xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision c80f6e9c)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "sysemu/sysemu.h"
31 #include "hw/boards.h"
32 #include "hw/loader.h"
33 #include "elf.h"
34 #include "exec/memory.h"
35 #include "exec/address-spaces.h"
36 #include "hw/char/serial.h"
37 #include "net/net.h"
38 #include "hw/sysbus.h"
39 #include "hw/block/flash.h"
40 #include "sysemu/block-backend.h"
41 #include "sysemu/char.h"
42 #include "sysemu/device_tree.h"
43 #include "qemu/error-report.h"
44 #include "bootparam.h"
45 
46 typedef struct LxBoardDesc {
47     hwaddr flash_base;
48     size_t flash_size;
49     size_t flash_boot_base;
50     size_t flash_sector_size;
51     size_t sram_size;
52 } LxBoardDesc;
53 
54 typedef struct Lx60FpgaState {
55     MemoryRegion iomem;
56     uint32_t leds;
57     uint32_t switches;
58 } Lx60FpgaState;
59 
60 static void lx60_fpga_reset(void *opaque)
61 {
62     Lx60FpgaState *s = opaque;
63 
64     s->leds = 0;
65     s->switches = 0;
66 }
67 
68 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
69         unsigned size)
70 {
71     Lx60FpgaState *s = opaque;
72 
73     switch (addr) {
74     case 0x0: /*build date code*/
75         return 0x09272011;
76 
77     case 0x4: /*processor clock frequency, Hz*/
78         return 10000000;
79 
80     case 0x8: /*LEDs (off = 0, on = 1)*/
81         return s->leds;
82 
83     case 0xc: /*DIP switches (off = 0, on = 1)*/
84         return s->switches;
85     }
86     return 0;
87 }
88 
89 static void lx60_fpga_write(void *opaque, hwaddr addr,
90         uint64_t val, unsigned size)
91 {
92     Lx60FpgaState *s = opaque;
93 
94     switch (addr) {
95     case 0x8: /*LEDs (off = 0, on = 1)*/
96         s->leds = val;
97         break;
98 
99     case 0x10: /*board reset*/
100         if (val == 0xdead) {
101             qemu_system_reset_request();
102         }
103         break;
104     }
105 }
106 
107 static const MemoryRegionOps lx60_fpga_ops = {
108     .read = lx60_fpga_read,
109     .write = lx60_fpga_write,
110     .endianness = DEVICE_NATIVE_ENDIAN,
111 };
112 
113 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
114         hwaddr base)
115 {
116     Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
117 
118     memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
119             "lx60.fpga", 0x10000);
120     memory_region_add_subregion(address_space, base, &s->iomem);
121     lx60_fpga_reset(s);
122     qemu_register_reset(lx60_fpga_reset, s);
123     return s;
124 }
125 
126 static void lx60_net_init(MemoryRegion *address_space,
127         hwaddr base,
128         hwaddr descriptors,
129         hwaddr buffers,
130         qemu_irq irq, NICInfo *nd)
131 {
132     DeviceState *dev;
133     SysBusDevice *s;
134     MemoryRegion *ram;
135 
136     dev = qdev_create(NULL, "open_eth");
137     qdev_set_nic_properties(dev, nd);
138     qdev_init_nofail(dev);
139 
140     s = SYS_BUS_DEVICE(dev);
141     sysbus_connect_irq(s, 0, irq);
142     memory_region_add_subregion(address_space, base,
143             sysbus_mmio_get_region(s, 0));
144     memory_region_add_subregion(address_space, descriptors,
145             sysbus_mmio_get_region(s, 1));
146 
147     ram = g_malloc(sizeof(*ram));
148     memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
149                            &error_fatal);
150     vmstate_register_ram_global(ram);
151     memory_region_add_subregion(address_space, buffers, ram);
152 }
153 
154 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
155                                    const LxBoardDesc *board,
156                                    DriveInfo *dinfo, int be)
157 {
158     SysBusDevice *s;
159     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
160 
161     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
162                         &error_abort);
163     qdev_prop_set_uint32(dev, "num-blocks",
164                          board->flash_size / board->flash_sector_size);
165     qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
166     qdev_prop_set_uint8(dev, "width", 4);
167     qdev_prop_set_bit(dev, "big-endian", be);
168     qdev_prop_set_string(dev, "name", "lx60.io.flash");
169     qdev_init_nofail(dev);
170     s = SYS_BUS_DEVICE(dev);
171     memory_region_add_subregion(address_space, board->flash_base,
172                                 sysbus_mmio_get_region(s, 0));
173     return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
174 }
175 
176 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
177 {
178     XtensaCPU *cpu = opaque;
179 
180     return cpu_get_phys_page_debug(CPU(cpu), addr);
181 }
182 
183 static void lx60_reset(void *opaque)
184 {
185     XtensaCPU *cpu = opaque;
186 
187     cpu_reset(CPU(cpu));
188 }
189 
190 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
191         unsigned size)
192 {
193     return 0;
194 }
195 
196 static void lx60_io_write(void *opaque, hwaddr addr,
197         uint64_t val, unsigned size)
198 {
199 }
200 
201 static const MemoryRegionOps lx60_io_ops = {
202     .read = lx60_io_read,
203     .write = lx60_io_write,
204     .endianness = DEVICE_NATIVE_ENDIAN,
205 };
206 
207 static void lx_init(const LxBoardDesc *board, MachineState *machine)
208 {
209 #ifdef TARGET_WORDS_BIGENDIAN
210     int be = 1;
211 #else
212     int be = 0;
213 #endif
214     MemoryRegion *system_memory = get_system_memory();
215     XtensaCPU *cpu = NULL;
216     CPUXtensaState *env = NULL;
217     MemoryRegion *ram, *rom, *system_io;
218     DriveInfo *dinfo;
219     pflash_t *flash = NULL;
220     QemuOpts *machine_opts = qemu_get_machine_opts();
221     const char *cpu_model = machine->cpu_model;
222     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
223     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
224     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
225     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
226     int n;
227 
228     if (!cpu_model) {
229         cpu_model = XTENSA_DEFAULT_CPU_MODEL;
230     }
231 
232     for (n = 0; n < smp_cpus; n++) {
233         cpu = cpu_xtensa_init(cpu_model);
234         if (cpu == NULL) {
235             error_report("unable to find CPU definition '%s'",
236                          cpu_model);
237             exit(EXIT_FAILURE);
238         }
239         env = &cpu->env;
240 
241         env->sregs[PRID] = n;
242         qemu_register_reset(lx60_reset, cpu);
