xref: /openbmc/qemu/include/block/aio.h (revision 6775e2c4)
1 /*
2  * QEMU aio implementation
3  *
4  * Copyright IBM, Corp. 2008
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_AIO_H
15 #define QEMU_AIO_H
16 
17 #include "qemu/typedefs.h"
18 #include "qemu-common.h"
19 #include "qemu/queue.h"
20 #include "qemu/event_notifier.h"
21 #include "qemu/thread.h"
22 #include "qemu/rfifolock.h"
23 #include "qemu/timer.h"
24 
25 typedef struct BlockAIOCB BlockAIOCB;
26 typedef void BlockCompletionFunc(void *opaque, int ret);
27 
28 typedef struct AIOCBInfo {
29     void (*cancel_async)(BlockAIOCB *acb);
30     AioContext *(*get_aio_context)(BlockAIOCB *acb);
31     size_t aiocb_size;
32 } AIOCBInfo;
33 
34 struct BlockAIOCB {
35     const AIOCBInfo *aiocb_info;
36     BlockDriverState *bs;
37     BlockCompletionFunc *cb;
38     void *opaque;
39     int refcnt;
40 };
41 
42 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
43                    BlockCompletionFunc *cb, void *opaque);
44 void qemu_aio_unref(void *p);
45 void qemu_aio_ref(void *p);
46 
47 typedef struct AioHandler AioHandler;
48 typedef void QEMUBHFunc(void *opaque);
49 typedef void IOHandler(void *opaque);
50 
51 struct AioContext {
52     GSource source;
53 
54     /* Protects all fields from multi-threaded access */
55     RFifoLock lock;
56 
57     /* The list of registered AIO handlers */
58     QLIST_HEAD(, AioHandler) aio_handlers;
59 
60     /* This is a simple lock used to protect the aio_handlers list.
61      * Specifically, it's used to ensure that no callbacks are removed while
62      * we're walking and dispatching callbacks.
63      */
64     int walking_handlers;
65 
66     /* Used to avoid unnecessary event_notifier_set calls in aio_notify;
67      * accessed with atomic primitives.  If this field is 0, everything
68      * (file descriptors, bottom halves, timers) will be re-evaluated
69      * before the next blocking poll(), thus the event_notifier_set call
70      * can be skipped.  If it is non-zero, you may need to wake up a
71      * concurrent aio_poll or the glib main event loop, making
72      * event_notifier_set necessary.
73      *
74      * Bit 0 is reserved for GSource usage of the AioContext, and is 1
75      * between a call to aio_ctx_check and the next call to aio_ctx_dispatch.
76      * Bits 1-31 simply count the number of active calls to aio_poll
77      * that are in the prepare or poll phase.
78      *
79      * The GSource and aio_poll must use a different mechanism because
80      * there is no certainty that a call to GSource's prepare callback
81      * (via g_main_context_prepare) is indeed followed by check and
82      * dispatch.  It's not clear whether this would be a bug, but let's
83      * play safe and allow it---it will just cause extra calls to
84      * event_notifier_set until the next call to dispatch.
85      *
86      * Instead, the aio_poll calls include both the prepare and the
87      * dispatch phase, hence a simple counter is enough for them.
88      */
89     uint32_t notify_me;
90 
91     /* lock to protect between bh's adders and deleter */
92     QemuMutex bh_lock;
93 
94     /* Anchor of the list of Bottom Halves belonging to the context */
95     struct QEMUBH *first_bh;
96 
97     /* A simple lock used to protect the first_bh list, and ensure that
98      * no callbacks are removed while we're walking and dispatching callbacks.
99      */
100     int walking_bh;
101 
102     /* Used by aio_notify.
103      *
104      * "notified" is used to avoid expensive event_notifier_test_and_clear
105      * calls.  When it is clear, the EventNotifier is clear, or one thread
106      * is going to clear "notified" before processing more events.  False
107      * positives are possible, i.e. "notified" could be set even though the
108      * EventNotifier is clear.
109      *
110      * Note that event_notifier_set *cannot* be optimized the same way.  For
111      * more information on the problem that would result, see "#ifdef BUG2"
112      * in the docs/aio_notify_accept.promela formal model.
113      */
114     bool notified;
115     EventNotifier notifier;
116 
117     /* Thread pool for performing work and receiving completion callbacks */
118     struct ThreadPool *thread_pool;
119 
120     /* TimerLists for calling timers - one per clock type */
121     QEMUTimerListGroup tlg;
122 };
123 
124 /**
125  * aio_context_new: Allocate a new AioContext.
126  *
127  * AioContext provide a mini event-loop that can be waited on synchronously.
