1 /* 2 * QEMU aio implementation 3 * 4 * Copyright IBM, Corp. 2008 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_AIO_H 15 #define QEMU_AIO_H 16 17 #include "qemu/typedefs.h" 18 #include "qemu-common.h" 19 #include "qemu/queue.h" 20 #include "qemu/event_notifier.h" 21 #include "qemu/thread.h" 22 #include "qemu/rfifolock.h" 23 #include "qemu/timer.h" 24 25 typedef struct BlockAIOCB BlockAIOCB; 26 typedef void BlockCompletionFunc(void *opaque, int ret); 27 28 typedef struct AIOCBInfo { 29 void (*cancel_async)(BlockAIOCB *acb); 30 AioContext *(*get_aio_context)(BlockAIOCB *acb); 31 size_t aiocb_size; 32 } AIOCBInfo; 33 34 struct BlockAIOCB { 35 const AIOCBInfo *aiocb_info; 36 BlockDriverState *bs; 37 BlockCompletionFunc *cb; 38 void *opaque; 39 int refcnt; 40 }; 41 42 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 43 BlockCompletionFunc *cb, void *opaque); 44 void qemu_aio_unref(void *p); 45 void qemu_aio_ref(void *p); 46 47 typedef struct AioHandler AioHandler; 48 typedef void QEMUBHFunc(void *opaque); 49 typedef void IOHandler(void *opaque); 50 51 struct AioContext { 52 GSource source; 53 54 /* Protects all fields from multi-threaded access */ 55 RFifoLock lock; 56 57 /* The list of registered AIO handlers */ 58 QLIST_HEAD(, AioHandler) aio_handlers; 59 60 /* This is a simple lock used to protect the aio_handlers list. 61 * Specifically, it's used to ensure that no callbacks are removed while 62 * we're walking and dispatching callbacks. 63 */ 64 int walking_handlers; 65 66 /* Used to avoid unnecessary event_notifier_set calls in aio_notify; 67 * accessed with atomic primitives. If this field is 0, everything 68 * (file descriptors, bottom halves, timers) will be re-evaluated 69 * before the next blocking poll(), thus the event_notifier_set call 70 * can be skipped. If it is non-zero, you may need to wake up a 71 * concurrent aio_poll or the glib main event loop, making 72 * event_notifier_set necessary. 73 * 74 * Bit 0 is reserved for GSource usage of the AioContext, and is 1 75 * between a call to aio_ctx_check and the next call to aio_ctx_dispatch. 76 * Bits 1-31 simply count the number of active calls to aio_poll 77 * that are in the prepare or poll phase. 78 * 79 * The GSource and aio_poll must use a different mechanism because 80 * there is no certainty that a call to GSource's prepare callback 81 * (via g_main_context_prepare) is indeed followed by check and 82 * dispatch. It's not clear whether this would be a bug, but let's 83 * play safe and allow it---it will just cause extra calls to 84 * event_notifier_set until the next call to dispatch. 85 * 86 * Instead, the aio_poll calls include both the prepare and the 87 * dispatch phase, hence a simple counter is enough for them. 88 */ 89 uint32_t notify_me; 90 91 /* lock to protect between bh's adders and deleter */ 92 QemuMutex bh_lock; 93 94 /* Anchor of the list of Bottom Halves belonging to the context */ 95 struct QEMUBH *first_bh; 96 97 /* A simple lock used to protect the first_bh list, and ensure that 98 * no callbacks are removed while we're walking and dispatching callbacks. 99 */ 100 int walking_bh; 101 102 /* Used by aio_notify. 103 * 104 * "notified" is used to avoid expensive event_notifier_test_and_clear 105 * calls. When it is clear, the EventNotifier is clear, or one thread 106 * is going to clear "notified" before processing more events. False 107 * positives are possible, i.e. "notified" could be set even though the 108 * EventNotifier is clear. 109 * 110 * Note that event_notifier_set *cannot* be optimized the same way. For 111 * more information on the problem that would result, see "#ifdef BUG2" 112 * in the docs/aio_notify_accept.promela formal model. 113 */ 114 bool notified; 115 EventNotifier notifier; 116 117 /* Scheduling this BH forces the event loop it iterate */ 118 QEMUBH *notify_dummy_bh; 119 120 /* Thread pool for performing work and receiving completion callbacks */ 121 struct ThreadPool *thread_pool; 122 123 /* TimerLists for calling timers - one per clock type */ 124 QEMUTimerListGroup tlg; 125 }; 126 127 /** 128 * aio_context_new: Allocate a new AioContext. 129 * 130 * AioContext provide a mini event-loop that can be waited on synchronously. 131 * They also provide bottom halves, a service to execute a piece of code 132 * as soon as possible. 