly 248 * invoked. This can create an infinite loop if a bottom half handler 249 * schedules itself. 250 * 251 * @bh: The bottom half to be scheduled. 252 */ 253 void qemu_bh_schedule(QEMUBH *bh); 254 255 /** 256 * qemu_bh_cancel: Cancel execution of a bottom half. 257 * 258 * Canceling execution of a bottom half undoes the effect of calls to 259 * qemu_bh_schedule without freeing its resources yet. While cancellation 260 * itself is also wait-free and thread-safe, it can of course race with the 261 * loop that executes bottom halves unless you are holding the iothread 262 * mutex. This makes it mostly useless if you are not holding the mutex. 263 * 264 * @bh: The bottom half to be canceled. 265 */ 266 void qemu_bh_cancel(QEMUBH *bh); 267 268 /** 269 *qemu_bh_delete: Cancel execution of a bottom half and free its resources. 270 * 271 * Deleting a bottom half frees the memory that was allocated for it by 272 * qemu_bh_new. It also implies canceling the bottom half if it was 273 * scheduled. 274 * This func is async. The bottom half will do the delete action at the finial 275 * end. 276 * 277 * @bh: The bottom half to be deleted. 278 */ 279 void qemu_bh_delete(QEMUBH *bh); 280 281 /* Return whether there are any pending callbacks from the GSource 282 * attached to the AioContext, before g_poll is invoked. 283 * 284 * This is used internally in the implementation of the GSource. 285 */ 286 bool aio_prepare(AioContext *ctx); 287 288 /* Return whether there are any pending callbacks from the GSource 289 * attached to the AioContext, after g_poll is invoked. 290 * 291 * This is used internally in the implementation of the GSource. 292 */ 293 bool aio_pending(AioContext *ctx); 294 295 /* Dispatch any pending callbacks from the GSource attached to the AioContext. 296 * 297 * This is used internally in the implementation of the GSource. 298 */ 299 bool aio_dispatch(AioContext *ctx); 300 301 /* Progress in completing AIO work to occur. This can issue new pending 302 * aio as a result of executing I/O completion or bh callbacks. 303 * 304 * Return whether any progress was made by executing AIO or bottom half 305 * handlers. If @blocking == true, this should always be true except 306 * if someone called aio_notify. 307 * 308 * If there are no pending bottom halves, but there are pending AIO 309 * operations, it may not be possible to make any progress without 310 * blocking. If @blocking is true, this function will wait until one 311 * or more AIO events have completed, to ensure something has moved 312 * before returning. 313 */ 314 bool aio_poll(AioContext *ctx, bool blocking); 315 316 /* Register a file descriptor and associated callbacks. Behaves very similarly 317 * to qemu_set_fd_handler. Unlike qemu_set_fd_handler, these callbacks will 318 * be invoked when using aio_poll(). 319 * 320 * Code that invokes AIO completion functions should rely on this function 321 * instead of qemu_set_fd_handler[2]. 322 */ 323 void aio_set_fd_handler(AioContext *ctx, 324 int fd, 325 bool is_external, 326 IOHandler *io_read, 327 IOHandler *io_write, 328 void *opaque); 329 330 /* Register an event notifier and associated callbacks. Behaves very similarly 331 * to event_notifier_set_handler. Unlike event_notifier_set_handler, these callbacks 332 * will be invoked when using aio_poll(). 333 * 334 * Code that invokes AIO completion functions should rely on this function 335 * instead of event_notifier_set_handler. 336 */ 337 void aio_set_event_notifier(AioContext *ctx, 338 EventNotifier *notifier, 339 bool is_external, 340 EventNotifierHandler *io_read); 341 342 /* Return a GSource that lets the main loop poll the file descriptors attached 343 * to this AioContext. 