xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision bfb27e60)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "sysemu/sysemu.h"
29 #include "hw/boards.h"
30 #include "hw/loader.h"
31 #include "elf.h"
32 #include "exec/memory.h"
33 #include "exec/address-spaces.h"
34 #include "hw/char/serial.h"
35 #include "net/net.h"
36 #include "hw/sysbus.h"
37 #include "hw/block/flash.h"
38 #include "sysemu/blockdev.h"
39 #include "sysemu/char.h"
40 #include "sysemu/device_tree.h"
41 #include "qemu/error-report.h"
42 #include "bootparam.h"
43 
44 typedef struct LxBoardDesc {
45     hwaddr flash_base;
46     size_t flash_size;
47     size_t flash_boot_base;
48     size_t flash_sector_size;
49     size_t sram_size;
50 } LxBoardDesc;
51 
52 typedef struct Lx60FpgaState {
53     MemoryRegion iomem;
54     uint32_t leds;
55     uint32_t switches;
56 } Lx60FpgaState;
57 
58 static void lx60_fpga_reset(void *opaque)
59 {
60     Lx60FpgaState *s = opaque;
61 
62     s->leds = 0;
63     s->switches = 0;
64 }
65 
66 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
67         unsigned size)
68 {
69     Lx60FpgaState *s = opaque;
70 
71     switch (addr) {
72     case 0x0: /*build date code*/
73         return 0x09272011;
74 
75     case 0x4: /*processor clock frequency, Hz*/
76         return 10000000;
77 
78     case 0x8: /*LEDs (off = 0, on = 1)*/
79         return s->leds;
80 
81     case 0xc: /*DIP switches (off = 0, on = 1)*/
82         return s->switches;
83     }
84     return 0;
85 }
86 
87 static void lx60_fpga_write(void *opaque, hwaddr addr,
88         uint64_t val, unsigned size)
89 {
90     Lx60FpgaState *s = opaque;
91 
92     switch (addr) {
93     case 0x8: /*LEDs (off = 0, on = 1)*/
94         s->leds = val;
95         break;
96 
97     case 0x10: /*board reset*/
98         if (val == 0xdead) {
99             qemu_system_reset_request();
100         }
101         break;
102     }
103 }
104 
105 static const MemoryRegionOps lx60_fpga_ops = {
106     .read = lx60_fpga_read,
107     .write = lx60_fpga_write,
108     .endianness = DEVICE_NATIVE_ENDIAN,
109 };
110 
111 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
112         hwaddr base)
113 {
114     Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
115 
116     memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
117             "lx60.fpga", 0x10000);
118     memory_region_add_subregion(address_space, base, &s->iomem);
119     lx60_fpga_reset(s);
120     qemu_register_reset(lx60_fpga_reset, s);
121     return s;
122 }
123 
124 static void lx60_net_init(MemoryRegion *address_space,
125         hwaddr base,
126         hwaddr descriptors,
127         hwaddr buffers,
128         qemu_irq irq, NICInfo *nd)
129 {
130     DeviceState *dev;
131     SysBusDevice *s;
132     MemoryRegion *ram;
133 
134     dev = qdev_create(NULL, "open_eth");
135     qdev_set_nic_properties(dev, nd);
136     qdev_init_nofail(dev);
137 
138     s = SYS_BUS_DEVICE(dev);
139     sysbus_connect_irq(s, 0, irq);
140     memory_region_add_subregion(address_space, base,
141             sysbus_mmio_get_region(s, 0));
142     memory_region_add_subregion(address_space, descriptors,
143             sysbus_mmio_get_region(s, 1));
144 
145     ram = g_malloc(sizeof(*ram));
146     memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384);
147     vmstate_register_ram_global(ram);
148     memory_region_add_subregion(address_space, buffers, ram);
149 }
150 
151 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
152 {
153     XtensaCPU *cpu = opaque;
154 
155     return cpu_get_phys_page_debug(CPU(cpu), addr);
156 }
157 
158 static void lx60_reset(void *opaque)
159 {
160     XtensaCPU *cpu = opaque;
161 
162     cpu_reset(CPU(cpu));
163 }
164 
165 static void lx_init(const LxBoardDesc *board, MachineState *machine)
166 {
167 #ifdef TARGET_WORDS_BIGENDIAN
168     int be = 1;
169 #else
170     int be = 0;
171 #endif
172     MemoryRegion *system_memory = get_system_memory();
173     XtensaCPU *cpu = NULL;
174     CPUXtensaState *env = NULL;
175     MemoryRegion *ram, *rom, *system_io;
176     DriveInfo *dinfo;
177     pflash_t *flash = NULL;
178     QemuOpts *machine_opts = qemu_get_machine_opts();
179     const char *cpu_model = machine->cpu_model;
180     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
181     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
182     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
183     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
184     int n;
185 
186     if (!cpu_model) {
187         cpu_model = XTENSA_DEFAULT_CPU_MODEL;
188     }
189 
190     for (n = 0; n < smp_cpus; n++) {
191         cpu = cpu_xtensa_init(cpu_model);
192         if (cpu == NULL) {
193             error_report("unable to find CPU definition '%s'\n",
194                          cpu_model);
