xref: /openbmc/qemu/include/block/aio.h (revision cae41fda)
1 /*
2  * QEMU aio implementation
3  *
4  * Copyright IBM, Corp. 2008
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_AIO_H
15 #define QEMU_AIO_H
16 
17 #include "qemu-common.h"
18 #include "qemu/queue.h"
19 #include "qemu/event_notifier.h"
20 #include "qemu/thread.h"
21 #include "qemu/timer.h"
22 
23 typedef struct BlockAIOCB BlockAIOCB;
24 typedef void BlockCompletionFunc(void *opaque, int ret);
25 
26 typedef struct AIOCBInfo {
27     void (*cancel_async)(BlockAIOCB *acb);
28     AioContext *(*get_aio_context)(BlockAIOCB *acb);
29     size_t aiocb_size;
30 } AIOCBInfo;
31 
32 struct BlockAIOCB {
33     const AIOCBInfo *aiocb_info;
34     BlockDriverState *bs;
35     BlockCompletionFunc *cb;
36     void *opaque;
37     int refcnt;
38 };
39 
40 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
41                    BlockCompletionFunc *cb, void *opaque);
42 void qemu_aio_unref(void *p);
43 void qemu_aio_ref(void *p);
44 
45 typedef struct AioHandler AioHandler;
46 typedef void QEMUBHFunc(void *opaque);
47 typedef void IOHandler(void *opaque);
48 
49 struct ThreadPool;
50 struct LinuxAioState;
51 
52 struct AioContext {
53     GSource source;
54 
55     /* Protects all fields from multi-threaded access */
56     QemuRecMutex lock;
57 
58     /* The list of registered AIO handlers */
59     QLIST_HEAD(, AioHandler) aio_handlers;
60 
61     /* This is a simple lock used to protect the aio_handlers list.
62      * Specifically, it's used to ensure that no callbacks are removed while
63      * we're walking and dispatching callbacks.
64      */
65     int walking_handlers;
66 
67     /* Used to avoid unnecessary event_notifier_set calls in aio_notify;
68      * accessed with atomic primitives.  If this field is 0, everything
69      * (file descriptors, bottom halves, timers) will be re-evaluated
70      * before the next blocking poll(), thus the event_notifier_set call
71      * can be skipped.  If it is non-zero, you may need to wake up a
72      * concurrent aio_poll or the glib main event loop, making
73      * event_notifier_set necessary.
74      *
75      * Bit 0 is reserved for GSource usage of the AioContext, and is 1
76      * between a call to aio_ctx_prepare and the next call to aio_ctx_check.
77      * Bits 1-31 simply count the number of active calls to aio_poll
78      * that are in the prepare or poll phase.
79      *
80      * The GSource and aio_poll must use a different mechanism because
81      * there is no certainty that a call to GSource's prepare callback
82      * (via g_main_context_prepare) is indeed followed by check and
83      * dispatch.  It's not clear whether this would be a bug, but let's
84      * play safe and allow it---it will just cause extra calls to
85      * event_notifier_set until the next call to dispatch.
86      *
87      * Instead, the aio_poll calls include both the prepare and the
88      * dispatch phase, hence a simple counter is enough for them.
89      */
90     uint32_t notify_me;
91 
92     /* lock to protect between bh's adders and deleter */
93     QemuMutex bh_lock;
94 
95     /* Anchor of the list of Bottom Halves belonging to the context */
96     struct QEMUBH *first_bh;
97 
98     /* A simple lock used to protect the first_bh list, and ensure that
99      * no callbacks are removed while we're walking and dispatching callbacks.
100      */
101     int walking_bh;
102 
103     /* Used by aio_notify.
104      *
105      * "notified" is used to avoid expensive event_notifier_test_and_clear
106      * calls.  When it is clear, the EventNotifier is clear, or one thread
107      * is going to clear "notified" before processing more events.  False
108      * positives are possible, i.e. "notified" could be set even though the
109      * EventNotifier is clear.
110      *
111      * Note that event_notifier_set *cannot* be optimized the same way.  For
112      * more information on the problem that would result, see "#ifdef BUG2"
113      * in the docs/aio_notify_accept.promela formal model.