128  * They also provide bottom halves, a service to execute a piece of code
129  * as soon as possible.
130  */
131 AioContext *aio_context_new(Error **errp);
132 
133 /**
134  * aio_context_ref:
135  * @ctx: The AioContext to operate on.
136  *
137  * Add a reference to an AioContext.
138  */
139 void aio_context_ref(AioContext *ctx);
140 
141 /**
142  * aio_context_unref:
143  * @ctx: The AioContext to operate on.
144  *
145  * Drop a reference to an AioContext.
146  */
147 void aio_context_unref(AioContext *ctx);
148 
149 /* Take ownership of the AioContext.  If the AioContext will be shared between
150  * threads, and a thread does not want to be interrupted, it will have to
151  * take ownership around calls to aio_poll().  Otherwise, aio_poll()
152  * automatically takes care of calling aio_context_acquire and
153  * aio_context_release.
154  *
155  * Access to timers and BHs from a thread that has not acquired AioContext
156  * is possible.  Access to callbacks for now must be done while the AioContext
157  * is owned by the thread (FIXME).
158  */
159 void aio_context_acquire(AioContext *ctx);
160 
161 /* Relinquish ownership of the AioContext. */
162 void aio_context_release(AioContext *ctx);
163 
164 /**
165  * aio_bh_new: Allocate a new bottom half structure.
166  *
167  * Bottom halves are lightweight callbacks whose invocation is guaranteed
168  * to be wait-free, thread-safe and signal-safe.  The #QEMUBH structure
169  * is opaque and must be allocated prior to its use.
170  */
171 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque);
172 
173 /**
174  * aio_notify: Force processing of pending events.
175  *
176  * Similar to signaling a condition variable, aio_notify forces
177  * aio_wait to exit, so that the next call will re-examine pending events.
178  * The caller of aio_notify will usually call aio_wait again very soon,
179  * or go through another iteration of the GLib main loop.  Hence, aio_notify
180  * also has the side effect of recalculating the sets of file descriptors
181  * that the main loop waits for.
182  *
183  * Calling aio_notify is rarely necessary, because for example scheduling
184  * a bottom half calls it already.
185  */
186 void aio_notify(AioContext *ctx);
187 
188 /**
189  * aio_notify_accept: Acknowledge receiving an aio_notify.
190  *
191  * aio_notify() uses an EventNotifier in order to wake up a sleeping
192  * aio_poll() or g_main_context_iteration().  Calls to aio_notify() are
193  * usually rare, but the AioContext has to clear the EventNotifier on
194  * every aio_poll() or g_main_context_iteration() in order to avoid
195  * busy waiting.  This event_notifier_test_and_clear() cannot be done
196  * using the usual aio_context_set_event_notifier(), because it must
197  * be done before processing all events (file descriptors, bottom halves,
198  * timers).
199  *
200  * aio_notify_accept() is an optimized event_notifier_test_and_clear()
201  * that is specific to an AioContext's notifier; it is used internally
202  * to clear the EventNotifier only if aio_notify() had been called.
203  */
204 void aio_notify_accept(AioContext *ctx);
205 
206 /**
207  * aio_bh_poll: Poll bottom halves for an AioContext.
208  *
209  * These are internal functions used by the QEMU main loop.
210  * And notice that multiple occurrences of aio_bh_poll cannot
211  * be called concurrently
212  */
213 int aio_bh_poll(AioContext *ctx);
214 
215 /**
216  * qemu_bh_schedule: Schedule a bottom half.
217  *
218  * Scheduling a bottom half interrupts the main loop and causes the
219  * execution of the callback that was passed to qemu_bh_new.
220  *
221  * Bottom halves that are scheduled from a bottom half handler are instantly
222  * invoked.  This can create an infinite loop if a bottom half handler
223  * schedules itself.
224  *
225  * @bh: The bottom half to be scheduled.
226  */
227 void qemu_bh_schedule(QEMUBH *bh);
228 
229 /**
230  * qemu_bh_cancel: Cancel execution of a bottom half.
231  *
232  * Canceling execution of a bottom half undoes the effect of calls to
233  * qemu_bh_schedule without freeing its resources yet.  While cancellation
234  * itself is also wait-free and thread-safe, it can of course race with the
235  * loop that executes bottom halves unless you are holding the iothread
236  * mutex.  This makes it mostly useless if you are not holding the mutex.
237  *
238  * @bh: The bottom half to be canceled.
239  */
240 void qemu_bh_cancel(QEMUBH *bh);
241 
242 /**
243  *qemu_bh_delete: Cancel execution of a bottom half and free its resources.