243         /* Need MMU initialized prior to ELF loading,
244          * so that ELF gets loaded into virtual addresses
245          */
246         cpu_reset(CPU(cpu));
247     }
248 
249     ram = g_malloc(sizeof(*ram));
250     memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
251                            &error_fatal);
252     vmstate_register_ram_global(ram);
253     memory_region_add_subregion(system_memory, 0, ram);
254 
255     system_io = g_malloc(sizeof(*system_io));
256     memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
257                           224 * 1024 * 1024);
258     memory_region_add_subregion(system_memory, 0xf0000000, system_io);
259     lx60_fpga_init(system_io, 0x0d020000);
260     if (nd_table[0].used) {
261         lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
262                 xtensa_get_extint(env, 1), nd_table);
263     }
264 
265     if (!serial_hds[0]) {
266         serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
267     }
268 
269     serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
270             115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
271 
272     dinfo = drive_get(IF_PFLASH, 0, 0);
273     if (dinfo) {
274         flash = xtfpga_flash_init(system_io, board, dinfo, be);
275     }
276 
277     /* Use presence of kernel file name as 'boot from SRAM' switch. */
278     if (kernel_filename) {
279         uint32_t entry_point = env->pc;
280         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
281         uint32_t tagptr = 0xfe000000 + board->sram_size;
282         uint32_t cur_tagptr;
283         BpMemInfo memory_location = {
284             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
285             .start = tswap32(0),
286             .end = tswap32(machine->ram_size),
287         };
288         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
289             machine->ram_size : 0x08000000;
290         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
291 
292         rom = g_malloc(sizeof(*rom));
293         memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
294                                &error_fatal);
295         vmstate_register_ram_global(rom);
296         memory_region_add_subregion(system_memory, 0xfe000000, rom);
297 
298         if (kernel_cmdline) {
299             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
300         }
301         if (dtb_filename) {
302             bp_size += get_tag_size(sizeof(uint32_t));
303         }
304         if (initrd_filename) {
305             bp_size += get_tag_size(sizeof(BpMemInfo));
306         }
307 
308         /* Put kernel bootparameters to the end of that SRAM */
309         tagptr = (tagptr - bp_size) & ~0xff;
310         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
311         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
312                              sizeof(memory_location), &memory_location);
313 
314         if (kernel_cmdline) {
315             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
316                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
317         }
318         if (dtb_filename) {
319             int fdt_size;
320             void *fdt = load_device_tree(dtb_filename, &fdt_size);
321             uint32_t dtb_addr = tswap32(cur_lowmem);
322 
323             if (!fdt) {
324                 error_report("could not load DTB '%s'", dtb_filename);
325                 exit(EXIT_FAILURE);
326             }
327 
328             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
329             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
330                                  sizeof(dtb_addr), &dtb_addr);
331             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
332         }
333         if (initrd_filename) {
334             BpMemInfo initrd_location = { 0 };
335             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
336                                            lowmem_end - cur_lowmem);
337 
338             if (initrd_size < 0) {
339                 initrd_size = load_image_targphys(initrd_filename,
340                                                   cur_lowmem,
341                                                   lowmem_end - cur_lowmem);
342             }
343             if (initrd_size < 0) {
344                 error_report("could not load initrd '%s'", initrd_filename);
345                 exit(EXIT_FAILURE);
346             }
347             initrd_location.start = tswap32(cur_lowmem);
348             initrd_location.end = tswap32(cur_lowmem + initrd_size);
349             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
350                                  sizeof(initrd_location), &initrd_location);
351             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
352         }
353         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
354         env->regs[2] = tagptr;
355 
356         uint64_t elf_entry;
357         uint64_t elf_lowaddr;
358         int success = load_elf(kernel_filename, translate_phys_addr, cpu,
359                 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
360         if (success > 0) {
361             entry_point = elf_entry;
362         } else {
363             hwaddr ep;
364             int is_linux;
365             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
366                                   translate_phys_addr, cpu);
367             if (success > 0 && is_linux) {
368                 entry_point = ep;
369             } else {
370                 error_report("could not load kernel '%s'",
371                              kernel_filename);
372                 exit(EXIT_FAILURE);
373             }
374         }
375         if (entry_point != env->pc) {
376             static const uint8_t jx_a0[] = {
377 #ifdef TARGET_WORDS_BIGENDIAN
378                 0x0a, 0, 0,
379 #else
380                 0xa0, 0, 0,
381 #endif
382             };
383             env->regs[0] = entry_point;
384             cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
385         }
386     } else {
387         if (flash) {
388             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
389             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
390 
391             memory_region_init_alias(flash_io, NULL, "lx60.flash",
392                     flash_mr, board->flash_boot_base,
393                     board->flash_size - board->flash_boot_base < 0x02000000 ?
