xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision ad9e5aa2)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "exec/address-spaces.h"
39 #include "hw/char/serial.h"
40 #include "net/net.h"
41 #include "hw/sysbus.h"
42 #include "hw/block/flash.h"
43 #include "chardev/char.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/reset.h"
46 #include "sysemu/runstate.h"
47 #include "qemu/error-report.h"
48 #include "qemu/option.h"
49 #include "bootparam.h"
50 #include "xtensa_memory.h"
51 #include "hw/xtensa/mx_pic.h"
52 #include "migration/vmstate.h"
53 
54 typedef struct XtfpgaFlashDesc {
55     hwaddr base;
56     size_t size;
57     size_t boot_base;
58     size_t sector_size;
59 } XtfpgaFlashDesc;
60 
61 typedef struct XtfpgaBoardDesc {
62     const XtfpgaFlashDesc *flash;
63     size_t sram_size;
64     const hwaddr *io;
65 } XtfpgaBoardDesc;
66 
67 typedef struct XtfpgaFpgaState {
68     MemoryRegion iomem;
69     uint32_t freq;
70     uint32_t leds;
71     uint32_t switches;
72 } XtfpgaFpgaState;
73 
74 static void xtfpga_fpga_reset(void *opaque)
75 {
76     XtfpgaFpgaState *s = opaque;
77 
78     s->leds = 0;
79     s->switches = 0;
80 }
81 
82 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
83         unsigned size)
84 {
85     XtfpgaFpgaState *s = opaque;
86 
87     switch (addr) {
88     case 0x0: /*build date code*/
89         return 0x09272011;
90 
91     case 0x4: /*processor clock frequency, Hz*/
92         return s->freq;
93 
94     case 0x8: /*LEDs (off = 0, on = 1)*/
95         return s->leds;
96 
97     case 0xc: /*DIP switches (off = 0, on = 1)*/
98         return s->switches;
99     }
100     return 0;
101 }
102 
103 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
104         uint64_t val, unsigned size)
105 {
106     XtfpgaFpgaState *s = opaque;
107 
108     switch (addr) {
109     case 0x8: /*LEDs (off = 0, on = 1)*/
110         s->leds = val;
111         break;
112 
113     case 0x10: /*board reset*/
114         if (val == 0xdead) {
115             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
116         }
117         break;
118     }
119 }
120 
121 static const MemoryRegionOps xtfpga_fpga_ops = {
122     .read = xtfpga_fpga_read,
123     .write = xtfpga_fpga_write,
124     .endianness = DEVICE_NATIVE_ENDIAN,
125 };
126 
127 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
128                                          hwaddr base, uint32_t freq)
129 {
130     XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
131 
132     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
133                           "xtfpga.fpga", 0x10000);
134     memory_region_add_subregion(address_space, base, &s->iomem);
135     s->freq = freq;
136     xtfpga_fpga_reset(s);
137     qemu_register_reset(xtfpga_fpga_reset, s);
138     return s;
139 }
140 
141 static void xtfpga_net_init(MemoryRegion *address_space,
142         hwaddr base,
143         hwaddr descriptors,
144         hwaddr buffers,
145         qemu_irq irq, NICInfo *nd)
146 {
147     DeviceState *dev;
148     SysBusDevice *s;
149     MemoryRegion *ram;
150 
151     dev = qdev_new("open_eth");
152     qdev_set_nic_properties(dev, nd);
153 
154     s = SYS_BUS_DEVICE(dev);
155     sysbus_realize_and_unref(s, &error_fatal);
156     sysbus_connect_irq(s, 0, irq);
157     memory_region_add_subregion(address_space, base,
158             sysbus_mmio_get_region(s, 0));
159     memory_region_add_subregion(address_space, descriptors,
160             sysbus_mmio_get_region(s, 1));
161 
162     ram = g_malloc(sizeof(*ram));
163     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
164                            &error_fatal);
165     vmstate_register_ram_global(ram);
166     memory_region_add_subregion(address_space, buffers, ram);
167 }
168 
169 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
170                                       const XtfpgaBoardDesc *board,
171                                       DriveInfo *dinfo, int be)
172 {
173     SysBusDevice *s;
174     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
175 
176     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
177     qdev_prop_set_uint32(dev, "num-blocks",
178                          board->flash->size / board->flash->sector_size);
179     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
180     qdev_prop_set_uint8(dev, "width", 2);
181     qdev_prop_set_bit(dev, "big-endian", be);
182     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
183     s = SYS_BUS_DEVICE(dev);
184     sysbus_realize_and_unref(s, &error_fatal);
185     memory_region_add_subregion(address_space, board->flash->base,
186                                 sysbus_mmio_get_region(s, 0));
187     return PFLASH_CFI01(dev);
188 }
189 
190 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
191 {
192     XtensaCPU *cpu = opaque;
193 
194     return cpu_get_phys_page_debug(CPU(cpu), addr);
195 }
196 
197 static void xtfpga_reset(void *opaque)
198 {
199     XtensaCPU *cpu = opaque;
200 
