1 /* 2 * QEMU aio implementation 3 * 4 * Copyright IBM, Corp. 2008 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_AIO_H 15 #define QEMU_AIO_H 16 17 #include "qemu-common.h" 18 #include "qemu/queue.h" 19 #include "qemu/event_notifier.h" 20 #include "qemu/thread.h" 21 #include "qemu/rfifolock.h" 22 #include "qemu/timer.h" 23 24 typedef struct BlockAIOCB BlockAIOCB; 25 typedef void BlockCompletionFunc(void *opaque, int ret); 26 27 typedef struct AIOCBInfo { 28 void (*cancel_async)(BlockAIOCB *acb); 29 AioContext *(*get_aio_context)(BlockAIOCB *acb); 30 size_t aiocb_size; 31 } AIOCBInfo; 32 33 struct BlockAIOCB { 34 const AIOCBInfo *aiocb_info; 35 BlockDriverState *bs; 36 BlockCompletionFunc *cb; 37 void *opaque; 38 int refcnt; 39 }; 40 41 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 42 BlockCompletionFunc *cb, void *opaque); 43 void qemu_aio_unref(void *p); 44 void qemu_aio_ref(void *p); 45 46 typedef struct AioHandler AioHandler; 47 typedef void QEMUBHFunc(void *opaque); 48 typedef void IOHandler(void *opaque); 49 50 struct ThreadPool; 51 struct LinuxAioState; 52 53 struct AioContext { 54 GSource source; 55 56 /* Protects all fields from multi-threaded access */ 57 RFifoLock lock; 58 59 /* The list of registered AIO handlers */ 60 QLIST_HEAD(, AioHandler) aio_handlers; 61 62 /* This is a simple lock used to protect the aio_handlers list. 63 * Specifically, it's used to ensure that no callbacks are removed while 64 * we're walking and dispatching callbacks. 65 */ 66 int walking_handlers; 67 68 /* Used to avoid unnecessary event_notifier_set calls in aio_notify; 69 * accessed with atomic primitives. If this field is 0, everything 70 * (file descriptors, bottom halves, timers) will be re-evaluated 71 * before the next blocking poll(), thus the event_notifier_set call 72 * can be skipped. If it is non-zero, you may need to wake up a 73 * concurrent aio_poll or the glib main event loop, making 74 * event_notifier_set necessary. 75 * 76 * Bit 0 is reserved for GSource usage of the AioContext, and is 1 77 * between a call to aio_ctx_prepare and the next call to aio_ctx_check. 78 * Bits 1-31 simply count the number of active calls to aio_poll 79 * that are in the prepare or poll phase. 80 * 81 * The GSource and aio_poll must use a different mechanism because 82 * there is no certainty that a call to GSource's prepare callback 83 * (via g_main_context_prepare) is indeed followed by check and 84 * dispatch. It's not clear whether this would be a bug, but let's 85 * play safe and allow it---it will just cause extra calls to 86 * event_notifier_set until the next call to dispatch. 87 * 88 * Instead, the aio_poll calls include both the prepare and the 89 * dispatch phase, hence a simple counter is enough for them. 90 */ 91 uint32_t notify_me; 92 93 /* lock to protect between bh's adders and deleter */ 94 QemuMutex bh_lock; 95 96 /* Anchor of the list of Bottom Halves belonging to the context */ 97 struct QEMUBH *first_bh; 98 99 /* A simple lock used to protect the first_bh list, and ensure that 100 * no callbacks are removed while we're walking and dispatching callbacks. 101 */ 102 int walking_bh; 103 104 /* Used by aio_notify. 105 * 106 * "notified" is used to avoid expensive event_notifier_test_and_clear 107 * calls. When it is clear, the EventNotifier is clear, or one thread 108 * is going to clear "notified" before processing more events. False 109 * positives are possible, i.e. "notified" could be set even though the 110 * EventNotifier is clear. 111 * 112 * Note that event_notifier_set *cannot* be optimized the same way. For 113 * more information on the problem that would result, see "#ifdef BUG2" 114 * in the docs/aio_notify_accept.promela formal model. 