xref: /openbmc/qemu/include/block/aio.h (revision 228aa992)
1 /*
2  * QEMU aio implementation
3  *
4  * Copyright IBM, Corp. 2008
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_AIO_H
15 #define QEMU_AIO_H
16 
17 #include "qemu/typedefs.h"
18 #include "qemu-common.h"
19 #include "qemu/queue.h"
20 #include "qemu/event_notifier.h"
21 #include "qemu/thread.h"
22 #include "qemu/rfifolock.h"
23 #include "qemu/timer.h"
24 
25 typedef struct BlockAIOCB BlockAIOCB;
26 typedef void BlockCompletionFunc(void *opaque, int ret);
27 
28 typedef struct AIOCBInfo {
29     void (*cancel_async)(BlockAIOCB *acb);
30     AioContext *(*get_aio_context)(BlockAIOCB *acb);
31     size_t aiocb_size;
32 } AIOCBInfo;
33 
34 struct BlockAIOCB {
35     const AIOCBInfo *aiocb_info;
36     BlockDriverState *bs;
37     BlockCompletionFunc *cb;
38     void *opaque;
39     int refcnt;
40 };
41 
42 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
43                    BlockCompletionFunc *cb, void *opaque);
44 void qemu_aio_unref(void *p);
45 void qemu_aio_ref(void *p);
46 
47 typedef struct AioHandler AioHandler;
48 typedef void QEMUBHFunc(void *opaque);
49 typedef void IOHandler(void *opaque);
50 
51 struct AioContext {
52     GSource source;
53 
54     /* Protects all fields from multi-threaded access */
55     RFifoLock lock;
56 
57     /* The list of registered AIO handlers */
58     QLIST_HEAD(, AioHandler) aio_handlers;
59 
60     /* This is a simple lock used to protect the aio_handlers list.
61      * Specifically, it's used to ensure that no callbacks are removed while
62      * we're walking and dispatching callbacks.
63      */
64     int walking_handlers;
65 
66     /* Used to avoid unnecessary event_notifier_set calls in aio_notify.
67      * Writes protected by lock or BQL, reads are lockless.
68      */
69     bool dispatching;
70 
71     /* lock to protect between bh's adders and deleter */
72     QemuMutex bh_lock;
73 
74     /* Anchor of the list of Bottom Halves belonging to the context */
75     struct QEMUBH *first_bh;
76 
77     /* A simple lock used to protect the first_bh list, and ensure that
78      * no callbacks are removed while we're walking and dispatching callbacks.
79      */
80     int walking_bh;
81 
82     /* Used for aio_notify.  */
83     EventNotifier notifier;
84 
85     /* GPollFDs for aio_poll() */
86     GArray *pollfds;
87 
88     /* Thread pool for performing work and receiving completion callbacks */
89     struct ThreadPool *thread_pool;
90 
91     /* TimerLists for calling timers - one per clock type */
92     QEMUTimerListGroup tlg;
93 };
94 
95 /* Used internally to synchronize aio_poll against qemu_bh_schedule.  */
96 void aio_set_dispatching(AioContext *ctx, bool dispatching);
97 
98 /**
99  * aio_context_new: Allocate a new AioContext.
100  *
101  * AioContext provide a mini event-loop that can be waited on synchronously.
102  * They also provide bottom halves, a service to execute a piece of code
103  * as soon as possible.
104  */
105 AioContext *aio_context_new(Error **errp);
106 
107 /**
108  * aio_context_ref:
109  * @ctx: The AioContext to operate on.
110  *
111  * Add a reference to an AioContext.
112  */
113 void aio_context_ref(AioContext *ctx);
114 
115 /**
116  * aio_context_unref:
117  * @ctx: The AioContext to operate on.
118  *
119  * Drop a reference to an AioContext.
120  */
121 void aio_context_unref(AioContext *ctx);
122 
123 /* Take ownership of the AioContext.  If the AioContext will be shared between
124  * threads, a thread must have ownership when calling aio_poll().
125  *
126  * Note that multiple threads calling aio_poll() means timers, BHs, and
127  * callbacks may be invoked from a different thread than they were registered
128  * from.  Therefore, code must use AioContext acquire/release or use
129  * fine-grained synchronization to protect shared state if other threads will
130  * be accessing it simultaneously.
131  */
132 void aio_context_acquire(AioContext *ctx);
133 
134 /* Relinquish ownership of the AioContext. */
135 void aio_context_release(AioContext *ctx);
136 
137 /**
138  * aio_bh_new: Allocate a new bottom half structure.
139  *
140  * Bottom halves are lightweight callbacks whose invocation is guaranteed
141  * to be wait-free, thread-safe and signal-safe.  The #QEMUBH structure
142  * is opaque and must be allocated prior to its use.
143  */
144 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque);
145 
146 /**
147  * aio_notify: Force processing of pending events.
148  *
149  * Similar to signaling a condition variable, aio_notify forces
150  * aio_wait to exit, so that the next call will re-examine pending events.
151  * The caller of aio_notify will usually call aio_wait again very soon,
152  * or go through another iteration of the GLib main loop.  Hence, aio_notify
153  * also has the side effect of recalculating the sets of file descriptors
154  * that the main loop waits for.
155  *
156  * Calling aio_notify is rarely necessary, because for example scheduling
157  * a bottom half calls it already.
158  */
159 void aio_notify(AioContext *ctx);
160 
161 /**
162  * aio_bh_poll: Poll bottom halves for an AioContext.
163  *
164  * These are internal functions used by the QEMU main loop.
165  * And notice that multiple occurrences of aio_bh_poll cannot
166  * be called concurrently
167  */
168 int aio_bh_poll(AioContext *ctx);
169 
170 /**
171  * qemu_bh_schedule: Schedule a bottom half.