195             exit(EXIT_FAILURE);
196         }
197         env = &cpu->env;
198 
199         env->sregs[PRID] = n;
200         qemu_register_reset(lx60_reset, cpu);
201         /* Need MMU initialized prior to ELF loading,
202          * so that ELF gets loaded into virtual addresses
203          */
204         cpu_reset(CPU(cpu));
205     }
206 
207     ram = g_malloc(sizeof(*ram));
208     memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size);
209     vmstate_register_ram_global(ram);
210     memory_region_add_subregion(system_memory, 0, ram);
211 
212     system_io = g_malloc(sizeof(*system_io));
213     memory_region_init(system_io, NULL, "lx60.io", 224 * 1024 * 1024);
214     memory_region_add_subregion(system_memory, 0xf0000000, system_io);
215     lx60_fpga_init(system_io, 0x0d020000);
216     if (nd_table[0].used) {
217         lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
218                 xtensa_get_extint(env, 1), nd_table);
219     }
220 
221     if (!serial_hds[0]) {
222         serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
223     }
224 
225     serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
226             115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
227 
228     dinfo = drive_get(IF_PFLASH, 0, 0);
229     if (dinfo) {
230         flash = pflash_cfi01_register(board->flash_base,
231                 NULL, "lx60.io.flash", board->flash_size,
232                 dinfo->bdrv, board->flash_sector_size,
233                 board->flash_size / board->flash_sector_size,
234                 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
235         if (flash == NULL) {
236             error_report("unable to mount pflash\n");
237             exit(EXIT_FAILURE);
238         }
239     }
240 
241     /* Use presence of kernel file name as 'boot from SRAM' switch. */
242     if (kernel_filename) {
243         uint32_t entry_point = env->pc;
244         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
245         uint32_t tagptr = 0xfe000000 + board->sram_size;
246         uint32_t cur_tagptr;
247         BpMemInfo memory_location = {
248             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
249             .start = tswap32(0),
250             .end = tswap32(machine->ram_size),
251         };
252         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
253             machine->ram_size : 0x08000000;
254         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
255 
256         rom = g_malloc(sizeof(*rom));
257         memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size);
258         vmstate_register_ram_global(rom);
259         memory_region_add_subregion(system_memory, 0xfe000000, rom);
260 
261         if (kernel_cmdline) {
262             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
263         }
264         if (dtb_filename) {
265             bp_size += get_tag_size(sizeof(uint32_t));
266         }
267         if (initrd_filename) {
268             bp_size += get_tag_size(sizeof(BpMemInfo));
269         }
270 
271         /* Put kernel bootparameters to the end of that SRAM */
272         tagptr = (tagptr - bp_size) & ~0xff;
273         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
274         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
275                              sizeof(memory_location), &memory_location);
276 
277         if (kernel_cmdline) {
278             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
279                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
280         }
281         if (dtb_filename) {
282             int fdt_size;
283             void *fdt = load_device_tree(dtb_filename, &fdt_size);
284             uint32_t dtb_addr = tswap32(cur_lowmem);
285 
286             if (!fdt) {
287                 error_report("could not load DTB '%s'\n", dtb_filename);
288                 exit(EXIT_FAILURE);
289             }
290 
291             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
292             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
293                                  sizeof(dtb_addr), &dtb_addr);
294             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
295         }
296         if (initrd_filename) {
297             BpMemInfo initrd_location = { 0 };
298             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
299                                            lowmem_end - cur_lowmem);
300 
301             if (initrd_size < 0) {
302                 initrd_size = load_image_targphys(initrd_filename,
303                                                   cur_lowmem,
304                                                   lowmem_end - cur_lowmem);
305             }
306             if (initrd_size < 0) {