133 */ 134 AioContext *aio_context_new(Error **errp); 135 136 /** 137 * aio_context_ref: 138 * @ctx: The AioContext to operate on. 139 * 140 * Add a reference to an AioContext. 141 */ 142 void aio_context_ref(AioContext *ctx); 143 144 /** 145 * aio_context_unref: 146 * @ctx: The AioContext to operate on. 147 * 148 * Drop a reference to an AioContext. 149 */ 150 void aio_context_unref(AioContext *ctx); 151 152 /* Take ownership of the AioContext. If the AioContext will be shared between 153 * threads, and a thread does not want to be interrupted, it will have to 154 * take ownership around calls to aio_poll(). Otherwise, aio_poll() 155 * automatically takes care of calling aio_context_acquire and 156 * aio_context_release. 157 * 158 * Access to timers and BHs from a thread that has not acquired AioContext 159 * is possible. Access to callbacks for now must be done while the AioContext 160 * is owned by the thread (FIXME). 161 */ 162 void aio_context_acquire(AioContext *ctx); 163 164 /* Relinquish ownership of the AioContext. */ 165 void aio_context_release(AioContext *ctx); 166 167 /** 168 * aio_bh_new: Allocate a new bottom half structure. 169 * 170 * Bottom halves are lightweight callbacks whose invocation is guaranteed 171 * to be wait-free, thread-safe and signal-safe. The #QEMUBH structure 172 * is opaque and must be allocated prior to its use. 173 */ 174 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque); 175 176 /** 177 * aio_notify: Force processing of pending events. 178 * 179 * Similar to signaling a condition variable, aio_notify forces 180 * aio_wait to exit, so that the next call will re-examine pending events. 181 * The caller of aio_notify will usually call aio_wait again very soon, 182 * or go through another iteration of the GLib main loop. Hence, aio_notify 183 * also has the side effect of recalculating the sets of file descriptors 184 * that the main loop waits for. 185 * 186 * Calling aio_notify is rarely necessary, because for example scheduling 187 * a bottom half calls it already. 188 */ 189 void aio_notify(AioContext *ctx); 190 191 /** 192 * aio_notify_accept: Acknowledge receiving an aio_notify. 193 * 194 * aio_notify() uses an EventNotifier in order to wake up a sleeping 195 * aio_poll() or g_main_context_iteration(). Calls to aio_notify() are 196 * usually rare, but the AioContext has to clear the EventNotifier on 197 * every aio_poll() or g_main_context_iteration() in order to avoid 198 * busy waiting. This event_notifier_test_and_clear() cannot be done 199 * using the usual aio_context_set_event_notifier(), because it must 200 * be done before processing all events (file descriptors, bottom halves, 201 * timers). 202 * 203 * aio_notify_accept() is an optimized event_notifier_test_and_clear() 204 * that is specific to an AioContext's notifier; it is used internally 205 * to clear the EventNotifier only if aio_notify() had been called. 206 */ 207 void aio_notify_accept(AioContext *ctx); 208 209 /** 210 * aio_bh_poll: Poll bottom halves for an AioContext. 211 * 212 * These are internal functions used by the QEMU main loop. 213 * And notice that multiple occurrences of aio_bh_poll cannot 214 * be called concurrently 215 */ 216 int aio_bh_poll(AioContext *ctx); 217 218 /** 219 * qemu_bh_schedule: Schedule a bottom half. 220 * 221 * Scheduling a bottom half interrupts the main loop and causes the 222 * execution of the callback that was passed to qemu_bh_new. 223 * 224 * Bottom halves that are scheduled from a bottom half handler are instantly 225 * invoked. This can create an infinite loop if a bottom half handler 226 * schedules itself. 227 * 228 * @bh: The bottom half to be scheduled. 229 */ 230 void qemu_bh_schedule(QEMUBH *bh); 231 232 /** 233 * qemu_bh_cancel: Cancel execution of a bottom half. 234 * 235 * Canceling execution of a bottom half undoes the effect of calls to 236 * qemu_bh_schedule without freeing its resources yet. While cancellation 237 * itself is also wait-free and thread-safe, it can of course race with the 238 * loop that executes bottom halves unless you are holding the iothread 239 * mutex. This makes it mostly useless if you are not holding the mutex. 240 * 241 * @bh: The bottom half to be canceled. 242 */ 243 void qemu_bh_cancel(QEMUBH *bh); 244 245 /** 246 *qemu_bh_delete: Cancel execution of a bottom half and free its resources. 247 * 248 * Deleting a bottom half frees the memory that was allocated for it by 249 * qemu_bh_new. It also implies canceling the bottom half if it was 250 * scheduled. 