xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision afb81fe8)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/reset.h"
45 #include "sysemu/runstate.h"
46 #include "qemu/error-report.h"
47 #include "qemu/option.h"
48 #include "bootparam.h"
49 #include "xtensa_memory.h"
50 #include "hw/xtensa/mx_pic.h"
51 #include "migration/vmstate.h"
52 
53 typedef struct XtfpgaFlashDesc {
54     hwaddr base;
55     size_t size;
56     size_t boot_base;
57     size_t sector_size;
58 } XtfpgaFlashDesc;
59 
60 typedef struct XtfpgaBoardDesc {
61     const XtfpgaFlashDesc *flash;
62     size_t sram_size;
63     const hwaddr *io;
64 } XtfpgaBoardDesc;
65 
66 typedef struct XtfpgaFpgaState {
67     MemoryRegion iomem;
68     uint32_t freq;
69     uint32_t leds;
70     uint32_t switches;
71 } XtfpgaFpgaState;
72 
73 static void xtfpga_fpga_reset(void *opaque)
74 {
75     XtfpgaFpgaState *s = opaque;
76 
77     s->leds = 0;
78     s->switches = 0;
79 }
80 
81 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
82         unsigned size)
83 {
84     XtfpgaFpgaState *s = opaque;
85 
86     switch (addr) {
87     case 0x0: /*build date code*/
88         return 0x09272011;
89 
90     case 0x4: /*processor clock frequency, Hz*/
91         return s->freq;
92 
93     case 0x8: /*LEDs (off = 0, on = 1)*/
94         return s->leds;
95 
96     case 0xc: /*DIP switches (off = 0, on = 1)*/
97         return s->switches;
98     }
99     return 0;
100 }
101 
102 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
103         uint64_t val, unsigned size)
104 {
105     XtfpgaFpgaState *s = opaque;
106 
107     switch (addr) {
108     case 0x8: /*LEDs (off = 0, on = 1)*/
109         s->leds = val;
110         break;
111 
112     case 0x10: /*board reset*/
113         if (val == 0xdead) {
114             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
115         }
116         break;
117     }
118 }
119 
120 static const MemoryRegionOps xtfpga_fpga_ops = {
121     .read = xtfpga_fpga_read,
122     .write = xtfpga_fpga_write,
123     .endianness = DEVICE_NATIVE_ENDIAN,
124 };
125 
126 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
127                                          hwaddr base, uint32_t freq)
128 {
129     XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1);
130 
131     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
132                           "xtfpga.fpga", 0x10000);
133     memory_region_add_subregion(address_space, base, &s->iomem);
134     s->freq = freq;
135     xtfpga_fpga_reset(s);
136     qemu_register_reset(xtfpga_fpga_reset, s);
137     return s;
138 }
139 
140 static void xtfpga_net_init(MemoryRegion *address_space,
141         hwaddr base,
142         hwaddr descriptors,
143         hwaddr buffers,
144         qemu_irq irq, NICInfo *nd)
145 {
146     DeviceState *dev;
147     SysBusDevice *s;
148     MemoryRegion *ram;
149 
150     dev = qdev_new("open_eth");
151     qdev_set_nic_properties(dev, nd);
152 
153     s = SYS_BUS_DEVICE(dev);
154     sysbus_realize_and_unref(s, &error_fatal);
155     sysbus_connect_irq(s, 0, irq);
156     memory_region_add_subregion(address_space, base,
157             sysbus_mmio_get_region(s, 0));
158     memory_region_add_subregion(address_space, descriptors,
159             sysbus_mmio_get_region(s, 1));
160 
161     ram = g_malloc(sizeof(*ram));
162     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
163                            &error_fatal);
164     vmstate_register_ram_global(ram);
165     memory_region_add_subregion(address_space, buffers, ram);
166 }
167 
168 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
169                                       const XtfpgaBoardDesc *board,
170                                       DriveInfo *dinfo, int be)
171 {
172     SysBusDevice *s;
173     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
174 
175     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
176     qdev_prop_set_uint32(dev, "num-blocks",
177                          board->flash->size / board->flash->sector_size);
178     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
179     qdev_prop_set_uint8(dev, "width", 2);
180     qdev_prop_set_bit(dev, "big-endian", be);
181     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
182     s = SYS_BUS_DEVICE(dev);
183     sysbus_realize_and_unref(s, &error_fatal);
184     memory_region_add_subregion(address_space, board->flash->base,
185                                 sysbus_mmio_get_region(s, 0));
186     return PFLASH_CFI01(dev);
187 }
188 
189 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
190 {
191     XtensaCPU *cpu = opaque;
192 
193     return cpu_get_phys_page_debug(CPU(cpu), addr);
194 }
195 
196 static void xtfpga_reset(void *opaque)
197 {
198     XtensaCPU *cpu = opaque;
199 
200     cpu_reset(CPU(cpu));
201 }
202 
203 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
204         unsigned size)
205 {
206     return 0;
