1 /* 2 * QEMU aio implementation 3 * 4 * Copyright IBM, Corp. 2008 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_AIO_H 15 #define QEMU_AIO_H 16 17 #include "qemu/typedefs.h" 18 #include "qemu-common.h" 19 #include "qemu/queue.h" 20 #include "qemu/event_notifier.h" 21 #include "qemu/thread.h" 22 #include "qemu/timer.h" 23 24 typedef struct BlockDriverAIOCB BlockDriverAIOCB; 25 typedef void BlockDriverCompletionFunc(void *opaque, int ret); 26 27 typedef struct AIOCBInfo { 28 void (*cancel)(BlockDriverAIOCB *acb); 29 size_t aiocb_size; 30 } AIOCBInfo; 31 32 struct BlockDriverAIOCB { 33 const AIOCBInfo *aiocb_info; 34 BlockDriverState *bs; 35 BlockDriverCompletionFunc *cb; 36 void *opaque; 37 }; 38 39 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 40 BlockDriverCompletionFunc *cb, void *opaque); 41 void qemu_aio_release(void *p); 42 43 typedef struct AioHandler AioHandler; 44 typedef void QEMUBHFunc(void *opaque); 45 typedef void IOHandler(void *opaque); 46 47 struct AioContext { 48 GSource source; 49 50 /* The list of registered AIO handlers */ 51 QLIST_HEAD(, AioHandler) aio_handlers; 52 53 /* This is a simple lock used to protect the aio_handlers list. 54 * Specifically, it's used to ensure that no callbacks are removed while 55 * we're walking and dispatching callbacks. 56 */ 57 int walking_handlers; 58 59 /* lock to protect between bh's adders and deleter */ 60 QemuMutex bh_lock; 61 /* Anchor of the list of Bottom Halves belonging to the context */ 62 struct QEMUBH *first_bh; 63 64 /* A simple lock used to protect the first_bh list, and ensure that 65 * no callbacks are removed while we're walking and dispatching callbacks. 66 */ 67 int walking_bh; 68 69 /* Used for aio_notify. */ 70 EventNotifier notifier; 71 72 /* GPollFDs for aio_poll() */ 73 GArray *pollfds; 74 75 /* Thread pool for performing work and receiving completion callbacks */ 76 struct ThreadPool *thread_pool; 77 78 /* TimerLists for calling timers - one per clock type */ 79 QEMUTimerListGroup tlg; 80 }; 81 82 /** 83 * aio_context_new: Allocate a new AioContext. 84 * 85 * AioContext provide a mini event-loop that can be waited on synchronously. 86 * They also provide bottom halves, a service to execute a piece of code 87 * as soon as possible. 88 */ 89 AioContext *aio_context_new(void); 90 91 /** 92 * aio_context_ref: 93 * @ctx: The AioContext to operate on. 94 * 95 * Add a reference to an AioContext. 96 */ 97 void aio_context_ref(AioContext *ctx); 98 99 /** 100 * aio_context_unref: 101 * @ctx: The AioContext to operate on. 102 * 103 * Drop a reference to an AioContext. 104 */ 105 void aio_context_unref(AioContext *ctx); 106 107 /** 108 * aio_bh_new: Allocate a new bottom half structure. 109 * 110 * Bottom halves are lightweight callbacks whose invocation is guaranteed 111 * to be wait-free, thread-safe and signal-safe. The #QEMUBH structure 112 * is opaque and must be allocated prior to its use. 113 */ 114 QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque); 115 116 /** 117 * aio_notify: Force processing of pending events. 118 * 119 * Similar to signaling a condition variable, aio_notify forces 120 * aio_wait to exit, so that the next call will re-examine pending events. 121 * The caller of aio_notify will usually call aio_wait again very soon, 122 * or go through another iteration of the GLib main loop. Hence, aio_notify 123 * also has the side effect of recalculating the sets of file descriptors 124 * that the main loop waits for. 125 * 126 * Calling aio_notify is rarely necessary, because for example scheduling 127 * a bottom half calls it already. 128 */ 129 void aio_notify(AioContext *ctx); 130 131 /** 132 * aio_bh_poll: Poll bottom halves for an AioContext. 133 * 134 * These are internal functions used by the QEMU main loop. 135 * And notice that multiple occurrences of aio_bh_poll cannot 136 * be called concurrently 137 */ 138 int aio_bh_poll(AioContext *ctx); 139 140 /** 141 * qemu_bh_schedule: Schedule a bottom half. 142 * 143 * Scheduling a bottom half interrupts the main loop and causes the 144 * execution of the callback that was passed to qemu_bh_new. 145 * 146 * Bottom halves that are scheduled from a bottom half handler are instantly 147 * invoked. This can create an infinite loop if a bottom half handler 148 * schedules itself. 149 * 150 * @bh: The bottom half to be scheduled. 151 */ 152 void qemu_bh_schedule(QEMUBH *bh); 153 154 /** 155 * qemu_bh_cancel: Cancel execution of a bottom half. 156 * 157 * Canceling execution of a bottom half undoes the effect of calls to 158 * qemu_bh_schedule without freeing its resources yet. While cancellation 159 * itself is also wait-free and thread-safe, it can of course race with the 160 * loop that executes bottom halves unless you are holding the iothread 161 * mutex. This makes it mostly useless if you are not holding the mutex. 