251 * This func is async. The bottom half will do the delete action at the finial 252 * end. 253 * 254 * @bh: The bottom half to be deleted. 255 */ 256 void qemu_bh_delete(QEMUBH *bh); 257 258 /* Return whether there are any pending callbacks from the GSource 259 * attached to the AioContext, before g_poll is invoked. 260 * 261 * This is used internally in the implementation of the GSource. 262 */ 263 bool aio_prepare(AioContext *ctx); 264 265 /* Return whether there are any pending callbacks from the GSource 266 * attached to the AioContext, after g_poll is invoked. 267 * 268 * This is used internally in the implementation of the GSource. 269 */ 270 bool aio_pending(AioContext *ctx); 271 272 /* Dispatch any pending callbacks from the GSource attached to the AioContext. 273 * 274 * This is used internally in the implementation of the GSource. 275 */ 276 bool aio_dispatch(AioContext *ctx); 277 278 /* Progress in completing AIO work to occur. This can issue new pending 279 * aio as a result of executing I/O completion or bh callbacks. 280 * 281 * Return whether any progress was made by executing AIO or bottom half 282 * handlers. If @blocking == true, this should always be true except 283 * if someone called aio_notify. 284 * 285 * If there are no pending bottom halves, but there are pending AIO 286 * operations, it may not be possible to make any progress without 287 * blocking. If @blocking is true, this function will wait until one 288 * or more AIO events have completed, to ensure something has moved 289 * before returning. 290 */ 291 bool aio_poll(AioContext *ctx, bool blocking); 292 293 /* Register a file descriptor and associated callbacks. Behaves very similarly 294 * to qemu_set_fd_handler. Unlike qemu_set_fd_handler, these callbacks will 295 * be invoked when using aio_poll(). 296 * 297 * Code that invokes AIO completion functions should rely on this function 298 * instead of qemu_set_fd_handler[2]. 299 */ 300 void aio_set_fd_handler(AioContext *ctx, 301 int fd, 302 IOHandler *io_read, 303 IOHandler *io_write, 304 void *opaque); 305 306 /* Register an event notifier and associated callbacks. Behaves very similarly 307 * to event_notifier_set_handler. Unlike event_notifier_set_handler, these callbacks 308 * will be invoked when using aio_poll(). 309 * 310 * Code that invokes AIO completion functions should rely on this function 311 * instead of event_notifier_set_handler. 312 */ 313 void aio_set_event_notifier(AioContext *ctx, 314 EventNotifier *notifier, 315 EventNotifierHandler *io_read); 316 317 /* Return a GSource that lets the main loop poll the file descriptors attached 318 * to this AioContext. 319 */ 320 GSource *aio_get_g_source(AioContext *ctx); 321 322 /* Return the ThreadPool bound to this AioContext */ 323 struct ThreadPool *aio_get_thread_pool(AioContext *ctx); 324 325 /** 326 * aio_timer_new: 327 * @ctx: the aio context 328 * @type: the clock type 329 * @scale: the scale 330 * @cb: the callback to call on timer expiry 331 * @opaque: the opaque pointer to pass to the callback 332 * 333 * Allocate a new timer attached to the context @ctx. 334 * The function is responsible for memory allocation. 335 * 336 * The preferred interface is aio_timer_init. Use that 337 * unless you really need dynamic memory allocation. 338 * 339 * Returns: a pointer to the new timer 340 */ 341 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type, 342 int scale, 343 QEMUTimerCB *cb, void *opaque) 344 { 345 return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque); 346 } 347 348 /** 349 * aio_timer_init: 350 * @ctx: the aio context 351 * @ts: the timer 352 * @type: the clock type 353 * @scale: the scale 354 * @cb: the callback to call on timer expiry 355 * @opaque: the opaque pointer to pass to the callback 356 * 357 * Initialise a new timer attached to the context @ctx. 358 * The caller is responsible for memory allocation. 359 */ 360 static inline void aio_timer_init(AioContext *ctx, 361 QEMUTimer *ts, QEMUClockType type, 362 int scale, 363 QEMUTimerCB *cb, void *opaque) 364 { 365 timer_init_tl(ts, ctx->tlg.tl[type], scale, cb, opaque); 366 } 367 368 /** 369 * aio_compute_timeout: 370 * @ctx: the aio context 371 * 372 * Compute the timeout that a blocking aio_poll should use. 373 */ 374 int64_t aio_compute_timeout(AioContext *ctx); 375 376 #endif 377