207 }
208 
209 static void xtfpga_io_write(void *opaque, hwaddr addr,
210         uint64_t val, unsigned size)
211 {
212 }
213 
214 static const MemoryRegionOps xtfpga_io_ops = {
215     .read = xtfpga_io_read,
216     .write = xtfpga_io_write,
217     .endianness = DEVICE_NATIVE_ENDIAN,
218 };
219 
220 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
221 {
222     MemoryRegion *system_memory = get_system_memory();
223     XtensaCPU *cpu = NULL;
224     CPUXtensaState *env = NULL;
225     MemoryRegion *system_io;
226     XtensaMxPic *mx_pic = NULL;
227     qemu_irq *extints;
228     DriveInfo *dinfo;
229     PFlashCFI01 *flash = NULL;
230     const char *kernel_filename = machine->kernel_filename;
231     const char *kernel_cmdline = machine->kernel_cmdline;
232     const char *dtb_filename = machine->dtb;
233     const char *initrd_filename = machine->initrd_filename;
234     const unsigned system_io_size = 224 * MiB;
235     uint32_t freq = 10000000;
236     int n;
237     unsigned int smp_cpus = machine->smp.cpus;
238 
239     if (smp_cpus > 1) {
240         mx_pic = xtensa_mx_pic_init(31);
241         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
242     }
243     for (n = 0; n < smp_cpus; n++) {
244         CPUXtensaState *cenv = NULL;
245 
246         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
247         cenv = &cpu->env;
248         if (!env) {
249             env = cenv;
250             freq = env->config->clock_freq_khz * 1000;
251         }
252 
253         if (mx_pic) {
254             MemoryRegion *mx_eri;
255 
256             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
257                                                 xtensa_get_extints(cenv),
258                                                 xtensa_get_runstall(cenv));
259             memory_region_add_subregion(xtensa_get_er_region(cenv),
260                                         0, mx_eri);
261         }
262         cenv->sregs[PRID] = n;
263         xtensa_select_static_vectors(cenv, n != 0);
264         qemu_register_reset(xtfpga_reset, cpu);
265         /* Need MMU initialized prior to ELF loading,
266          * so that ELF gets loaded into virtual addresses
267          */
268         cpu_reset(CPU(cpu));
269     }
270     if (smp_cpus > 1) {
271         extints = xtensa_mx_pic_get_extints(mx_pic);
272     } else {
273         extints = xtensa_get_extints(env);
274     }
275 
276     if (env) {
277         XtensaMemory sysram = env->config->sysram;
278 
279         sysram.location[0].size = machine->ram_size;
280         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
281                                      system_memory);
282         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
283                                      system_memory);
284         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
285                                      system_memory);
286         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
287                                      system_memory);
288         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
289                                      system_memory);
290     }
291 
292     system_io = g_malloc(sizeof(*system_io));
293     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
294                           system_io_size);
295     memory_region_add_subregion(system_memory, board->io[0], system_io);
296     if (board->io[1]) {
297         MemoryRegion *io = g_malloc(sizeof(*io));
298 
299         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
300                                  system_io, 0, system_io_size);
301         memory_region_add_subregion(system_memory, board->io[1], io);
302     }
303     xtfpga_fpga_init(system_io, 0x0d020000, freq);
304     if (nd_table[0].used) {
305         xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
306                         extints[1], nd_table);
307     }
308 
309     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
310                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
311 
312     dinfo = drive_get(IF_PFLASH, 0, 0);
313     if (dinfo) {
314         flash = xtfpga_flash_init(system_io, board, dinfo, TARGET_BIG_ENDIAN);
315     }
316 
317     /* Use presence of kernel file name as 'boot from SRAM' switch. */
318     if (kernel_filename) {
319         uint32_t entry_point = env->pc;
320         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
321         uint32_t tagptr = env->config->sysrom.location[0].addr +
322             board->sram_size;
323         uint32_t cur_tagptr;
324         BpMemInfo memory_location = {
325             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
326             .start = tswap32(env->config->sysram.location[0].addr),
327             .end = tswap32(env->config->sysram.location[0].addr +
328                            machine->ram_size),
329         };
