xref: /openbmc/qemu/include/block/aio.h (revision 56411125)
1 /*
2  * QEMU aio implementation
3  *
4  * Copyright IBM, Corp. 2008
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_AIO_H
15 #define QEMU_AIO_H
16 
17 #include "qemu/typedefs.h"
18 #include "qemu-common.h"
19 #include "qemu/queue.h"
20 #include "qemu/event_notifier.h"
21 #include "qemu/thread.h"
22 #include "qemu/rfifolock.h"
23 #include "qemu/timer.h"
24 
25 typedef struct BlockAIOCB BlockAIOCB;
26 typedef void BlockCompletionFunc(void *opaque, int ret);
27 
28 typedef struct AIOCBInfo {
29     void (*cancel_async)(BlockAIOCB *acb);
30     AioContext *(*get_aio_context)(BlockAIOCB *acb);
31     size_t aiocb_size;
32 } AIOCBInfo;
33 
34 struct BlockAIOCB {
35     const AIOCBInfo *aiocb_info;
36     BlockDriverState *bs;
37     BlockCompletionFunc *cb;
38     void *opaque;
39     int refcnt;
40 };
41 
42 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
43                    BlockCompletionFunc *cb, void *opaque);
44 void qemu_aio_unref(void *p);
45 void qemu_aio_ref(void *p);
46 
47 typedef struct AioHandler AioHandler;
48 typedef void QEMUBHFunc(void *opaque);
49 typedef void IOHandler(void *opaque);
50 
51 struct AioContext {
52     GSource source;
53 
54     /* Protects all fields from multi-threaded access */
55     RFifoLock lock;
56 
57     /* The list of registered AIO handlers */
58     QLIST_HEAD(, AioHandler) aio_handlers;
59 
60     /* This is a simple lock used to protect the aio_handlers list.
61      * Specifically, it's used to ensure that no callbacks are removed while
62      * we're walking and dispatching callbacks.
63      */
64     int walking_handlers;
65 
66     /* Used to avoid unnecessary event_notifier_set calls in aio_notify;
67      * accessed with atomic primitives.  If this field is 0, everything
68      * (file descriptors, bottom halves, timers) will be re-evaluated
69      * before the next blocking poll(), thus the event_notifier_set call
70      * can be skipped.  If it is non-zero, you may need to wake up a
71      * concurrent aio_poll or the glib main event loop, making
72      * event_notifier_set necessary.
73      *
74      * Bit 0 is reserved for GSource usage of the AioContext, and is 1
75      * between a call to aio_ctx_check and the next call to aio_ctx_dispatch.
76      * Bits 1-31 simply count the number of active calls to aio_poll
77      * that are in the prepare or poll phase.
78      *
79      * The GSource and aio_poll must use a different mechanism because
80      * there is no certainty that a call to GSource's prepare callback
81      * (via g_main_context_prepare) is indeed followed by check and
82      * dispatch.  It's not clear whether this would be a bug, but let's
83      * play safe and allow it---it will just cause extra calls to
84      * event_notifier_set until the next call to dispatch.
85      *
86      * Instead, the aio_poll calls include both the prepare and the
87      * dispatch phase, hence a simple counter is enough for them.
88      */
89     uint32_t notify_me;
90 
91     /* lock to protect between bh's adders and deleter */
92     QemuMutex bh_lock;
93 
94     /* Anchor of the list of Bottom Halves belonging to the context */
95     struct QEMUBH *first_bh;
96 
97     /* A simple lock used to protect the first_bh list, and ensure that
98      * no callbacks are removed while we're walking and dispatching callbacks.
99      */
100     int walking_bh;
101 
102     /* Used by aio_notify.
103      *
104      * "notified" is used to avoid expensive event_notifier_test_and_clear
105      * calls.  When it is clear, the EventNotifier is clear, or one thread
106      * is going to clear "notified" before processing more events.  False
107      * positives are possible, i.e. "notified" could be set even though the
108      * EventNotifier is clear.
109      *
110      * Note that event_notifier_set *cannot* be optimized the same way.  For
111      * more information on the problem that would result, see "#ifdef BUG2"
112      * in the docs/aio_notify_accept.promela formal model.
113      */
114     bool notified;
115     EventNotifier notifier;
116 
117     /* Scheduling this BH forces the event loop it iterate */
118     QEMUBH *notify_dummy_bh;
119 
120     /* Thread pool for performing work and receiving completion callbacks */
121     struct ThreadPool *thread_pool;
122 
123     /* TimerLists for calling timers - one per clock type */
124     QEMUTimerListGroup tlg;
125 
126     int external_disable_cnt;
127 };
128 
129 /**
130  * aio_context_new: Allocate a new AioContext.
131  *
132  * AioContext provide a mini event-loop that can be waited on synchronously.
133  * They also provide bottom halves, a service to execute a piece of code
134  * as soon as possible.
135  */
136 AioContext *aio_context_new(Error **errp);
137 
138 /**
139  * aio_context_ref:
140  * @ctx: The AioContext to operate on.