201     cpu_reset(CPU(cpu));
202 }
203 
204 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
205         unsigned size)
206 {
207     return 0;
208 }
209 
210 static void xtfpga_io_write(void *opaque, hwaddr addr,
211         uint64_t val, unsigned size)
212 {
213 }
214 
215 static const MemoryRegionOps xtfpga_io_ops = {
216     .read = xtfpga_io_read,
217     .write = xtfpga_io_write,
218     .endianness = DEVICE_NATIVE_ENDIAN,
219 };
220 
221 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
222 {
223 #ifdef TARGET_WORDS_BIGENDIAN
224     int be = 1;
225 #else
226     int be = 0;
227 #endif
228     MemoryRegion *system_memory = get_system_memory();
229     XtensaCPU *cpu = NULL;
230     CPUXtensaState *env = NULL;
231     MemoryRegion *system_io;
232     XtensaMxPic *mx_pic = NULL;
233     qemu_irq *extints;
234     DriveInfo *dinfo;
235     PFlashCFI01 *flash = NULL;
236     QemuOpts *machine_opts = qemu_get_machine_opts();
237     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
238     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
239     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
240     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
241     const unsigned system_io_size = 224 * MiB;
242     uint32_t freq = 10000000;
243     int n;
244     unsigned int smp_cpus = machine->smp.cpus;
245 
246     if (smp_cpus > 1) {
247         mx_pic = xtensa_mx_pic_init(31);
248         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
249     }
250     for (n = 0; n < smp_cpus; n++) {
251         CPUXtensaState *cenv = NULL;
252 
253         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
254         cenv = &cpu->env;
255         if (!env) {
256             env = cenv;
257             freq = env->config->clock_freq_khz * 1000;
258         }
259 
260         if (mx_pic) {
261             MemoryRegion *mx_eri;
262 
263             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
264                                                 xtensa_get_extints(cenv),
265                                                 xtensa_get_runstall(cenv));
266             memory_region_add_subregion(xtensa_get_er_region(cenv),
267                                         0, mx_eri);
268         }
269         cenv->sregs[PRID] = n;
270         xtensa_select_static_vectors(cenv, n != 0);
271         qemu_register_reset(xtfpga_reset, cpu);
272         /* Need MMU initialized prior to ELF loading,
273          * so that ELF gets loaded into virtual addresses
274          */
275         cpu_reset(CPU(cpu));
276     }
277     if (smp_cpus > 1) {
278         extints = xtensa_mx_pic_get_extints(mx_pic);
279     } else {
280         extints = xtensa_get_extints(env);
281     }
282 
283     if (env) {
284         XtensaMemory sysram = env->config->sysram;
285 
286         sysram.location[0].size = machine->ram_size;
287         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
288                                      system_memory);
289         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
290                                      system_memory);
291         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
292                                      system_memory);
293         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
294                                      system_memory);
295         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
296                                      system_memory);
297     }
298 
299     system_io = g_malloc(sizeof(*system_io));
300     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
301                           system_io_size);
302     memory_region_add_subregion(system_memory, board->io[0], system_io);
303     if (board->io[1]) {
304         MemoryRegion *io = g_malloc(sizeof(*io));
305 
306         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
307                                  system_io, 0, system_io_size);
308         memory_region_add_subregion(system_memory, board->io[1], io);
309     }
310     xtfpga_fpga_init(system_io, 0x0d020000, freq);
311     if (nd_table[0].used) {
312         xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
313                         extints[1], nd_table);
314     }
315 
316     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
317                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
318 
319     dinfo = drive_get(IF_PFLASH, 0, 0);
320     if (dinfo) {
321         flash = xtfpga_flash_init(system_io, board, dinfo, be);
322     }
323 
324     /* Use presence of kernel file name as 'boot from SRAM' switch. */
325     if (kernel_filename) {
326         uint32_t entry_point = env->pc;
327         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
328         uint32_t tagptr = env->config->sysrom.location[0].addr +
329             board->sram_size;
330         uint32_t cur_tagptr;
331         BpMemInfo memory_location = {
332             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