115 */ 116 bool notified; 117 EventNotifier notifier; 118 119 /* Scheduling this BH forces the event loop it iterate */ 120 QEMUBH *notify_dummy_bh; 121 122 /* Thread pool for performing work and receiving completion callbacks */ 123 struct ThreadPool *thread_pool; 124 125 #ifdef CONFIG_LINUX_AIO 126 /* State for native Linux AIO. Uses aio_context_acquire/release for 127 * locking. 128 */ 129 struct LinuxAioState *linux_aio; 130 #endif 131 132 /* TimerLists for calling timers - one per clock type */ 133 QEMUTimerListGroup tlg; 134 135 int external_disable_cnt; 136 137 /* epoll(7) state used when built with CONFIG_EPOLL */ 138 int epollfd; 139 bool epoll_enabled; 140 bool epoll_available; 141 }; 142 143 /** 144 * aio_context_new: Allocate a new AioContext. 145 * 146 * AioContext provide a mini event-loop that can be waited on synchronously. 147 * They also provide bottom halves, a service to execute a piece of code 148 * as soon as possible. 149 */ 150 AioContext *aio_context_new(Error **errp); 151 152 /** 153 * aio_context_ref: 154 * @ctx: The AioContext to operate on. 155 * 156 * Add a reference to an AioContext. 157 */ 158 void aio_context_ref(AioContext *ctx); 159 160 /** 161 * aio_context_unref: 162 * @ctx: The AioContext to operate on. 163 * 164 * Drop a reference to an AioContext. 165 */ 166 void aio_context_unref(AioContext *ctx); 167 168 /* Take ownership of the AioContext. If the AioContext will be shared between 169 * threads, and a thread does not want to be interrupted, it will have to 170 * take ownership around calls to aio_poll(). Otherwise, aio_poll() 171 * automatically takes care of calling aio_context_acquire and 172 * aio_context_release. 173 * 174 * Access to timers and BHs from a thread that has not acquired AioContext 175 * is possible. Access to callbacks for now must be done while the AioContext 176 * is owned by the thread (FIXME). 177 */ 178 void aio_context_acquire(AioContext *ctx); 179 180 /* Relinquish ownership of the AioContext. */ 181 void aio_context_release(AioContext *ctx); 182 183 /** 184 * aio_bh_schedule_oneshot: Allocate a new bottom half structure that will run 185 * only once and as soon as possible. 186 */ 187 void aio_bh_schedule_oneshot(AioContext *ctx, QEMUBHFunc *cb, void *opaque); 188 189 /** 190 * aio_bh_new: Allocate a new bottom half structure. 191 * 192 * Bottom halves are lightweight callbacks whose invocation is guaranteed 193 * to be wait-free, thread-safe and signal-safe. The #QEMUBH structure 194 * is opaque and must be allocated prior to its use. 195 */ 196 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque); 197 198 /** 199 * aio_notify: Force processing of pending events. 200 * 201 * Similar to signaling a condition variable, aio_notify forces 202 * aio_wait to exit, so that the next call will re-examine pending events. 203 * The caller of aio_notify will usually call aio_wait again very soon, 204 * or go through another iteration of the GLib main loop. Hence, aio_notify 205 * also has the side effect of recalculating the sets of file descriptors 206 * that the main loop waits for. 207 * 208 * Calling aio_notify is rarely necessary, because for example scheduling 209 * a bottom half calls it already. 210 */ 211 void aio_notify(AioContext *ctx); 212 213 /** 214 * aio_notify_accept: Acknowledge receiving an aio_notify. 215 * 216 * aio_notify() uses an EventNotifier in order to wake up a sleeping 217 * aio_poll() or g_main_context_iteration(). Calls to aio_notify() are 218 * usually rare, but the AioContext has to clear the EventNotifier on 219 * every aio_poll() or g_main_context_iteration() in order to avoid 220 * busy waiting. This event_notifier_test_and_clear() cannot be done 221 * using the usual aio_context_set_event_notifier(), because it must 222 * be done before processing all events (file descriptors, bottom halves, 223 * timers). 224 * 225 * aio_notify_accept() is an optimized event_notifier_test_and_clear() 226 * that is specific to an AioContext's notifier; it is used internally 227 * to clear the EventNotifier only if aio_notify() had been called. 