141  *
142  * Add a reference to an AioContext.
143  */
144 void aio_context_ref(AioContext *ctx);
145 
146 /**
147  * aio_context_unref:
148  * @ctx: The AioContext to operate on.
149  *
150  * Drop a reference to an AioContext.
151  */
152 void aio_context_unref(AioContext *ctx);
153 
154 /* Take ownership of the AioContext.  If the AioContext will be shared between
155  * threads, and a thread does not want to be interrupted, it will have to
156  * take ownership around calls to aio_poll().  Otherwise, aio_poll()
157  * automatically takes care of calling aio_context_acquire and
158  * aio_context_release.
159  *
160  * Access to timers and BHs from a thread that has not acquired AioContext
161  * is possible.  Access to callbacks for now must be done while the AioContext
162  * is owned by the thread (FIXME).
163  */
164 void aio_context_acquire(AioContext *ctx);
165 
166 /* Relinquish ownership of the AioContext. */
167 void aio_context_release(AioContext *ctx);
168 
169 /**
170  * aio_bh_new: Allocate a new bottom half structure.
171  *
172  * Bottom halves are lightweight callbacks whose invocation is guaranteed
173  * to be wait-free, thread-safe and signal-safe.  The #QEMUBH structure
174  * is opaque and must be allocated prior to its use.
175  */
176 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque);
177 
178 /**
179  * aio_notify: Force processing of pending events.
180  *
181  * Similar to signaling a condition variable, aio_notify forces
182  * aio_wait to exit, so that the next call will re-examine pending events.
183  * The caller of aio_notify will usually call aio_wait again very soon,
184  * or go through another iteration of the GLib main loop.  Hence, aio_notify
185  * also has the side effect of recalculating the sets of file descriptors
186  * that the main loop waits for.
187  *
188  * Calling aio_notify is rarely necessary, because for example scheduling
189  * a bottom half calls it already.
190  */
191 void aio_notify(AioContext *ctx);
192 
193 /**
194  * aio_notify_accept: Acknowledge receiving an aio_notify.
195  *
196  * aio_notify() uses an EventNotifier in order to wake up a sleeping
197  * aio_poll() or g_main_context_iteration().  Calls to aio_notify() are
198  * usually rare, but the AioContext has to clear the EventNotifier on
199  * every aio_poll() or g_main_context_iteration() in order to avoid
200  * busy waiting.  This event_notifier_test_and_clear() cannot be done
201  * using the usual aio_context_set_event_notifier(), because it must
202  * be done before processing all events (file descriptors, bottom halves,
203  * timers).
204  *
205  * aio_notify_accept() is an optimized event_notifier_test_and_clear()
206  * that is specific to an AioContext's notifier; it is used internally
207  * to clear the EventNotifier only if aio_notify() had been called.
208  */
209 void aio_notify_accept(AioContext *ctx);
210 
211 /**
212  * aio_bh_poll: Poll bottom halves for an AioContext.
213  *
214  * These are internal functions used by the QEMU main loop.
215  * And notice that multiple occurrences of aio_bh_poll cannot
216  * be called concurrently
217  */
218 int aio_bh_poll(AioContext *ctx);
219 
220 /**
221  * qemu_bh_schedule: Schedule a bottom half.
222  *
223  * Scheduling a bottom half interrupts the main loop and causes the
224  * execution of the callback that was passed to qemu_bh_new.
225  *
226  * Bottom halves that are scheduled from a bottom half handler are instantly
227  * invoked.  This can create an infinite loop if a bottom half handler
228  * schedules itself.
229  *
230  * @bh: The bottom half to be scheduled.
231  */
232 void qemu_bh_schedule(QEMUBH *bh);
233 
234 /**
235  * qemu_bh_cancel: Cancel execution of a bottom half.
236  *
237  * Canceling execution of a bottom half undoes the effect of calls to
238  * qemu_bh_schedule without freeing its resources yet.  While cancellation
239  * itself is also wait-free and thread-safe, it can of course race with the
240  * loop that executes bottom halves unless you are holding the iothread
241  * mutex.  This makes it mostly useless if you are not holding the mutex.
242  *
243  * @bh: The bottom half to be canceled.
244  */
245 void qemu_bh_cancel(QEMUBH *bh);
246 
247 /**
248  *qemu_bh_delete: Cancel execution of a bottom half and free its resources.
249  *
250  * Deleting a bottom half frees the memory that was allocated for it by
251  * qemu_bh_new.  It also implies canceling the bottom half if it was
252  * scheduled.
253  * This func is async. The bottom half will do the delete action at the finial
254  * end.
255  *
256  * @bh: The bottom half to be deleted.
257  */
258 void qemu_bh_delete(QEMUBH *bh);
259 
260 /* Return whether there are any pending callbacks from the GSource
261  * attached to the AioContext, before g_poll is invoked.
262  *
263  * This is used internally in the implementation of the GSource.
264  */
265 bool aio_prepare(AioContext *ctx);
266 
267 /* Return whether there are any pending callbacks from the GSource
268  * attached to the AioContext, after g_poll is invoked.
