xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision d2dfe0b5)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/reset.h"
45 #include "sysemu/runstate.h"
46 #include "qemu/error-report.h"
47 #include "qemu/option.h"
48 #include "bootparam.h"
49 #include "xtensa_memory.h"
50 #include "hw/xtensa/mx_pic.h"
51 #include "migration/vmstate.h"
52 
53 typedef struct XtfpgaFlashDesc {
54     hwaddr base;
55     size_t size;
56     size_t boot_base;
57     size_t sector_size;
58 } XtfpgaFlashDesc;
59 
60 typedef struct XtfpgaBoardDesc {
61     const XtfpgaFlashDesc *flash;
62     size_t sram_size;
63     const hwaddr *io;
64 } XtfpgaBoardDesc;
65 
66 typedef struct XtfpgaFpgaState {
67     MemoryRegion iomem;
68     uint32_t freq;
69     uint32_t leds;
70     uint32_t switches;
71 } XtfpgaFpgaState;
72 
73 static void xtfpga_fpga_reset(void *opaque)
74 {
75     XtfpgaFpgaState *s = opaque;
76 
77     s->leds = 0;
78     s->switches = 0;
79 }
80 
81 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
82         unsigned size)
83 {
84     XtfpgaFpgaState *s = opaque;
85 
86     switch (addr) {
87     case 0x0: /*build date code*/
88         return 0x09272011;
89 
90     case 0x4: /*processor clock frequency, Hz*/
91         return s->freq;
92 
93     case 0x8: /*LEDs (off = 0, on = 1)*/
94         return s->leds;
95 
96     case 0xc: /*DIP switches (off = 0, on = 1)*/
97         return s->switches;
98     }
99     return 0;
100 }
101 
102 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
103         uint64_t val, unsigned size)
104 {
105     XtfpgaFpgaState *s = opaque;
106 
107     switch (addr) {
108     case 0x8: /*LEDs (off = 0, on = 1)*/
109         s->leds = val;
110         break;
111 
112     case 0x10: /*board reset*/
113         if (val == 0xdead) {
114             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
115         }
116         break;
117     }
118 }
119 
120 static const MemoryRegionOps xtfpga_fpga_ops = {
121     .read = xtfpga_fpga_read,
122     .write = xtfpga_fpga_write,
123     .endianness = DEVICE_NATIVE_ENDIAN,
124 };
125 
126 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
127                                          hwaddr base, uint32_t freq)
128 {
129     XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1);
130 
131     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
132                           "xtfpga.fpga", 0x10000);
133     memory_region_add_subregion(address_space, base, &s->iomem);
134     s->freq = freq;
135     xtfpga_fpga_reset(s);
136     qemu_register_reset(xtfpga_fpga_reset, s);
137     return s;
138 }
139 
140 static void xtfpga_net_init(MemoryRegion *address_space,
141         hwaddr base,
142         hwaddr descriptors,
143         hwaddr buffers,
144         qemu_irq irq, NICInfo *nd)
145 {
146     DeviceState *dev;
147     SysBusDevice *s;
148     MemoryRegion *ram;
149 
150     dev = qdev_new("open_eth");
151     qdev_set_nic_properties(dev, nd);
152 
153     s = SYS_BUS_DEVICE(dev);
154     sysbus_realize_and_unref(s, &error_fatal);
155     sysbus_connect_irq(s, 0, irq);
156     memory_region_add_subregion(address_space, base,
157             sysbus_mmio_get_region(s, 0));
158     memory_region_add_subregion(address_space, descriptors,
159             sysbus_mmio_get_region(s, 1));
160 
161     ram = g_malloc(sizeof(*ram));
162     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
163                            &error_fatal);
164     vmstate_register_ram_global(ram);
165     memory_region_add_subregion(address_space, buffers, ram);
166 }
167 
168 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
169                                       const XtfpgaBoardDesc *board,
170                                       DriveInfo *dinfo, int be)
171 {
172     SysBusDevice *s;
173     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
174 
175     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
176     qdev_prop_set_uint32(dev, "num-blocks",
177                          board->flash->size / board->flash->sector_size);
178     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
179     qdev_prop_set_uint8(dev, "width", 2);
180     qdev_prop_set_bit(dev, "big-endian", be);
181     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
182     s = SYS_BUS_DEVICE(dev);
183     sysbus_realize_and_unref(s, &error_fatal);
184     memory_region_add_subregion(address_space, board->flash->base,
185                                 sysbus_mmio_get_region(s, 0));
186     return PFLASH_CFI01(dev);
187 }
188 
189 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
190 {
191     XtensaCPU *cpu = opaque;
192 
193     return cpu_get_phys_page_debug(CPU(cpu), addr);
194 }
195 
196 static void xtfpga_reset(void *opaque)
197 {
198     XtensaCPU *cpu = opaque;
199 
200     cpu_reset(CPU(cpu));
201 }
202 
203 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
204         unsigned size)
205 {
206     return 0;