228 */ 229 void aio_notify_accept(AioContext *ctx); 230 231 /** 232 * aio_bh_call: Executes callback function of the specified BH. 233 */ 234 void aio_bh_call(QEMUBH *bh); 235 236 /** 237 * aio_bh_poll: Poll bottom halves for an AioContext. 238 * 239 * These are internal functions used by the QEMU main loop. 240 * And notice that multiple occurrences of aio_bh_poll cannot 241 * be called concurrently 242 */ 243 int aio_bh_poll(AioContext *ctx); 244 245 /** 246 * qemu_bh_schedule: Schedule a bottom half. 247 * 248 * Scheduling a bottom half interrupts the main loop and causes the 249 * execution of the callback that was passed to qemu_bh_new. 250 * 251 * Bottom halves that are scheduled from a bottom half handler are instantly 252 * invoked. This can create an infinite loop if a bottom half handler 253 * schedules itself. 254 * 255 * @bh: The bottom half to be scheduled. 256 */ 257 void qemu_bh_schedule(QEMUBH *bh); 258 259 /** 260 * qemu_bh_cancel: Cancel execution of a bottom half. 261 * 262 * Canceling execution of a bottom half undoes the effect of calls to 263 * qemu_bh_schedule without freeing its resources yet. While cancellation 264 * itself is also wait-free and thread-safe, it can of course race with the 265 * loop that executes bottom halves unless you are holding the iothread 266 * mutex. This makes it mostly useless if you are not holding the mutex. 267 * 268 * @bh: The bottom half to be canceled. 269 */ 270 void qemu_bh_cancel(QEMUBH *bh); 271 272 /** 273 *qemu_bh_delete: Cancel execution of a bottom half and free its resources. 274 * 275 * Deleting a bottom half frees the memory that was allocated for it by 276 * qemu_bh_new. It also implies canceling the bottom half if it was 277 * scheduled. 278 * This func is async. The bottom half will do the delete action at the finial 279 * end. 280 * 281 * @bh: The bottom half to be deleted. 282 */ 283 void qemu_bh_delete(QEMUBH *bh); 284 285 /* Return whether there are any pending callbacks from the GSource 286 * attached to the AioContext, before g_poll is invoked. 287 * 288 * This is used internally in the implementation of the GSource. 289 */ 290 bool aio_prepare(AioContext *ctx); 291 292 /* Return whether there are any pending callbacks from the GSource 293 * attached to the AioContext, after g_poll is invoked. 294 * 295 * This is used internally in the implementation of the GSource. 296 */ 297 bool aio_pending(AioContext *ctx); 298 299 /* Dispatch any pending callbacks from the GSource attached to the AioContext. 300 * 301 * This is used internally in the implementation of the GSource. 302 */ 303 bool aio_dispatch(AioContext *ctx); 304 305 /* Progress in completing AIO work to occur. This can issue new pending 306 * aio as a result of executing I/O completion or bh callbacks. 307 * 308 * Return whether any progress was made by executing AIO or bottom half 309 * handlers. If @blocking == true, this should always be true except 310 * if someone called aio_notify. 311 * 312 * If there are no pending bottom halves, but there are pending AIO 313 * operations, it may not be possible to make any progress without 314 * blocking. If @blocking is true, this function will wait until one 315 * or more AIO events have completed, to ensure something has moved 316 * before returning. 317 */ 318 bool aio_poll(AioContext *ctx, bool blocking); 319 320 /* Register a file descriptor and associated callbacks. Behaves very similarly 321 * to qemu_set_fd_handler. Unlike qemu_set_fd_handler, these callbacks will 322 * be invoked when using aio_poll(). 323 * 324 * Code that invokes AIO completion functions should rely on this function 325 * instead of qemu_set_fd_handler[2]. 