114      */
115     bool notified;
116     EventNotifier notifier;
117 
118     /* Thread pool for performing work and receiving completion callbacks */
119     struct ThreadPool *thread_pool;
120 
121 #ifdef CONFIG_LINUX_AIO
122     /* State for native Linux AIO.  Uses aio_context_acquire/release for
123      * locking.
124      */
125     struct LinuxAioState *linux_aio;
126 #endif
127 
128     /* TimerLists for calling timers - one per clock type */
129     QEMUTimerListGroup tlg;
130 
131     int external_disable_cnt;
132 
133     /* epoll(7) state used when built with CONFIG_EPOLL */
134     int epollfd;
135     bool epoll_enabled;
136     bool epoll_available;
137 };
138 
139 /**
140  * aio_context_new: Allocate a new AioContext.
141  *
142  * AioContext provide a mini event-loop that can be waited on synchronously.
143  * They also provide bottom halves, a service to execute a piece of code
144  * as soon as possible.
145  */
146 AioContext *aio_context_new(Error **errp);
147 
148 /**
149  * aio_context_ref:
150  * @ctx: The AioContext to operate on.
151  *
152  * Add a reference to an AioContext.
153  */
154 void aio_context_ref(AioContext *ctx);
155 
156 /**
157  * aio_context_unref:
158  * @ctx: The AioContext to operate on.
159  *
160  * Drop a reference to an AioContext.
161  */
162 void aio_context_unref(AioContext *ctx);
163 
164 /* Take ownership of the AioContext.  If the AioContext will be shared between
165  * threads, and a thread does not want to be interrupted, it will have to
166  * take ownership around calls to aio_poll().  Otherwise, aio_poll()
167  * automatically takes care of calling aio_context_acquire and
168  * aio_context_release.
169  *
170  * Access to timers and BHs from a thread that has not acquired AioContext
171  * is possible.  Access to callbacks for now must be done while the AioContext
172  * is owned by the thread (FIXME).
173  */
174 void aio_context_acquire(AioContext *ctx);
175 
176 /* Relinquish ownership of the AioContext. */
177 void aio_context_release(AioContext *ctx);
178 
179 /**
180  * aio_bh_schedule_oneshot: Allocate a new bottom half structure that will run
181  * only once and as soon as possible.
182  */
183 void aio_bh_schedule_oneshot(AioContext *ctx, QEMUBHFunc *cb, void *opaque);
184 
185 /**
186  * aio_bh_new: Allocate a new bottom half structure.
187  *
188  * Bottom halves are lightweight callbacks whose invocation is guaranteed
189  * to be wait-free, thread-safe and signal-safe.  The #QEMUBH structure
190  * is opaque and must be allocated prior to its use.
191  */
192 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque);
193 
194 /**
195  * aio_notify: Force processing of pending events.
196  *
197  * Similar to signaling a condition variable, aio_notify forces
198  * aio_wait to exit, so that the next call will re-examine pending events.
199  * The caller of aio_notify will usually call aio_wait again very soon,
200  * or go through another iteration of the GLib main loop.  Hence, aio_notify
201  * also has the side effect of recalculating the sets of file descriptors
202  * that the main loop waits for.
203  *
204  * Calling aio_notify is rarely necessary, because for example scheduling
205  * a bottom half calls it already.
206  */
207 void aio_notify(AioContext *ctx);
208 
209 /**
210  * aio_notify_accept: Acknowledge receiving an aio_notify.
211  *
212  * aio_notify() uses an EventNotifier in order to wake up a sleeping
213  * aio_poll() or g_main_context_iteration().  Calls to aio_notify() are
214  * usually rare, but the AioContext has to clear the EventNotifier on
215  * every aio_poll() or g_main_context_iteration() in order to avoid
216  * busy waiting.  This event_notifier_test_and_clear() cannot be done
217  * using the usual aio_context_set_event_notifier(), because it must
218  * be done before processing all events (file descriptors, bottom halves,
219  * timers).
220  *
221  * aio_notify_accept() is an optimized event_notifier_test_and_clear()
222  * that is specific to an AioContext's notifier; it is used internally
223  * to clear the EventNotifier only if aio_notify() had been called.
224  */
225 void aio_notify_accept(AioContext *ctx);
226 
227 /**
228  * aio_bh_call: Executes callback function of the specified BH.