269  *
270  * This is used internally in the implementation of the GSource.
271  */
272 bool aio_pending(AioContext *ctx);
273 
274 /* Dispatch any pending callbacks from the GSource attached to the AioContext.
275  *
276  * This is used internally in the implementation of the GSource.
277  */
278 bool aio_dispatch(AioContext *ctx);
279 
280 /* Progress in completing AIO work to occur.  This can issue new pending
281  * aio as a result of executing I/O completion or bh callbacks.
282  *
283  * Return whether any progress was made by executing AIO or bottom half
284  * handlers.  If @blocking == true, this should always be true except
285  * if someone called aio_notify.
286  *
287  * If there are no pending bottom halves, but there are pending AIO
288  * operations, it may not be possible to make any progress without
289  * blocking.  If @blocking is true, this function will wait until one
290  * or more AIO events have completed, to ensure something has moved
291  * before returning.
292  */
293 bool aio_poll(AioContext *ctx, bool blocking);
294 
295 /* Register a file descriptor and associated callbacks.  Behaves very similarly
296  * to qemu_set_fd_handler.  Unlike qemu_set_fd_handler, these callbacks will
297  * be invoked when using aio_poll().
298  *
299  * Code that invokes AIO completion functions should rely on this function
300  * instead of qemu_set_fd_handler[2].
301  */
302 void aio_set_fd_handler(AioContext *ctx,
303                         int fd,
304                         bool is_external,
305                         IOHandler *io_read,
306                         IOHandler *io_write,
307                         void *opaque);
308 
309 /* Register an event notifier and associated callbacks.  Behaves very similarly
310  * to event_notifier_set_handler.  Unlike event_notifier_set_handler, these callbacks
311  * will be invoked when using aio_poll().
312  *
313  * Code that invokes AIO completion functions should rely on this function
314  * instead of event_notifier_set_handler.
315  */
316 void aio_set_event_notifier(AioContext *ctx,
317                             EventNotifier *notifier,
318                             bool is_external,
319                             EventNotifierHandler *io_read);
320 
321 /* Return a GSource that lets the main loop poll the file descriptors attached
322  * to this AioContext.
323  */
324 GSource *aio_get_g_source(AioContext *ctx);
325 
326 /* Return the ThreadPool bound to this AioContext */
327 struct ThreadPool *aio_get_thread_pool(AioContext *ctx);
328 
329 /**
330  * aio_timer_new:
331  * @ctx: the aio context
332  * @type: the clock type
333  * @scale: the scale
334  * @cb: the callback to call on timer expiry
335  * @opaque: the opaque pointer to pass to the callback
336  *
337  * Allocate a new timer attached to the context @ctx.
338  * The function is responsible for memory allocation.
339  *
340  * The preferred interface is aio_timer_init. Use that
341  * unless you really need dynamic memory allocation.
342  *
343  * Returns: a pointer to the new timer
344  */
345 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type,
346                                        int scale,
347                                        QEMUTimerCB *cb, void *opaque)
348 {
349     return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque);
350 }
351 
352 /**
353  * aio_timer_init:
354  * @ctx: the aio context
355  * @ts: the timer
356  * @type: the clock type
357  * @scale: the scale
358  * @cb: the callback to call on timer expiry
359  * @opaque: the opaque pointer to pass to the callback
360  *
361  * Initialise a new timer attached to the context @ctx.
362  * The caller is responsible for memory allocation.
363  */
364 static inline void aio_timer_init(AioContext *ctx,
365                                   QEMUTimer *ts, QEMUClockType type,
366                                   int scale,
367                                   QEMUTimerCB *cb, void *opaque)
368 {
369     timer_init_tl(ts, ctx->tlg.tl[type], scale, cb, opaque);
370 }
371 
372 /**
373  * aio_compute_timeout:
374  * @ctx: the aio context
375  *
376  * Compute the timeout that a blocking aio_poll should use.
377  */
378 int64_t aio_compute_timeout(AioContext *ctx);
379 
380 /**
381  * aio_disable_external:
382  * @ctx: the aio context
383  *
384  * Disable the further processing of external clients.
385  */
386 static inline void aio_disable_external(AioContext *ctx)
387 {
388     atomic_inc(&ctx->external_disable_cnt);
389 }
390 
391 /**
392  * aio_enable_external:
393  * @ctx: the aio context
394  *
395  * Enable the processing of external clients.
396  */
397 static inline void aio_enable_external(AioContext *ctx)
398 {
399     assert(ctx->external_disable_cnt > 0);
400     atomic_dec(&ctx->external_disable_cnt);
401 }
402 
403 /**
404  * aio_node_check:
405  * @ctx: the aio context
406  * @is_external: Whether or not the checked node is an external event source.
407  *
408  * Check if the node's is_external flag is okay to be polled by the ctx at this
409  * moment. True means green light.
410  */
411 static inline bool aio_node_check(AioContext *ctx, bool is_external)
412 {
413     return !is_external || !atomic_read(&ctx->external_disable_cnt);
414 }
415 
416 #endif
417