330         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
331             machine->ram_size : 0x08000000;
332         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
333 
334         lowmem_end += env->config->sysram.location[0].addr;
335         cur_lowmem += env->config->sysram.location[0].addr;
336 
337         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
338                                      system_memory);
339 
340         if (kernel_cmdline) {
341             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
342         }
343         if (dtb_filename) {
344             bp_size += get_tag_size(sizeof(uint32_t));
345         }
346         if (initrd_filename) {
347             bp_size += get_tag_size(sizeof(BpMemInfo));
348         }
349 
350         /* Put kernel bootparameters to the end of that SRAM */
351         tagptr = (tagptr - bp_size) & ~0xff;
352         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
353         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
354                              sizeof(memory_location), &memory_location);
355 
356         if (kernel_cmdline) {
357             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
358                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
359         }
360 #ifdef CONFIG_FDT
361         if (dtb_filename) {
362             int fdt_size;
363             void *fdt = load_device_tree(dtb_filename, &fdt_size);
364             uint32_t dtb_addr = tswap32(cur_lowmem);
365 
366             if (!fdt) {
367                 error_report("could not load DTB '%s'", dtb_filename);
368                 exit(EXIT_FAILURE);
369             }
370 
371             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
372             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
373                                  sizeof(dtb_addr), &dtb_addr);
374             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
375             g_free(fdt);
376         }
377 #else
378         if (dtb_filename) {
379             error_report("could not load DTB '%s': "
380                          "FDT support is not configured in QEMU",
381                          dtb_filename);
382             exit(EXIT_FAILURE);
383         }
384 #endif
385         if (initrd_filename) {
386             BpMemInfo initrd_location = { 0 };
387             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
388                                            lowmem_end - cur_lowmem);
389 
390             if (initrd_size < 0) {
391                 initrd_size = load_image_targphys(initrd_filename,
392                                                   cur_lowmem,
393                                                   lowmem_end - cur_lowmem);
394             }
395             if (initrd_size < 0) {
396                 error_report("could not load initrd '%s'", initrd_filename);
397                 exit(EXIT_FAILURE);
398             }
399             initrd_location.start = tswap32(cur_lowmem);
400             initrd_location.end = tswap32(cur_lowmem + initrd_size);
401             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
402                                  sizeof(initrd_location), &initrd_location);
403             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
404         }
405         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
406         env->regs[2] = tagptr;
407 
408         uint64_t elf_entry;
409         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
410                                &elf_entry, NULL, NULL, NULL, TARGET_BIG_ENDIAN,
411                                EM_XTENSA, 0, 0);
412         if (success > 0) {
413             entry_point = elf_entry;
414         } else {
415             hwaddr ep;
416             int is_linux;
417             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
418                                   translate_phys_addr, cpu);
419             if (success > 0 && is_linux) {
420                 entry_point = ep;
421             } else {
422                 error_report("could not load kernel '%s'",
423                              kernel_filename);
424                 exit(EXIT_FAILURE);
425             }
426         }
427         if (entry_point != env->pc) {
428             uint8_t boot[] = {
429 #if TARGET_BIG_ENDIAN
430                 0x60, 0x00, 0x08,       /* j    1f */
431                 0x00,                   /* .literal_position */
432                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
433                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
434                                         /* 1: */
435                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
436                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
437                 0x0a, 0x00, 0x00,       /* jx   a0 */
438 #else
439                 0x06, 0x02, 0x00,       /* j    1f */