207 }
208 
209 static void xtfpga_io_write(void *opaque, hwaddr addr,
210         uint64_t val, unsigned size)
211 {
212 }
213 
214 static const MemoryRegionOps xtfpga_io_ops = {
215     .read = xtfpga_io_read,
216     .write = xtfpga_io_write,
217     .endianness = DEVICE_NATIVE_ENDIAN,
218 };
219 
220 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
221 {
222 #if TARGET_BIG_ENDIAN
223     int be = 1;
224 #else
225     int be = 0;
226 #endif
227     MemoryRegion *system_memory = get_system_memory();
228     XtensaCPU *cpu = NULL;
229     CPUXtensaState *env = NULL;
230     MemoryRegion *system_io;
231     XtensaMxPic *mx_pic = NULL;
232     qemu_irq *extints;
233     DriveInfo *dinfo;
234     PFlashCFI01 *flash = NULL;
235     const char *kernel_filename = machine->kernel_filename;
236     const char *kernel_cmdline = machine->kernel_cmdline;
237     const char *dtb_filename = machine->dtb;
238     const char *initrd_filename = machine->initrd_filename;
239     const unsigned system_io_size = 224 * MiB;
240     uint32_t freq = 10000000;
241     int n;
242     unsigned int smp_cpus = machine->smp.cpus;
243 
244     if (smp_cpus > 1) {
245         mx_pic = xtensa_mx_pic_init(31);
246         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
247     }
248     for (n = 0; n < smp_cpus; n++) {
249         CPUXtensaState *cenv = NULL;
250 
251         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
252         cenv = &cpu->env;
253         if (!env) {
254             env = cenv;
255             freq = env->config->clock_freq_khz * 1000;
256         }
257 
258         if (mx_pic) {
259             MemoryRegion *mx_eri;
260 
261             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
262                                                 xtensa_get_extints(cenv),
263                                                 xtensa_get_runstall(cenv));
264             memory_region_add_subregion(xtensa_get_er_region(cenv),
265                                         0, mx_eri);
266         }
267         cenv->sregs[PRID] = n;
268         xtensa_select_static_vectors(cenv, n != 0);
269         qemu_register_reset(xtfpga_reset, cpu);
270         /* Need MMU initialized prior to ELF loading,
271          * so that ELF gets loaded into virtual addresses
272          */
273         cpu_reset(CPU(cpu));
274     }
275     if (smp_cpus > 1) {
276         extints = xtensa_mx_pic_get_extints(mx_pic);
277     } else {
278         extints = xtensa_get_extints(env);
279     }
280 
281     if (env) {
282         XtensaMemory sysram = env->config->sysram;
283 
284         sysram.location[0].size = machine->ram_size;
285         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
286                                      system_memory);
287         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
288                                      system_memory);
289         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
290                                      system_memory);
291         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
292                                      system_memory);
293         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
294                                      system_memory);
295     }
296 
297     system_io = g_malloc(sizeof(*system_io));
298     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
299                           system_io_size);
300     memory_region_add_subregion(system_memory, board->io[0], system_io);
301     if (board->io[1]) {
302         MemoryRegion *io = g_malloc(sizeof(*io));
303 
304         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
305                                  system_io, 0, system_io_size);
306         memory_region_add_subregion(system_memory, board->io[1], io);
307     }
308     xtfpga_fpga_init(system_io, 0x0d020000, freq);
309     if (nd_table[0].used) {
310         xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
311                         extints[1], nd_table);
312     }
313 
314     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
315                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
316 
317     dinfo = drive_get(IF_PFLASH, 0, 0);
318     if (dinfo) {
319         flash = xtfpga_flash_init(system_io, board, dinfo, be);
320     }
321 
322     /* Use presence of kernel file name as 'boot from SRAM' switch. */
323     if (kernel_filename) {
324         uint32_t entry_point = env->pc;
325         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
326         uint32_t tagptr = env->config->sysrom.location[0].addr +
327             board->sram_size;
328         uint32_t cur_tagptr;
329         BpMemInfo memory_location = {
330             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
331             .start = tswap32(env->config->sysram.location[0].addr),
332             .end = tswap32(env->config->sysram.location[0].addr +