229  */
230 void aio_bh_call(QEMUBH *bh);
231 
232 /**
233  * aio_bh_poll: Poll bottom halves for an AioContext.
234  *
235  * These are internal functions used by the QEMU main loop.
236  * And notice that multiple occurrences of aio_bh_poll cannot
237  * be called concurrently
238  */
239 int aio_bh_poll(AioContext *ctx);
240 
241 /**
242  * qemu_bh_schedule: Schedule a bottom half.
243  *
244  * Scheduling a bottom half interrupts the main loop and causes the
245  * execution of the callback that was passed to qemu_bh_new.
246  *
247  * Bottom halves that are scheduled from a bottom half handler are instantly
248  * invoked.  This can create an infinite loop if a bottom half handler
249  * schedules itself.
250  *
251  * @bh: The bottom half to be scheduled.
252  */
253 void qemu_bh_schedule(QEMUBH *bh);
254 
255 /**
256  * qemu_bh_cancel: Cancel execution of a bottom half.
257  *
258  * Canceling execution of a bottom half undoes the effect of calls to
259  * qemu_bh_schedule without freeing its resources yet.  While cancellation
260  * itself is also wait-free and thread-safe, it can of course race with the
261  * loop that executes bottom halves unless you are holding the iothread
262  * mutex.  This makes it mostly useless if you are not holding the mutex.
263  *
264  * @bh: The bottom half to be canceled.
265  */
266 void qemu_bh_cancel(QEMUBH *bh);
267 
268 /**
269  *qemu_bh_delete: Cancel execution of a bottom half and free its resources.
270  *
271  * Deleting a bottom half frees the memory that was allocated for it by
272  * qemu_bh_new.  It also implies canceling the bottom half if it was
273  * scheduled.
274  * This func is async. The bottom half will do the delete action at the finial
275  * end.
276  *
277  * @bh: The bottom half to be deleted.
278  */
279 void qemu_bh_delete(QEMUBH *bh);
280 
281 /* Return whether there are any pending callbacks from the GSource
282  * attached to the AioContext, before g_poll is invoked.
283  *
284  * This is used internally in the implementation of the GSource.
285  */
286 bool aio_prepare(AioContext *ctx);
287 
288 /* Return whether there are any pending callbacks from the GSource
289  * attached to the AioContext, after g_poll is invoked.
290  *
291  * This is used internally in the implementation of the GSource.
292  */
293 bool aio_pending(AioContext *ctx);
294 
295 /* Dispatch any pending callbacks from the GSource attached to the AioContext.
296  *
297  * This is used internally in the implementation of the GSource.
298  */
299 bool aio_dispatch(AioContext *ctx);
300 
301 /* Progress in completing AIO work to occur.  This can issue new pending
302  * aio as a result of executing I/O completion or bh callbacks.
303  *
304  * Return whether any progress was made by executing AIO or bottom half
305  * handlers.  If @blocking == true, this should always be true except
306  * if someone called aio_notify.
307  *
308  * If there are no pending bottom halves, but there are pending AIO
309  * operations, it may not be possible to make any progress without
310  * blocking.  If @blocking is true, this function will wait until one
311  * or more AIO events have completed, to ensure something has moved
312  * before returning.
313  */
314 bool aio_poll(AioContext *ctx, bool blocking);
315 
316 /* Register a file descriptor and associated callbacks.  Behaves very similarly
317  * to qemu_set_fd_handler.  Unlike qemu_set_fd_handler, these callbacks will
318  * be invoked when using aio_poll().
319  *
320  * Code that invokes AIO completion functions should rely on this function
321  * instead of qemu_set_fd_handler[2].
322  */
323 void aio_set_fd_handler(AioContext *ctx,
324                         int fd,
325                         bool is_external,
326                         IOHandler *io_read,
327                         IOHandler *io_write,
328                         void *opaque);
329 
330 /* Register an event notifier and associated callbacks.  Behaves very similarly
331  * to event_notifier_set_handler.  Unlike event_notifier_set_handler, these callbacks
332  * will be invoked when using aio_poll().
333  *
334  * Code that invokes AIO completion functions should rely on this function
335  * instead of event_notifier_set_handler.