440                 0x00,                   /* .literal_position */
441                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
442                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
443                                         /* 1: */
444                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
445                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
446                 0xa0, 0x00, 0x00,       /* jx   a0 */
447 #endif
448             };
449             uint32_t entry_pc = tswap32(entry_point);
450             uint32_t entry_a2 = tswap32(tagptr);
451 
452             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
453             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
454             cpu_physical_memory_write(env->pc, boot, sizeof(boot));
455         }
456     } else {
457         if (flash) {
458             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
459             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
460             uint32_t size = env->config->sysrom.location[0].size;
461 
462             if (board->flash->size - board->flash->boot_base < size) {
463                 size = board->flash->size - board->flash->boot_base;
464             }
465 
466             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
467                                      flash_mr, board->flash->boot_base, size);
468             memory_region_add_subregion(system_memory,
469                                         env->config->sysrom.location[0].addr,
470                                         flash_io);
471         } else {
472             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
473                                          system_memory);
474         }
475     }
476 }
477 
478 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
479 
480 static const hwaddr xtfpga_mmu_io[2] = {
481     0xf0000000,
482 };
483 
484 static const hwaddr xtfpga_nommu_io[2] = {
485     0x90000000,
486     0x70000000,
487 };
488 
489 static const XtfpgaFlashDesc lx60_flash = {
490     .base = 0x08000000,
491     .size = 0x00400000,
492     .sector_size = 0x10000,
493 };
494 
495 static void xtfpga_lx60_init(MachineState *machine)
496 {
497     static const XtfpgaBoardDesc lx60_board = {
498         .flash = &lx60_flash,
499         .sram_size = 0x20000,
500         .io = xtfpga_mmu_io,
501     };
502     xtfpga_init(&lx60_board, machine);
503 }
504 
505 static void xtfpga_lx60_nommu_init(MachineState *machine)
506 {
507     static const XtfpgaBoardDesc lx60_board = {
508         .flash = &lx60_flash,
509         .sram_size = 0x20000,
510         .io = xtfpga_nommu_io,
511     };
512     xtfpga_init(&lx60_board, machine);
513 }
514 
515 static const XtfpgaFlashDesc lx200_flash = {
516     .base = 0x08000000,
517     .size = 0x01000000,
518     .sector_size = 0x20000,
519 };
520 
521 static void xtfpga_lx200_init(MachineState *machine)
522 {
523     static const XtfpgaBoardDesc lx200_board = {
524         .flash = &lx200_flash,
525         .sram_size = 0x2000000,
526         .io = xtfpga_mmu_io,
527     };
528     xtfpga_init(&lx200_board, machine);
529 }
530 
531 static void xtfpga_lx200_nommu_init(MachineState *machine)
532 {
533     static const XtfpgaBoardDesc lx200_board = {
534         .flash = &lx200_flash,
535         .sram_size = 0x2000000,
536         .io = xtfpga_nommu_io,
537     };
538     xtfpga_init(&lx200_board, machine);
539 }
540 
541 static const XtfpgaFlashDesc ml605_flash = {
542     .base = 0x08000000,
543     .size = 0x01000000,
544     .sector_size = 0x20000,
545 };
546 
547 static void xtfpga_ml605_init(MachineState *machine)
548 {
549     static const XtfpgaBoardDesc ml605_board = {
550         .flash = &ml605_flash,
551         .sram_size = 0x2000000,
552         .io = xtfpga_mmu_io,
553     };
554     xtfpga_init(&ml605_board, machine);
555 }
556 
557 static void xtfpga_ml605_nommu_init(MachineState *machine)
558 {
559     static const XtfpgaBoardDesc ml605_board = {
560         .flash = &ml605_flash,
561         .sram_size = 0x2000000,
562         .io = xtfpga_nommu_io,
563     };
564     xtfpga_init(&ml605_board, machine);
565 }
566 
567 static const XtfpgaFlashDesc kc705_flash = {
568     .base = 0x00000000,
569     .size = 0x08000000,
570     .boot_base = 0x06000000,
571     .sector_size = 0x20000,
572 };
573 
574 static void xtfpga_kc705_init(MachineState *machine)
575 {
576     static const XtfpgaBoardDesc kc705_board = {
577         .flash = &kc705_flash,
578         .sram_size = 0x2000000,
579         .io = xtfpga_mmu_io,
580     };
581     xtfpga_init(&kc705_board, machine);
582 }
583 
584 static void xtfpga_kc705_nommu_init(MachineState *machine)
585 {
586     static const XtfpgaBoardDesc kc705_board = {
587         .flash = &kc705_flash,
588         .sram_size = 0x2000000,
589         .io = xtfpga_nommu_io,
590     };
591     xtfpga_init(&kc705_board, machine);
592 }
593 