333                            machine->ram_size),
334         };
335         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
336             machine->ram_size : 0x08000000;
337         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
338 
339         lowmem_end += env->config->sysram.location[0].addr;
340         cur_lowmem += env->config->sysram.location[0].addr;
341 
342         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
343                                      system_memory);
344 
345         if (kernel_cmdline) {
346             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
347         }
348         if (dtb_filename) {
349             bp_size += get_tag_size(sizeof(uint32_t));
350         }
351         if (initrd_filename) {
352             bp_size += get_tag_size(sizeof(BpMemInfo));
353         }
354 
355         /* Put kernel bootparameters to the end of that SRAM */
356         tagptr = (tagptr - bp_size) & ~0xff;
357         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
358         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
359                              sizeof(memory_location), &memory_location);
360 
361         if (kernel_cmdline) {
362             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
363                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
364         }
365 #ifdef CONFIG_FDT
366         if (dtb_filename) {
367             int fdt_size;
368             void *fdt = load_device_tree(dtb_filename, &fdt_size);
369             uint32_t dtb_addr = tswap32(cur_lowmem);
370 
371             if (!fdt) {
372                 error_report("could not load DTB '%s'", dtb_filename);
373                 exit(EXIT_FAILURE);
374             }
375 
376             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
377             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
378                                  sizeof(dtb_addr), &dtb_addr);
379             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
380             g_free(fdt);
381         }
382 #else
383         if (dtb_filename) {
384             error_report("could not load DTB '%s': "
385                          "FDT support is not configured in QEMU",
386                          dtb_filename);
387             exit(EXIT_FAILURE);
388         }
389 #endif
390         if (initrd_filename) {
391             BpMemInfo initrd_location = { 0 };
392             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
393                                            lowmem_end - cur_lowmem);
394 
395             if (initrd_size < 0) {
396                 initrd_size = load_image_targphys(initrd_filename,
397                                                   cur_lowmem,
398                                                   lowmem_end - cur_lowmem);
399             }
400             if (initrd_size < 0) {
401                 error_report("could not load initrd '%s'", initrd_filename);
402                 exit(EXIT_FAILURE);
403             }
404             initrd_location.start = tswap32(cur_lowmem);
405             initrd_location.end = tswap32(cur_lowmem + initrd_size);
406             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
407                                  sizeof(initrd_location), &initrd_location);
408             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
409         }
410         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
411         env->regs[2] = tagptr;
412 
413         uint64_t elf_entry;
414         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
415                 &elf_entry, NULL, NULL, NULL, be, EM_XTENSA, 0, 0);
416         if (success > 0) {
417             entry_point = elf_entry;
418         } else {
419             hwaddr ep;
420             int is_linux;
421             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
422                                   translate_phys_addr, cpu);
423             if (success > 0 && is_linux) {
424                 entry_point = ep;
425             } else {
426                 error_report("could not load kernel '%s'",
427                              kernel_filename);
428                 exit(EXIT_FAILURE);
429             }
430         }
431         if (entry_point != env->pc) {
432             uint8_t boot[] = {
433 #if TARGET_BIG_ENDIAN
434                 0x60, 0x00, 0x08,       /* j    1f */
435                 0x00,                   /* .literal_position */
436                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
437                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
438                                         /* 1: */
439                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
440                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
441                 0x0a, 0x00, 0x00,       /* jx   a0 */
442 #else
443                 0x06, 0x02, 0x00,       /* j    1f */