333             .start = tswap32(env->config->sysram.location[0].addr),
334             .end = tswap32(env->config->sysram.location[0].addr +
335                            machine->ram_size),
336         };
337         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
338             machine->ram_size : 0x08000000;
339         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
340 
341         lowmem_end += env->config->sysram.location[0].addr;
342         cur_lowmem += env->config->sysram.location[0].addr;
343 
344         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
345                                      system_memory);
346 
347         if (kernel_cmdline) {
348             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
349         }
350         if (dtb_filename) {
351             bp_size += get_tag_size(sizeof(uint32_t));
352         }
353         if (initrd_filename) {
354             bp_size += get_tag_size(sizeof(BpMemInfo));
355         }
356 
357         /* Put kernel bootparameters to the end of that SRAM */
358         tagptr = (tagptr - bp_size) & ~0xff;
359         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
360         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
361                              sizeof(memory_location), &memory_location);
362 
363         if (kernel_cmdline) {
364             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
365                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
366         }
367 #ifdef CONFIG_FDT
368         if (dtb_filename) {
369             int fdt_size;
370             void *fdt = load_device_tree(dtb_filename, &fdt_size);
371             uint32_t dtb_addr = tswap32(cur_lowmem);
372 
373             if (!fdt) {
374                 error_report("could not load DTB '%s'", dtb_filename);
375                 exit(EXIT_FAILURE);
376             }
377 
378             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
379             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
380                                  sizeof(dtb_addr), &dtb_addr);
381             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
382             g_free(fdt);
383         }
384 #else
385         if (dtb_filename) {
386             error_report("could not load DTB '%s': "
387                          "FDT support is not configured in QEMU",
388                          dtb_filename);
389             exit(EXIT_FAILURE);
390         }
391 #endif
392         if (initrd_filename) {
393             BpMemInfo initrd_location = { 0 };
394             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
395                                            lowmem_end - cur_lowmem);
396 
397             if (initrd_size < 0) {
398                 initrd_size = load_image_targphys(initrd_filename,
399                                                   cur_lowmem,
400                                                   lowmem_end - cur_lowmem);
401             }
402             if (initrd_size < 0) {
403                 error_report("could not load initrd '%s'", initrd_filename);
404                 exit(EXIT_FAILURE);
405             }
406             initrd_location.start = tswap32(cur_lowmem);
407             initrd_location.end = tswap32(cur_lowmem + initrd_size);
408             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
409                                  sizeof(initrd_location), &initrd_location);
410             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
411         }
412         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
413         env->regs[2] = tagptr;
414 
415         uint64_t elf_entry;
416         uint64_t elf_lowaddr;
417         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
418                 &elf_entry, &elf_lowaddr, NULL, NULL, be, EM_XTENSA, 0, 0);
419         if (success > 0) {
420             entry_point = elf_entry;
421         } else {
422             hwaddr ep;
423             int is_linux;
424             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
425                                   translate_phys_addr, cpu);
426             if (success > 0 && is_linux) {
427                 entry_point = ep;
428             } else {
429                 error_report("could not load kernel '%s'",
430                              kernel_filename);
431                 exit(EXIT_FAILURE);
432             }
433         }
434         if (entry_point != env->pc) {
435             uint8_t boot[] = {
436 #ifdef TARGET_WORDS_BIGENDIAN
437                 0x60, 0x00, 0x08,       /* j    1f */
438                 0x00,                   /* .literal_position */
439                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
440                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
441                                         /* 1: */
442                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
443                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