344 */ 345 GSource *aio_get_g_source(AioContext *ctx); 346 347 /* Return the ThreadPool bound to this AioContext */ 348 struct ThreadPool *aio_get_thread_pool(AioContext *ctx); 349 350 /* Return the LinuxAioState bound to this AioContext */ 351 struct LinuxAioState *aio_get_linux_aio(AioContext *ctx); 352 353 /** 354 * aio_timer_new: 355 * @ctx: the aio context 356 * @type: the clock type 357 * @scale: the scale 358 * @cb: the callback to call on timer expiry 359 * @opaque: the opaque pointer to pass to the callback 360 * 361 * Allocate a new timer attached to the context @ctx. 362 * The function is responsible for memory allocation. 363 * 364 * The preferred interface is aio_timer_init. Use that 365 * unless you really need dynamic memory allocation. 366 * 367 * Returns: a pointer to the new timer 368 */ 369 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type, 370 int scale, 371 QEMUTimerCB *cb, void *opaque) 372 { 373 return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque); 374 } 375 376 /** 377 * aio_timer_init: 378 * @ctx: the aio context 379 * @ts: the timer 380 * @type: the clock type 381 * @scale: the scale 382 * @cb: the callback to call on timer expiry 383 * @opaque: the opaque pointer to pass to the callback 384 * 385 * Initialise a new timer attached to the context @ctx. 386 * The caller is responsible for memory allocation. 387 */ 388 static inline void aio_timer_init(AioContext *ctx, 389 QEMUTimer *ts, QEMUClockType type, 390 int scale, 391 QEMUTimerCB *cb, void *opaque) 392 { 393 timer_init_tl(ts, ctx->tlg.tl[type], scale, cb, opaque); 394 } 395 396 /** 397 * aio_compute_timeout: 398 * @ctx: the aio context 399 * 400 * Compute the timeout that a blocking aio_poll should use. 401 */ 402 int64_t aio_compute_timeout(AioContext *ctx); 403 404 /** 405 * aio_disable_external: 406 * @ctx: the aio context 407 * 408 * Disable the further processing of external clients. 409 */ 410 static inline void aio_disable_external(AioContext *ctx) 411 { 412 atomic_inc(&ctx->external_disable_cnt); 413 } 414 415 /** 416 * aio_enable_external: 417 * @ctx: the aio context 418 * 419 * Enable the processing of external clients. 420 */ 421 static inline void aio_enable_external(AioContext *ctx) 422 { 423 assert(ctx->external_disable_cnt > 0); 424 atomic_dec(&ctx->external_disable_cnt); 425 } 426 427 /** 428 * aio_external_disabled: 429 * @ctx: the aio context 430 * 431 * Return true if the external clients are disabled. 432 */ 433 static inline bool aio_external_disabled(AioContext *ctx) 434 { 435 return atomic_read(&ctx->external_disable_cnt); 436 } 437 438 /** 439 * aio_node_check: 440 * @ctx: the aio context 441 * @is_external: Whether or not the checked node is an external event source. 442 * 443 * Check if the node's is_external flag is okay to be polled by the ctx at this 444 * moment. True means green light. 445 */ 446 static inline bool aio_node_check(AioContext *ctx, bool is_external) 447 { 448 return !is_external || !atomic_read(&ctx->external_disable_cnt); 449 } 450 451 /** 452 * Return the AioContext whose event loop runs in the current thread. 453 * 454 * If called from an IOThread this will be the IOThread's AioContext. If 455 * called from another thread it will be the main loop AioContext. 456 */ 457 AioContext *qemu_get_current_aio_context(void); 458 459 /** 460 * @ctx: the aio context 461 * 462 * Return whether we are running in the I/O thread that manages @ctx. 463 */ 464 static inline bool aio_context_in_iothread(AioContext *ctx) 465 { 466 return ctx == qemu_get_current_aio_context(); 467 } 468 469 /** 470 * aio_context_setup: 471 * @ctx: the aio context 472 * 473 * Initialize the aio context. 474 */ 475 void aio_context_setup(AioContext *ctx); 476 477 #endif 478