444                 0x00,                   /* .literal_position */
445                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
446                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
447                                         /* 1: */
448                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
449                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
450                 0xa0, 0x00, 0x00,       /* jx   a0 */
451 #endif
452             };
453             uint32_t entry_pc = tswap32(entry_point);
454             uint32_t entry_a2 = tswap32(tagptr);
455 
456             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
457             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
458             cpu_physical_memory_write(env->pc, boot, sizeof(boot));
459         }
460     } else {
461         if (flash) {
462             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
463             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
464             uint32_t size = env->config->sysrom.location[0].size;
465 
466             if (board->flash->size - board->flash->boot_base < size) {
467                 size = board->flash->size - board->flash->boot_base;
468             }
469 
470             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
471                                      flash_mr, board->flash->boot_base, size);
472             memory_region_add_subregion(system_memory,
473                                         env->config->sysrom.location[0].addr,
474                                         flash_io);
475         } else {
476             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
477                                          system_memory);
478         }
479     }
480 }
481 
482 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
483 
484 static const hwaddr xtfpga_mmu_io[2] = {
485     0xf0000000,
486 };
487 
488 static const hwaddr xtfpga_nommu_io[2] = {
489     0x90000000,
490     0x70000000,
491 };
492 
493 static const XtfpgaFlashDesc lx60_flash = {
494     .base = 0x08000000,
495     .size = 0x00400000,
496     .sector_size = 0x10000,
497 };
498 
499 static void xtfpga_lx60_init(MachineState *machine)
500 {
501     static const XtfpgaBoardDesc lx60_board = {
502         .flash = &lx60_flash,
503         .sram_size = 0x20000,
504         .io = xtfpga_mmu_io,
505     };
506     xtfpga_init(&lx60_board, machine);
507 }
508 
509 static void xtfpga_lx60_nommu_init(MachineState *machine)
510 {
511     static const XtfpgaBoardDesc lx60_board = {
512         .flash = &lx60_flash,
513         .sram_size = 0x20000,
514         .io = xtfpga_nommu_io,
515     };
516     xtfpga_init(&lx60_board, machine);
517 }
518 
519 static const XtfpgaFlashDesc lx200_flash = {
520     .base = 0x08000000,
521     .size = 0x01000000,
522     .sector_size = 0x20000,
523 };
524 
525 static void xtfpga_lx200_init(MachineState *machine)
526 {
527     static const XtfpgaBoardDesc lx200_board = {
528         .flash = &lx200_flash,
529         .sram_size = 0x2000000,
530         .io = xtfpga_mmu_io,
531     };
532     xtfpga_init(&lx200_board, machine);
533 }
534 
535 static void xtfpga_lx200_nommu_init(MachineState *machine)
536 {
537     static const XtfpgaBoardDesc lx200_board = {
538         .flash = &lx200_flash,
539         .sram_size = 0x2000000,
540         .io = xtfpga_nommu_io,
541     };
542     xtfpga_init(&lx200_board, machine);
543 }
544 
545 static const XtfpgaFlashDesc ml605_flash = {
546     .base = 0x08000000,
547     .size = 0x01000000,
548     .sector_size = 0x20000,
549 };
550 
551 static void xtfpga_ml605_init(MachineState *machine)
552 {
553     static const XtfpgaBoardDesc ml605_board = {
554         .flash = &ml605_flash,
555         .sram_size = 0x2000000,
556         .io = xtfpga_mmu_io,
557     };
558     xtfpga_init(&ml605_board, machine);
559 }
560 
561 static void xtfpga_ml605_nommu_init(MachineState *machine)
562 {
563     static const XtfpgaBoardDesc ml605_board = {
564         .flash = &ml605_flash,
565         .sram_size = 0x2000000,
566         .io = xtfpga_nommu_io,
567     };
568     xtfpga_init(&ml605_board, machine);
569 }
570 
571 static const XtfpgaFlashDesc kc705_flash = {
572     .base = 0x00000000,
573     .size = 0x08000000,
574     .boot_base = 0x06000000,
575     .sector_size = 0x20000,
576 };
577 
578 static void xtfpga_kc705_init(MachineState *machine)
579 {
580     static const XtfpgaBoardDesc kc705_board = {
581         .flash = &kc705_flash,
582         .sram_size = 0x2000000,
583         .io = xtfpga_mmu_io,
584     };
585     xtfpga_init(&kc705_board, machine);
586 }
587 
588 static void xtfpga_kc705_nommu_init(MachineState *machine)
589 {
590     static const XtfpgaBoardDesc kc705_board = {
591         .flash = &kc705_flash,
592         .sram_size = 0x2000000,
593         .io = xtfpga_nommu_io,
594     };
595     xtfpga_init(&kc705_board, machine);
596 }
597 