444                 0x0a, 0x00, 0x00,       /* jx   a0 */
445 #else
446                 0x06, 0x02, 0x00,       /* j    1f */
447                 0x00,                   /* .literal_position */
448                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
449                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
450                                         /* 1: */
451                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
452                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
453                 0xa0, 0x00, 0x00,       /* jx   a0 */
454 #endif
455             };
456             uint32_t entry_pc = tswap32(entry_point);
457             uint32_t entry_a2 = tswap32(tagptr);
458 
459             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
460             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
461             cpu_physical_memory_write(env->pc, boot, sizeof(boot));
462         }
463     } else {
464         if (flash) {
465             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
466             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
467             uint32_t size = env->config->sysrom.location[0].size;
468 
469             if (board->flash->size - board->flash->boot_base < size) {
470                 size = board->flash->size - board->flash->boot_base;
471             }
472 
473             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
474                                      flash_mr, board->flash->boot_base, size);
475             memory_region_add_subregion(system_memory,
476                                         env->config->sysrom.location[0].addr,
477                                         flash_io);
478         } else {
479             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
480                                          system_memory);
481         }
482     }
483 }
484 
485 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
486 
487 static const hwaddr xtfpga_mmu_io[2] = {
488     0xf0000000,
489 };
490 
491 static const hwaddr xtfpga_nommu_io[2] = {
492     0x90000000,
493     0x70000000,
494 };
495 
496 static const XtfpgaFlashDesc lx60_flash = {
497     .base = 0x08000000,
498     .size = 0x00400000,
499     .sector_size = 0x10000,
500 };
501 
502 static void xtfpga_lx60_init(MachineState *machine)
503 {
504     static const XtfpgaBoardDesc lx60_board = {
505         .flash = &lx60_flash,
506         .sram_size = 0x20000,
507         .io = xtfpga_mmu_io,
508     };
509     xtfpga_init(&lx60_board, machine);
510 }
511 
512 static void xtfpga_lx60_nommu_init(MachineState *machine)
513 {
514     static const XtfpgaBoardDesc lx60_board = {
515         .flash = &lx60_flash,
516         .sram_size = 0x20000,
517         .io = xtfpga_nommu_io,
518     };
519     xtfpga_init(&lx60_board, machine);
520 }
521 
522 static const XtfpgaFlashDesc lx200_flash = {
523     .base = 0x08000000,
524     .size = 0x01000000,
525     .sector_size = 0x20000,
526 };
527 
528 static void xtfpga_lx200_init(MachineState *machine)
529 {
530     static const XtfpgaBoardDesc lx200_board = {
531         .flash = &lx200_flash,
532         .sram_size = 0x2000000,
533         .io = xtfpga_mmu_io,
534     };
535     xtfpga_init(&lx200_board, machine);
536 }
537 
538 static void xtfpga_lx200_nommu_init(MachineState *machine)
539 {
540     static const XtfpgaBoardDesc lx200_board = {
541         .flash = &lx200_flash,
542         .sram_size = 0x2000000,
543         .io = xtfpga_nommu_io,
544     };
545     xtfpga_init(&lx200_board, machine);
546 }
547 
548 static const XtfpgaFlashDesc ml605_flash = {
549     .base = 0x08000000,
550     .size = 0x01000000,
551     .sector_size = 0x20000,
552 };
553 
554 static void xtfpga_ml605_init(MachineState *machine)
555 {
556     static const XtfpgaBoardDesc ml605_board = {
557         .flash = &ml605_flash,
558         .sram_size = 0x2000000,
559         .io = xtfpga_mmu_io,
560     };
561     xtfpga_init(&ml605_board, machine);
562 }
563 
564 static void xtfpga_ml605_nommu_init(MachineState *machine)
565 {
566     static const XtfpgaBoardDesc ml605_board = {
567         .flash = &ml605_flash,
568         .sram_size = 0x2000000,
569         .io = xtfpga_nommu_io,
570     };
571     xtfpga_init(&ml605_board, machine);
572 }
573 
574 static const XtfpgaFlashDesc kc705_flash = {
575     .base = 0x00000000,
576     .size = 0x08000000,
577     .boot_base = 0x06000000,
578     .sector_size = 0x20000,
579 };
580 
581 static void xtfpga_kc705_init(MachineState *machine)
582 {
583     static const XtfpgaBoardDesc kc705_board = {
584         .flash = &kc705_flash,
585         .sram_size = 0x2000000,
586         .io = xtfpga_mmu_io,
587     };
588     xtfpga_init(&kc705_board, machine);
589 }
590 
591 static void xtfpga_kc705_nommu_init(MachineState *machine)
592 {
593     static const XtfpgaBoardDesc kc705_board = {
594         .flash = &kc705_flash,
595         .sram_size = 0x2000000,
596         .io = xtfpga_nommu_io,