162 * 163 * @bh: The bottom half to be canceled. 164 */ 165 void qemu_bh_cancel(QEMUBH *bh); 166 167 /** 168 *qemu_bh_delete: Cancel execution of a bottom half and free its resources. 169 * 170 * Deleting a bottom half frees the memory that was allocated for it by 171 * qemu_bh_new. It also implies canceling the bottom half if it was 172 * scheduled. 173 * This func is async. The bottom half will do the delete action at the finial 174 * end. 175 * 176 * @bh: The bottom half to be deleted. 177 */ 178 void qemu_bh_delete(QEMUBH *bh); 179 180 /* Return whether there are any pending callbacks from the GSource 181 * attached to the AioContext. 182 * 183 * This is used internally in the implementation of the GSource. 184 */ 185 bool aio_pending(AioContext *ctx); 186 187 /* Progress in completing AIO work to occur. This can issue new pending 188 * aio as a result of executing I/O completion or bh callbacks. 189 * 190 * If there is no pending AIO operation or completion (bottom half), 191 * return false. If there are pending AIO operations of bottom halves, 192 * return true. 193 * 194 * If there are no pending bottom halves, but there are pending AIO 195 * operations, it may not be possible to make any progress without 196 * blocking. If @blocking is true, this function will wait until one 197 * or more AIO events have completed, to ensure something has moved 198 * before returning. 199 */ 200 bool aio_poll(AioContext *ctx, bool blocking); 201 202 #ifdef CONFIG_POSIX 203 /* Register a file descriptor and associated callbacks. Behaves very similarly 204 * to qemu_set_fd_handler2. Unlike qemu_set_fd_handler2, these callbacks will 205 * be invoked when using qemu_aio_wait(). 206 * 207 * Code that invokes AIO completion functions should rely on this function 208 * instead of qemu_set_fd_handler[2]. 209 */ 210 void aio_set_fd_handler(AioContext *ctx, 211 int fd, 212 IOHandler *io_read, 213 IOHandler *io_write, 214 void *opaque); 215 #endif 216 217 /* Register an event notifier and associated callbacks. Behaves very similarly 218 * to event_notifier_set_handler. Unlike event_notifier_set_handler, these callbacks 219 * will be invoked when using qemu_aio_wait(). 220 * 221 * Code that invokes AIO completion functions should rely on this function 222 * instead of event_notifier_set_handler. 223 */ 224 void aio_set_event_notifier(AioContext *ctx, 225 EventNotifier *notifier, 226 EventNotifierHandler *io_read); 227 228 /* Return a GSource that lets the main loop poll the file descriptors attached 229 * to this AioContext. 230 */ 231 GSource *aio_get_g_source(AioContext *ctx); 232 233 /* Return the ThreadPool bound to this AioContext */ 234 struct ThreadPool *aio_get_thread_pool(AioContext *ctx); 235 236 /* Functions to operate on the main QEMU AioContext. */ 237 238 bool qemu_aio_wait(void); 239 void qemu_aio_set_event_notifier(EventNotifier *notifier, 240 EventNotifierHandler *io_read); 241 242 #ifdef CONFIG_POSIX 243 void qemu_aio_set_fd_handler(int fd, 244 IOHandler *io_read, 245 IOHandler *io_write, 246 void *opaque); 247 #endif 248 249 /** 250 * aio_timer_new: 251 * @ctx: the aio context 252 * @type: the clock type 253 * @scale: the scale 254 * @cb: the callback to call on timer expiry 255 * @opaque: the opaque pointer to pass to the callback 256 * 257 * Allocate a new timer attached to the context @ctx. 258 * The function is responsible for memory allocation. 259 * 260 * The preferred interface is aio_timer_init. Use that 261 * unless you really need dynamic memory allocation. 262 * 263 * Returns: a pointer to the new timer 264 */ 265 static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type, 266 int scale, 267 QEMUTimerCB *cb, void *opaque) 268 { 269 return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque); 270 } 271 272 /** 273 * aio_timer_init: 274 * @ctx: the aio context 275 * @ts: the timer 276 * @type: the clock type 277 * @scale: the scale 278 * @cb: the callback to call on timer expiry 279 * @opaque: the opaque pointer to pass to the callback 280 * 281 * Initialise a new timer attached to the context @ctx. 282 * The caller is responsible for memory allocation. 283 */ 284 static inline void aio_timer_init(AioContext *ctx, 285 QEMUTimer *ts, QEMUClockType type, 286 int scale, 287 QEMUTimerCB *cb, void *opaque) 288 { 289 timer_init(ts, ctx->tlg.tl[type], scale, cb, opaque); 290 } 291 292 #endif 293