244  *
245  * Deleting a bottom half frees the memory that was allocated for it by
246  * qemu_bh_new.  It also implies canceling the bottom half if it was
247  * scheduled.
248  * This func is async. The bottom half will do the delete action at the finial
249  * end.
250  *
251  * @bh: The bottom half to be deleted.
252  */
253 void qemu_bh_delete(QEMUBH *bh);
254 
255 /* Return whether there are any pending callbacks from the GSource
256  * attached to the AioContext, before g_poll is invoked.
257  *
258  * This is used internally in the implementation of the GSource.
259  */
260 bool aio_prepare(AioContext *ctx);
261 
262 /* Return whether there are any pending callbacks from the GSource
263  * attached to the AioContext, after g_poll is invoked.
264  *
265  * This is used internally in the implementation of the GSource.
266  */
267 bool aio_pending(AioContext *ctx);
268 
269 /* Dispatch any pending callbacks from the GSource attached to the AioContext.
270  *
271  * This is used internally in the implementation of the GSource.
272  */
273 bool aio_dispatch(AioContext *ctx);
274 
275 /* Progress in completing AIO work to occur.  This can issue new pending
276  * aio as a result of executing I/O completion or bh callbacks.
277  *
278  * Return whether any progress was made by executing AIO or bottom half
279  * handlers.  If @blocking == true, this should always be true except
280  * if someone called aio_notify.
281  *
282  * If there are no pending bottom halves, but there are pending AIO
283  * operations, it may not be possible to make any progress without
284  * blocking.  If @blocking is true, this function will wait until one
285  * or more AIO events have completed, to ensure something has moved
286  * before returning.
287  */
288 bool aio_poll(AioContext *ctx, bool blocking);
289 
290 /* Register a file descriptor and associated callbacks.  Behaves very similarly
291  * to qemu_set_fd_handler.  Unlike qemu_set_fd_handler, these callbacks will
292  * be invoked when using aio_poll().
293  *
294  * Code that invokes AIO completion functions should rely on this function
295  * instead of qemu_set_fd_handler[2].
296  */
297 void aio_set_fd_handler(AioContext *ctx,
298                         int fd,
299                         IOHandler *io_read,
300                         IOHandler *io_write,
301                         void *opaque);
302 
303 /* Register an event notifier and associated callbacks.  Behaves very similarly
304  * to event_notifier_set_handler.  Unlike event_notifier_set_handler, these callbacks
305  * will be invoked when using aio_poll().
306  *
307  * Code that invokes AIO completion functions should rely on this function
308  * instead of event_notifier_set_handler.
309  */
310 void aio_set_event_notifier(AioContext *ctx,
311                             EventNotifier *notifier,
312                             EventNotifierHandler *io_read);
313 
314 /* Return a GSource that lets the main loop poll the file descriptors attached
315  * to this AioContext.
316  */
317 GSource *aio_get_g_source(AioContext *ctx);
318 
319 /* Return the ThreadPool bound to this AioContext */
320 struct ThreadPool *aio_get_thread_pool(AioContext *ctx);
321 
322 /**
323  * aio_timer_new:
324  * @ctx: the aio context
325  * @type: the clock type
326  * @scale: the scale
327  * @cb: the callback to call on timer expiry
328  * @opaque: the opaque pointer to pass to the callback
329  *
330  * Allocate a new timer attached to the context @ctx.
331  * The function is responsible for memory allocation.
332  *
333  * The preferred interface is aio_timer_init. Use that
334  * unless you really need dynamic memory allocation.
335  *
336  * Returns: a pointer to the new timer
337  */
338 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type,
339                                        int scale,
340                                        QEMUTimerCB *cb, void *opaque)
341 {
342     return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque);
343 }
344 
345 /**
346  * aio_timer_init:
347  * @ctx: the aio context
348  * @ts: the timer
349  * @type: the clock type
350  * @scale: the scale
351  * @cb: the callback to call on timer expiry
352  * @opaque: the opaque pointer to pass to the callback
353  *
354  * Initialise a new timer attached to the context @ctx.
355  * The caller is responsible for memory allocation.
356  */
357 static inline void aio_timer_init(AioContext *ctx,
358                                   QEMUTimer *ts, QEMUClockType type,
359                                   int scale,
360                                   QEMUTimerCB *cb, void *opaque)
361 {
362     timer_init_tl(ts, ctx->tlg.tl[type], scale, cb, opaque);
363 }
364 
365 /**
366  * aio_compute_timeout:
367  * @ctx: the aio context
368  *
369  * Compute the timeout that a blocking aio_poll should use.
370  */
371 int64_t aio_compute_timeout(AioContext *ctx);
372 
373 #endif
374