597     };
598     xtfpga_init(&kc705_board, machine);
599 }
600 
601 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
602 {
603     MachineClass *mc = MACHINE_CLASS(oc);
604 
605     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
606     mc->init = xtfpga_lx60_init;
607     mc->max_cpus = 32;
608     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
609     mc->default_ram_size = 64 * MiB;
610 }
611 
612 static const TypeInfo xtfpga_lx60_type = {
613     .name = MACHINE_TYPE_NAME("lx60"),
614     .parent = TYPE_MACHINE,
615     .class_init = xtfpga_lx60_class_init,
616 };
617 
618 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
619 {
620     MachineClass *mc = MACHINE_CLASS(oc);
621 
622     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
623     mc->init = xtfpga_lx60_nommu_init;
624     mc->max_cpus = 32;
625     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
626     mc->default_ram_size = 64 * MiB;
627 }
628 
629 static const TypeInfo xtfpga_lx60_nommu_type = {
630     .name = MACHINE_TYPE_NAME("lx60-nommu"),
631     .parent = TYPE_MACHINE,
632     .class_init = xtfpga_lx60_nommu_class_init,
633 };
634 
635 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
636 {
637     MachineClass *mc = MACHINE_CLASS(oc);
638 
639     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
640     mc->init = xtfpga_lx200_init;
641     mc->max_cpus = 32;
642     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
643     mc->default_ram_size = 96 * MiB;
644 }
645 
646 static const TypeInfo xtfpga_lx200_type = {
647     .name = MACHINE_TYPE_NAME("lx200"),
648     .parent = TYPE_MACHINE,
649     .class_init = xtfpga_lx200_class_init,
650 };
651 
652 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
653 {
654     MachineClass *mc = MACHINE_CLASS(oc);
655 
656     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
657     mc->init = xtfpga_lx200_nommu_init;
658     mc->max_cpus = 32;
659     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
660     mc->default_ram_size = 96 * MiB;
661 }
662 
663 static const TypeInfo xtfpga_lx200_nommu_type = {
664     .name = MACHINE_TYPE_NAME("lx200-nommu"),
665     .parent = TYPE_MACHINE,
666     .class_init = xtfpga_lx200_nommu_class_init,
667 };
668 
669 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
670 {
671     MachineClass *mc = MACHINE_CLASS(oc);
672 
673     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
674     mc->init = xtfpga_ml605_init;
675     mc->max_cpus = 32;
676     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
677     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
678 }
679 
680 static const TypeInfo xtfpga_ml605_type = {
681     .name = MACHINE_TYPE_NAME("ml605"),
682     .parent = TYPE_MACHINE,
683     .class_init = xtfpga_ml605_class_init,
684 };
685 
686 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
687 {
688     MachineClass *mc = MACHINE_CLASS(oc);
689 
690     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
691     mc->init = xtfpga_ml605_nommu_init;
692     mc->max_cpus = 32;
693     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
694     mc->default_ram_size = 256 * MiB;
695 }
696 
697 static const TypeInfo xtfpga_ml605_nommu_type = {
698     .name = MACHINE_TYPE_NAME("ml605-nommu"),
699     .parent = TYPE_MACHINE,
700     .class_init = xtfpga_ml605_nommu_class_init,
701 };
702 
703 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
704 {
705     MachineClass *mc = MACHINE_CLASS(oc);
706 
707     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
708     mc->init = xtfpga_kc705_init;
709     mc->max_cpus = 32;
710     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
711     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
712 }
713 
714 static const TypeInfo xtfpga_kc705_type = {
715     .name = MACHINE_TYPE_NAME("kc705"),
716     .parent = TYPE_MACHINE,
717     .class_init = xtfpga_kc705_class_init,
718 };
719 
720 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
721 {
722     MachineClass *mc = MACHINE_CLASS(oc);
723 
724     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
725     mc->init = xtfpga_kc705_nommu_init;
726     mc->max_cpus = 32;
727     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
728     mc->default_ram_size = 256 * MiB;
729 }
730 
731 static const TypeInfo xtfpga_kc705_nommu_type = {
732     .name = MACHINE_TYPE_NAME("kc705-nommu"),
733     .parent = TYPE_MACHINE,
734     .class_init = xtfpga_kc705_nommu_class_init,
735 };
736 
737 static void xtfpga_machines_init(void)
738 {
739     type_register_static(&xtfpga_lx60_type);
740     type_register_static(&xtfpga_lx200_type);
741     type_register_static(&xtfpga_ml605_type);
742     type_register_static(&xtfpga_kc705_type);
743     type_register_static(&xtfpga_lx60_nommu_type);
744     type_register_static(&xtfpga_lx200_nommu_type);
745     type_register_static(&xtfpga_ml605_nommu_type);
746     type_register_static(&xtfpga_kc705_nommu_type);
747 }
748 
749 type_init(xtfpga_machines_init)
750