172  *
173  * Scheduling a bottom half interrupts the main loop and causes the
174  * execution of the callback that was passed to qemu_bh_new.
175  *
176  * Bottom halves that are scheduled from a bottom half handler are instantly
177  * invoked.  This can create an infinite loop if a bottom half handler
178  * schedules itself.
179  *
180  * @bh: The bottom half to be scheduled.
181  */
182 void qemu_bh_schedule(QEMUBH *bh);
183 
184 /**
185  * qemu_bh_cancel: Cancel execution of a bottom half.
186  *
187  * Canceling execution of a bottom half undoes the effect of calls to
188  * qemu_bh_schedule without freeing its resources yet.  While cancellation
189  * itself is also wait-free and thread-safe, it can of course race with the
190  * loop that executes bottom halves unless you are holding the iothread
191  * mutex.  This makes it mostly useless if you are not holding the mutex.
192  *
193  * @bh: The bottom half to be canceled.
194  */
195 void qemu_bh_cancel(QEMUBH *bh);
196 
197 /**
198  *qemu_bh_delete: Cancel execution of a bottom half and free its resources.
199  *
200  * Deleting a bottom half frees the memory that was allocated for it by
201  * qemu_bh_new.  It also implies canceling the bottom half if it was
202  * scheduled.
203  * This func is async. The bottom half will do the delete action at the finial
204  * end.
205  *
206  * @bh: The bottom half to be deleted.
207  */
208 void qemu_bh_delete(QEMUBH *bh);
209 
210 /* Return whether there are any pending callbacks from the GSource
211  * attached to the AioContext, before g_poll is invoked.
212  *
213  * This is used internally in the implementation of the GSource.
214  */
215 bool aio_prepare(AioContext *ctx);
216 
217 /* Return whether there are any pending callbacks from the GSource
218  * attached to the AioContext, after g_poll is invoked.
219  *
220  * This is used internally in the implementation of the GSource.
221  */
222 bool aio_pending(AioContext *ctx);
223 
224 /* Dispatch any pending callbacks from the GSource attached to the AioContext.
225  *
226  * This is used internally in the implementation of the GSource.
227  */
228 bool aio_dispatch(AioContext *ctx);
229 
230 /* Progress in completing AIO work to occur.  This can issue new pending
231  * aio as a result of executing I/O completion or bh callbacks.
232  *
233  * Return whether any progress was made by executing AIO or bottom half
234  * handlers.  If @blocking == true, this should always be true except
235  * if someone called aio_notify.
236  *
237  * If there are no pending bottom halves, but there are pending AIO
238  * operations, it may not be possible to make any progress without
239  * blocking.  If @blocking is true, this function will wait until one
240  * or more AIO events have completed, to ensure something has moved
241  * before returning.
242  */
243 bool aio_poll(AioContext *ctx, bool blocking);
244 
245 /* Register a file descriptor and associated callbacks.  Behaves very similarly
246  * to qemu_set_fd_handler2.  Unlike qemu_set_fd_handler2, these callbacks will
247  * be invoked when using aio_poll().
248  *
249  * Code that invokes AIO completion functions should rely on this function
250  * instead of qemu_set_fd_handler[2].
251  */
252 void aio_set_fd_handler(AioContext *ctx,
253                         int fd,
254                         IOHandler *io_read,
255                         IOHandler *io_write,
256                         void *opaque);
257 
258 /* Register an event notifier and associated callbacks.  Behaves very similarly
259  * to event_notifier_set_handler.  Unlike event_notifier_set_handler, these callbacks
260  * will be invoked when using aio_poll().
261  *
262  * Code that invokes AIO completion functions should rely on this function
263  * instead of event_notifier_set_handler.
264  */
265 void aio_set_event_notifier(AioContext *ctx,
266                             EventNotifier *notifier,
267                             EventNotifierHandler *io_read);
268 
269 /* Return a GSource that lets the main loop poll the file descriptors attached
270  * to this AioContext.
271  */
272 GSource *aio_get_g_source(AioContext *ctx);
273 
274 /* Return the ThreadPool bound to this AioContext */
275 struct ThreadPool *aio_get_thread_pool(AioContext *ctx);
276 
277 /**
278  * aio_timer_new:
279  * @ctx: the aio context
280  * @type: the clock type
281  * @scale: the scale
282  * @cb: the callback to call on timer expiry
283  * @opaque: the opaque pointer to pass to the callback
284  *
285  * Allocate a new timer attached to the context @ctx.
286  * The function is responsible for memory allocation.
287  *
288  * The preferred interface is aio_timer_init. Use that
289  * unless you really need dynamic memory allocation.
290  *
291  * Returns: a pointer to the new timer
292  */
293 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type,
294                                        int scale,
295                                        QEMUTimerCB *cb, void *opaque)
296 {
297     return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque);
298 }
299 
300 /**
301  * aio_timer_init:
302  * @ctx: the aio context
303  * @ts: the timer
304  * @type: the clock type
305  * @scale: the scale
306  * @cb: the callback to call on timer expiry
307  * @opaque: the opaque pointer to pass to the callback
308  *
309  * Initialise a new timer attached to the context @ctx.
310  * The caller is responsible for memory allocation.
311  */
312 static inline void aio_timer_init(AioContext *ctx,
313                                   QEMUTimer *ts, QEMUClockType type,
314                                   int scale,
315                                   QEMUTimerCB *cb, void *opaque)
316 {
317     timer_init(ts, ctx->tlg.tl[type], scale, cb, opaque);
318 }
319 
320 /**
321  * aio_compute_timeout:
322  * @ctx: the aio context
323  *
324  * Compute the timeout that a blocking aio_poll should use.
325  */
326 int64_t aio_compute_timeout(AioContext *ctx);
327 
328 #endif
329