336  */
337 void aio_set_event_notifier(AioContext *ctx,
338                             EventNotifier *notifier,
339                             bool is_external,
340                             EventNotifierHandler *io_read);
341 
342 /* Return a GSource that lets the main loop poll the file descriptors attached
343  * to this AioContext.
344  */
345 GSource *aio_get_g_source(AioContext *ctx);
346 
347 /* Return the ThreadPool bound to this AioContext */
348 struct ThreadPool *aio_get_thread_pool(AioContext *ctx);
349 
350 /* Return the LinuxAioState bound to this AioContext */
351 struct LinuxAioState *aio_get_linux_aio(AioContext *ctx);
352 
353 /**
354  * aio_timer_new:
355  * @ctx: the aio context
356  * @type: the clock type
357  * @scale: the scale
358  * @cb: the callback to call on timer expiry
359  * @opaque: the opaque pointer to pass to the callback
360  *
361  * Allocate a new timer attached to the context @ctx.
362  * The function is responsible for memory allocation.
363  *
364  * The preferred interface is aio_timer_init. Use that
365  * unless you really need dynamic memory allocation.
366  *
367  * Returns: a pointer to the new timer
368  */
369 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type,
370                                        int scale,
371                                        QEMUTimerCB *cb, void *opaque)
372 {
373     return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque);
374 }
375 
376 /**
377  * aio_timer_init:
378  * @ctx: the aio context
379  * @ts: the timer
380  * @type: the clock type
381  * @scale: the scale
382  * @cb: the callback to call on timer expiry
383  * @opaque: the opaque pointer to pass to the callback
384  *
385  * Initialise a new timer attached to the context @ctx.
386  * The caller is responsible for memory allocation.
387  */
388 static inline void aio_timer_init(AioContext *ctx,
389                                   QEMUTimer *ts, QEMUClockType type,
390                                   int scale,
391                                   QEMUTimerCB *cb, void *opaque)
392 {
393     timer_init_tl(ts, ctx->tlg.tl[type], scale, cb, opaque);
394 }
395 
396 /**
397  * aio_compute_timeout:
398  * @ctx: the aio context
399  *
400  * Compute the timeout that a blocking aio_poll should use.
401  */
402 int64_t aio_compute_timeout(AioContext *ctx);
403 
404 /**
405  * aio_disable_external:
406  * @ctx: the aio context
407  *
408  * Disable the further processing of external clients.
409  */
410 static inline void aio_disable_external(AioContext *ctx)
411 {
412     atomic_inc(&ctx->external_disable_cnt);
413 }
414 
415 /**
416  * aio_enable_external:
417  * @ctx: the aio context
418  *
419  * Enable the processing of external clients.
420  */
421 static inline void aio_enable_external(AioContext *ctx)
422 {
423     assert(ctx->external_disable_cnt > 0);
424     atomic_dec(&ctx->external_disable_cnt);
425 }
426 
427 /**
428  * aio_external_disabled:
429  * @ctx: the aio context
430  *
431  * Return true if the external clients are disabled.
432  */
433 static inline bool aio_external_disabled(AioContext *ctx)
434 {
435     return atomic_read(&ctx->external_disable_cnt);
436 }
437 
438 /**
439  * aio_node_check:
440  * @ctx: the aio context
441  * @is_external: Whether or not the checked node is an external event source.
442  *
443  * Check if the node's is_external flag is okay to be polled by the ctx at this
444  * moment. True means green light.
445  */
446 static inline bool aio_node_check(AioContext *ctx, bool is_external)
447 {
448     return !is_external || !atomic_read(&ctx->external_disable_cnt);
449 }
450 
451 /**
452  * Return the AioContext whose event loop runs in the current thread.
453  *
454  * If called from an IOThread this will be the IOThread's AioContext.  If
455  * called from another thread it will be the main loop AioContext.
456  */
457 AioContext *qemu_get_current_aio_context(void);
458 
459 /**
460  * @ctx: the aio context
461  *
462  * Return whether we are running in the I/O thread that manages @ctx.
463  */
464 static inline bool aio_context_in_iothread(AioContext *ctx)
465 {
466     return ctx == qemu_get_current_aio_context();
467 }
468 
469 /**
470  * aio_context_setup:
471  * @ctx: the aio context
472  *
473  * Initialize the aio context.
474  */
475 void aio_context_setup(AioContext *ctx);
476 
477 #endif
478