598 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
599 {
600     MachineClass *mc = MACHINE_CLASS(oc);
601 
602     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
603     mc->init = xtfpga_lx60_init;
604     mc->max_cpus = 32;
605     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
606     mc->default_ram_size = 64 * MiB;
607 }
608 
609 static const TypeInfo xtfpga_lx60_type = {
610     .name = MACHINE_TYPE_NAME("lx60"),
611     .parent = TYPE_MACHINE,
612     .class_init = xtfpga_lx60_class_init,
613 };
614 
615 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
616 {
617     MachineClass *mc = MACHINE_CLASS(oc);
618 
619     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
620     mc->init = xtfpga_lx60_nommu_init;
621     mc->max_cpus = 32;
622     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
623     mc->default_ram_size = 64 * MiB;
624 }
625 
626 static const TypeInfo xtfpga_lx60_nommu_type = {
627     .name = MACHINE_TYPE_NAME("lx60-nommu"),
628     .parent = TYPE_MACHINE,
629     .class_init = xtfpga_lx60_nommu_class_init,
630 };
631 
632 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
633 {
634     MachineClass *mc = MACHINE_CLASS(oc);
635 
636     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
637     mc->init = xtfpga_lx200_init;
638     mc->max_cpus = 32;
639     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
640     mc->default_ram_size = 96 * MiB;
641 }
642 
643 static const TypeInfo xtfpga_lx200_type = {
644     .name = MACHINE_TYPE_NAME("lx200"),
645     .parent = TYPE_MACHINE,
646     .class_init = xtfpga_lx200_class_init,
647 };
648 
649 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
650 {
651     MachineClass *mc = MACHINE_CLASS(oc);
652 
653     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
654     mc->init = xtfpga_lx200_nommu_init;
655     mc->max_cpus = 32;
656     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
657     mc->default_ram_size = 96 * MiB;
658 }
659 
660 static const TypeInfo xtfpga_lx200_nommu_type = {
661     .name = MACHINE_TYPE_NAME("lx200-nommu"),
662     .parent = TYPE_MACHINE,
663     .class_init = xtfpga_lx200_nommu_class_init,
664 };
665 
666 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
667 {
668     MachineClass *mc = MACHINE_CLASS(oc);
669 
670     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
671     mc->init = xtfpga_ml605_init;
672     mc->max_cpus = 32;
673     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
674     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
675 }
676 
677 static const TypeInfo xtfpga_ml605_type = {
678     .name = MACHINE_TYPE_NAME("ml605"),
679     .parent = TYPE_MACHINE,
680     .class_init = xtfpga_ml605_class_init,
681 };
682 
683 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
684 {
685     MachineClass *mc = MACHINE_CLASS(oc);
686 
687     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
688     mc->init = xtfpga_ml605_nommu_init;
689     mc->max_cpus = 32;
690     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
691     mc->default_ram_size = 256 * MiB;
692 }
693 
694 static const TypeInfo xtfpga_ml605_nommu_type = {
695     .name = MACHINE_TYPE_NAME("ml605-nommu"),
696     .parent = TYPE_MACHINE,
697     .class_init = xtfpga_ml605_nommu_class_init,
698 };
699 
700 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
701 {
702     MachineClass *mc = MACHINE_CLASS(oc);
703 
704     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
705     mc->init = xtfpga_kc705_init;
706     mc->max_cpus = 32;
707     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
708     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
709 }
710 
711 static const TypeInfo xtfpga_kc705_type = {
712     .name = MACHINE_TYPE_NAME("kc705"),
713     .parent = TYPE_MACHINE,
714     .class_init = xtfpga_kc705_class_init,
715 };
716 
717 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
718 {
719     MachineClass *mc = MACHINE_CLASS(oc);
720 
721     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
722     mc->init = xtfpga_kc705_nommu_init;
723     mc->max_cpus = 32;
724     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
725     mc->default_ram_size = 256 * MiB;
726 }
727 
728 static const TypeInfo xtfpga_kc705_nommu_type = {
729     .name = MACHINE_TYPE_NAME("kc705-nommu"),
730     .parent = TYPE_MACHINE,
731     .class_init = xtfpga_kc705_nommu_class_init,
732 };
733 
734 static void xtfpga_machines_init(void)
735 {
736     type_register_static(&xtfpga_lx60_type);
737     type_register_static(&xtfpga_lx200_type);
738     type_register_static(&xtfpga_ml605_type);
739     type_register_static(&xtfpga_kc705_type);
740     type_register_static(&xtfpga_lx60_nommu_type);
741     type_register_static(&xtfpga_lx200_nommu_type);
742     type_register_static(&xtfpga_ml605_nommu_type);
743     type_register_static(&xtfpga_kc705_nommu_type);
744 }
745 
746 type_init(xtfpga_machines_init)
747