594 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
595 {
596     MachineClass *mc = MACHINE_CLASS(oc);
597 
598     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
599     mc->init = xtfpga_lx60_init;
600     mc->max_cpus = 32;
601     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
602     mc->default_ram_size = 64 * MiB;
603 }
604 
605 static const TypeInfo xtfpga_lx60_type = {
606     .name = MACHINE_TYPE_NAME("lx60"),
607     .parent = TYPE_MACHINE,
608     .class_init = xtfpga_lx60_class_init,
609 };
610 
611 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
612 {
613     MachineClass *mc = MACHINE_CLASS(oc);
614 
615     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
616     mc->init = xtfpga_lx60_nommu_init;
617     mc->max_cpus = 32;
618     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
619     mc->default_ram_size = 64 * MiB;
620 }
621 
622 static const TypeInfo xtfpga_lx60_nommu_type = {
623     .name = MACHINE_TYPE_NAME("lx60-nommu"),
624     .parent = TYPE_MACHINE,
625     .class_init = xtfpga_lx60_nommu_class_init,
626 };
627 
628 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
629 {
630     MachineClass *mc = MACHINE_CLASS(oc);
631 
632     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
633     mc->init = xtfpga_lx200_init;
634     mc->max_cpus = 32;
635     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
636     mc->default_ram_size = 96 * MiB;
637 }
638 
639 static const TypeInfo xtfpga_lx200_type = {
640     .name = MACHINE_TYPE_NAME("lx200"),
641     .parent = TYPE_MACHINE,
642     .class_init = xtfpga_lx200_class_init,
643 };
644 
645 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
646 {
647     MachineClass *mc = MACHINE_CLASS(oc);
648 
649     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
650     mc->init = xtfpga_lx200_nommu_init;
651     mc->max_cpus = 32;
652     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
653     mc->default_ram_size = 96 * MiB;
654 }
655 
656 static const TypeInfo xtfpga_lx200_nommu_type = {
657     .name = MACHINE_TYPE_NAME("lx200-nommu"),
658     .parent = TYPE_MACHINE,
659     .class_init = xtfpga_lx200_nommu_class_init,
660 };
661 
662 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
663 {
664     MachineClass *mc = MACHINE_CLASS(oc);
665 
666     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
667     mc->init = xtfpga_ml605_init;
668     mc->max_cpus = 32;
669     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
670     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
671 }
672 
673 static const TypeInfo xtfpga_ml605_type = {
674     .name = MACHINE_TYPE_NAME("ml605"),
675     .parent = TYPE_MACHINE,
676     .class_init = xtfpga_ml605_class_init,
677 };
678 
679 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
680 {
681     MachineClass *mc = MACHINE_CLASS(oc);
682 
683     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
684     mc->init = xtfpga_ml605_nommu_init;
685     mc->max_cpus = 32;
686     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
687     mc->default_ram_size = 256 * MiB;
688 }
689 
690 static const TypeInfo xtfpga_ml605_nommu_type = {
691     .name = MACHINE_TYPE_NAME("ml605-nommu"),
692     .parent = TYPE_MACHINE,
693     .class_init = xtfpga_ml605_nommu_class_init,
694 };
695 
696 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
697 {
698     MachineClass *mc = MACHINE_CLASS(oc);
699 
700     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
701     mc->init = xtfpga_kc705_init;
702     mc->max_cpus = 32;
703     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
704     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
705 }
706 
707 static const TypeInfo xtfpga_kc705_type = {
708     .name = MACHINE_TYPE_NAME("kc705"),
709     .parent = TYPE_MACHINE,
710     .class_init = xtfpga_kc705_class_init,
711 };
712 
713 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
714 {
715     MachineClass *mc = MACHINE_CLASS(oc);
716 
717     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
718     mc->init = xtfpga_kc705_nommu_init;
719     mc->max_cpus = 32;
720     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
721     mc->default_ram_size = 256 * MiB;
722 }
723 
724 static const TypeInfo xtfpga_kc705_nommu_type = {
725     .name = MACHINE_TYPE_NAME("kc705-nommu"),
726     .parent = TYPE_MACHINE,
727     .class_init = xtfpga_kc705_nommu_class_init,
728 };
729 
730 static void xtfpga_machines_init(void)
731 {
732     type_register_static(&xtfpga_lx60_type);
733     type_register_static(&xtfpga_lx200_type);
734     type_register_static(&xtfpga_ml605_type);
735     type_register_static(&xtfpga_kc705_type);
736     type_register_static(&xtfpga_lx60_nommu_type);
737     type_register_static(&xtfpga_lx200_nommu_type);
738     type_register_static(&xtfpga_ml605_nommu_type);
739     type_register_static(&xtfpga_kc705_nommu_type);
740 }
741 
742 type_init(xtfpga_machines_init)
743