394                     board->flash_size - board->flash_boot_base : 0x02000000);
395             memory_region_add_subregion(system_memory, 0xfe000000,
396                     flash_io);
397         }
398     }
399 }
400 
401 static void xtensa_lx60_init(MachineState *machine)
402 {
403     static const LxBoardDesc lx60_board = {
404         .flash_base = 0x08000000,
405         .flash_size = 0x00400000,
406         .flash_sector_size = 0x10000,
407         .sram_size = 0x20000,
408     };
409     lx_init(&lx60_board, machine);
410 }
411 
412 static void xtensa_lx200_init(MachineState *machine)
413 {
414     static const LxBoardDesc lx200_board = {
415         .flash_base = 0x08000000,
416         .flash_size = 0x01000000,
417         .flash_sector_size = 0x20000,
418         .sram_size = 0x2000000,
419     };
420     lx_init(&lx200_board, machine);
421 }
422 
423 static void xtensa_ml605_init(MachineState *machine)
424 {
425     static const LxBoardDesc ml605_board = {
426         .flash_base = 0x08000000,
427         .flash_size = 0x01000000,
428         .flash_sector_size = 0x20000,
429         .sram_size = 0x2000000,
430     };
431     lx_init(&ml605_board, machine);
432 }
433 
434 static void xtensa_kc705_init(MachineState *machine)
435 {
436     static const LxBoardDesc kc705_board = {
437         .flash_base = 0x00000000,
438         .flash_size = 0x08000000,
439         .flash_boot_base = 0x06000000,
440         .flash_sector_size = 0x20000,
441         .sram_size = 0x2000000,
442     };
443     lx_init(&kc705_board, machine);
444 }
445 
446 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
447 {
448     MachineClass *mc = MACHINE_CLASS(oc);
449 
450     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
451     mc->init = xtensa_lx60_init;
452     mc->max_cpus = 4;
453 }
454 
455 static const TypeInfo xtensa_lx60_type = {
456     .name = MACHINE_TYPE_NAME("lx60"),
457     .parent = TYPE_MACHINE,
458     .class_init = xtensa_lx60_class_init,
459 };
460 
461 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
462 {
463     MachineClass *mc = MACHINE_CLASS(oc);
464 
465     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
466     mc->init = xtensa_lx200_init;
467     mc->max_cpus = 4;
468 }
469 
470 static const TypeInfo xtensa_lx200_type = {
471     .name = MACHINE_TYPE_NAME("lx200"),
472     .parent = TYPE_MACHINE,
473     .class_init = xtensa_lx200_class_init,
474 };
475 
476 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
477 {
478     MachineClass *mc = MACHINE_CLASS(oc);
479 
480     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
481     mc->init = xtensa_ml605_init;
482     mc->max_cpus = 4;
483 }
484 
485 static const TypeInfo xtensa_ml605_type = {
486     .name = MACHINE_TYPE_NAME("ml605"),
487     .parent = TYPE_MACHINE,
488     .class_init = xtensa_ml605_class_init,
489 };
490 
491 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
492 {
493     MachineClass *mc = MACHINE_CLASS(oc);
494 
495     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
496     mc->init = xtensa_kc705_init;
497     mc->max_cpus = 4;
498 }
499 
500 static const TypeInfo xtensa_kc705_type = {
501     .name = MACHINE_TYPE_NAME("kc705"),
502     .parent = TYPE_MACHINE,
503     .class_init = xtensa_kc705_class_init,
504 };
505 
506 static void xtensa_lx_machines_init(void)
507 {
508     type_register_static(&xtensa_lx60_type);
509     type_register_static(&xtensa_lx200_type);
510     type_register_static(&xtensa_ml605_type);
511     type_register_static(&xtensa_kc705_type);
512 }
513 
514 type_init(xtensa_lx_machines_init)
515