326 */ 327 void aio_set_fd_handler(AioContext *ctx, 328 int fd, 329 bool is_external, 330 IOHandler *io_read, 331 IOHandler *io_write, 332 void *opaque); 333 334 /* Register an event notifier and associated callbacks. Behaves very similarly 335 * to event_notifier_set_handler. Unlike event_notifier_set_handler, these callbacks 336 * will be invoked when using aio_poll(). 337 * 338 * Code that invokes AIO completion functions should rely on this function 339 * instead of event_notifier_set_handler. 340 */ 341 void aio_set_event_notifier(AioContext *ctx, 342 EventNotifier *notifier, 343 bool is_external, 344 EventNotifierHandler *io_read); 345 346 /* Return a GSource that lets the main loop poll the file descriptors attached 347 * to this AioContext. 348 */ 349 GSource *aio_get_g_source(AioContext *ctx); 350 351 /* Return the ThreadPool bound to this AioContext */ 352 struct ThreadPool *aio_get_thread_pool(AioContext *ctx); 353 354 /* Return the LinuxAioState bound to this AioContext */ 355 struct LinuxAioState *aio_get_linux_aio(AioContext *ctx); 356 357 /** 358 * aio_timer_new: 359 * @ctx: the aio context 360 * @type: the clock type 361 * @scale: the scale 362 * @cb: the callback to call on timer expiry 363 * @opaque: the opaque pointer to pass to the callback 364 * 365 * Allocate a new timer attached to the context @ctx. 366 * The function is responsible for memory allocation. 367 * 368 * The preferred interface is aio_timer_init. Use that 369 * unless you really need dynamic memory allocation. 370 * 371 * Returns: a pointer to the new timer 372 */ 373 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type, 374 int scale, 375 QEMUTimerCB *cb, void *opaque) 376 { 377 return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque); 378 } 379 380 /** 381 * aio_timer_init: 382 * @ctx: the aio context 383 * @ts: the timer 384 * @type: the clock type 385 * @scale: the scale 386 * @cb: the callback to call on timer expiry 387 * @opaque: the opaque pointer to pass to the callback 388 * 389 * Initialise a new timer attached to the context @ctx. 390 * The caller is responsible for memory allocation. 391 */ 392 static inline void aio_timer_init(AioContext *ctx, 393 QEMUTimer *ts, QEMUClockType type, 394 int scale, 395 QEMUTimerCB *cb, void *opaque) 396 { 397 timer_init_tl(ts, ctx->tlg.tl[type], scale, cb, opaque); 398 } 399 400 /** 401 * aio_compute_timeout: 402 * @ctx: the aio context 403 * 404 * Compute the timeout that a blocking aio_poll should use. 405 */ 406 int64_t aio_compute_timeout(AioContext *ctx); 407 408 /** 409 * aio_disable_external: 410 * @ctx: the aio context 411 * 412 * Disable the further processing of external clients. 413 */ 414 static inline void aio_disable_external(AioContext *ctx) 415 { 416 atomic_inc(&ctx->external_disable_cnt); 417 } 418 419 /** 420 * aio_enable_external: 421 * @ctx: the aio context 422 * 423 * Enable the processing of external clients. 424 */ 425 static inline void aio_enable_external(AioContext *ctx) 426 { 427 assert(ctx->external_disable_cnt > 0); 428 atomic_dec(&ctx->external_disable_cnt); 429 } 430 431 /** 432 * aio_external_disabled: 433 * @ctx: the aio context 434 * 435 * Return true if the external clients are disabled. 436 */ 437 static inline bool aio_external_disabled(AioContext *ctx) 438 { 439 return atomic_read(&ctx->external_disable_cnt); 440 } 441 442 /** 443 * aio_node_check: 444 * @ctx: the aio context 445 * @is_external: Whether or not the checked node is an external event source. 446 * 447 * Check if the node's is_external flag is okay to be polled by the ctx at this 448 * moment. True means green light. 449 */ 450 static inline bool aio_node_check(AioContext *ctx, bool is_external) 451 { 452 return !is_external || !atomic_read(&ctx->external_disable_cnt); 453 } 454 455 /** 456 * aio_context_setup: 457 * @ctx: the aio context 458 * 459 * Initialize the aio context. 460 */ 461 void aio_context_setup(AioContext *ctx); 462 463 #endif 464