307                 error_report("could not load initrd '%s'\n", initrd_filename);
308                 exit(EXIT_FAILURE);
309             }
310             initrd_location.start = tswap32(cur_lowmem);
311             initrd_location.end = tswap32(cur_lowmem + initrd_size);
312             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
313                                  sizeof(initrd_location), &initrd_location);
314             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
315         }
316         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
317         env->regs[2] = tagptr;
318 
319         uint64_t elf_entry;
320         uint64_t elf_lowaddr;
321         int success = load_elf(kernel_filename, translate_phys_addr, cpu,
322                 &elf_entry, &elf_lowaddr, NULL, be, ELF_MACHINE, 0);
323         if (success > 0) {
324             entry_point = elf_entry;
325         } else {
326             hwaddr ep;
327             int is_linux;
328             success = load_uimage(kernel_filename, &ep, NULL, &is_linux);
329             if (success > 0 && is_linux) {
330                 entry_point = ep;
331             } else {
332                 error_report("could not load kernel '%s'\n",
333                              kernel_filename);
334                 exit(EXIT_FAILURE);
335             }
336         }
337         if (entry_point != env->pc) {
338             static const uint8_t jx_a0[] = {
339 #ifdef TARGET_WORDS_BIGENDIAN
340                 0x0a, 0, 0,
341 #else
342                 0xa0, 0, 0,
343 #endif
344             };
345             env->regs[0] = entry_point;
346             cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
347         }
348     } else {
349         if (flash) {
350             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
351             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
352 
353             memory_region_init_alias(flash_io, NULL, "lx60.flash",
354                     flash_mr, board->flash_boot_base,
355                     board->flash_size - board->flash_boot_base < 0x02000000 ?
356                     board->flash_size - board->flash_boot_base : 0x02000000);
357             memory_region_add_subregion(system_memory, 0xfe000000,
358                     flash_io);
359         }
360     }
361 }
362 
363 static void xtensa_lx60_init(MachineState *machine)
364 {
365     static const LxBoardDesc lx60_board = {
366         .flash_base = 0xf8000000,
367         .flash_size = 0x00400000,
368         .flash_sector_size = 0x10000,
369         .sram_size = 0x20000,
370     };
371     lx_init(&lx60_board, machine);
372 }
373 
374 static void xtensa_lx200_init(MachineState *machine)
375 {
376     static const LxBoardDesc lx200_board = {
377         .flash_base = 0xf8000000,
378         .flash_size = 0x01000000,
379         .flash_sector_size = 0x20000,
380         .sram_size = 0x2000000,
381     };
382     lx_init(&lx200_board, machine);
383 }
384 
385 static void xtensa_ml605_init(MachineState *machine)
386 {
387     static const LxBoardDesc ml605_board = {
388         .flash_base = 0xf8000000,
389         .flash_size = 0x02000000,
390         .flash_sector_size = 0x20000,
391         .sram_size = 0x2000000,
392     };
393     lx_init(&ml605_board, machine);
394 }
395 
396 static void xtensa_kc705_init(MachineState *machine)
397 {
398     static const LxBoardDesc kc705_board = {
399         .flash_base = 0xf0000000,
400         .flash_size = 0x08000000,
401         .flash_boot_base = 0x06000000,
402         .flash_sector_size = 0x20000,
403         .sram_size = 0x2000000,
404     };
405     lx_init(&kc705_board, machine);
406 }
407 
408 static QEMUMachine xtensa_lx60_machine = {
409     .name = "lx60",
410     .desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
411     .init = xtensa_lx60_init,
412     .max_cpus = 4,
413 };
414 
415 static QEMUMachine xtensa_lx200_machine = {
416     .name = "lx200",
417     .desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
418     .init = xtensa_lx200_init,
419     .max_cpus = 4,
420 };
421 
422 static QEMUMachine xtensa_ml605_machine = {
423     .name = "ml605",
424     .desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
425     .init = xtensa_ml605_init,
426     .max_cpus = 4,
427 };
428 
429 static QEMUMachine xtensa_kc705_machine = {
430     .name = "kc705",
431     .desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
432     .init = xtensa_kc705_init,
433     .max_cpus = 4,
434 };
435 
436 static void xtensa_lx_machines_init(void)
437 {
438     qemu_register_machine(&xtensa_lx60_machine);
439     qemu_register_machine(&xtensa_lx200_machine);
440     qemu_register_machine(&xtensa_ml605_machine);
441     qemu_register_machine(&xtensa_kc705_machine);
442 }
443 
444 machine_init(xtensa_lx_machines_init);
445