1 /* 2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * * Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * * Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * * Neither the name of the Open Source and Linux Lab nor the 13 * names of its contributors may be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include "qemu/osdep.h" 29 #include "sysemu/sysemu.h" 30 #include "hw/boards.h" 31 #include "hw/loader.h" 32 #include "elf.h" 33 #include "exec/memory.h" 34 #include "exec/address-spaces.h" 35 #include "hw/char/serial.h" 36 #include "net/net.h" 37 #include "hw/sysbus.h" 38 #include "hw/block/flash.h" 39 #include "sysemu/block-backend.h" 40 #include "sysemu/char.h" 41 #include "sysemu/device_tree.h" 42 #include "qemu/error-report.h" 43 #include "bootparam.h" 44 45 typedef struct LxBoardDesc { 46 hwaddr flash_base; 47 size_t flash_size; 48 size_t flash_boot_base; 49 size_t flash_sector_size; 50 size_t sram_size; 51 } LxBoardDesc; 52 53 typedef struct Lx60FpgaState { 54 MemoryRegion iomem; 55 uint32_t leds; 56 uint32_t switches; 57 } Lx60FpgaState; 58 59 static void lx60_fpga_reset(void *opaque) 60 { 61 Lx60FpgaState *s = opaque; 62 63 s->leds = 0; 64 s->switches = 0; 65 } 66 67 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr, 68 unsigned size) 69 { 70 Lx60FpgaState *s = opaque; 71 72 switch (addr) { 73 case 0x0: /*build date code*/ 74 return 0x09272011; 75 76 case 0x4: /*processor clock frequency, Hz*/ 77 return 10000000; 78 79 case 0x8: /*LEDs (off = 0, on = 1)*/ 80 return s->leds; 81 82 case 0xc: /*DIP switches (off = 0, on = 1)*/ 83 return s->switches; 84 } 85 return 0; 86 } 87 88 static void lx60_fpga_write(void *opaque, hwaddr addr, 89 uint64_t val, unsigned size) 90 { 91 Lx60FpgaState *s = opaque; 92 93 switch (addr) { 94 case 0x8: /*LEDs (off = 0, on = 1)*/ 95 s->leds = val; 96 break; 97 98 case 0x10: /*board reset*/ 99 if (val == 0xdead) { 100 qemu_system_reset_request(); 101 } 102 break; 103 } 104 } 105 106 static const MemoryRegionOps lx60_fpga_ops = { 107 .read = lx60_fpga_read, 108 .write = lx60_fpga_write, 109 .endianness = DEVICE_NATIVE_ENDIAN, 110 }; 111 112 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space, 113 hwaddr base) 114 { 115 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState)); 116 117 memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s, 118 "lx60.fpga", 0x10000); 119 memory_region_add_subregion(address_space, base, &s->iomem); 120 lx60_fpga_reset(s); 121 qemu_register_reset(lx60_fpga_reset, s); 122 return s; 123 } 124 125 static void lx60_net_init(MemoryRegion *address_space, 126 hwaddr base, 127 hwaddr descriptors, 128 hwaddr buffers, 129 qemu_irq irq, NICInfo *nd) 130 { 131 DeviceState *dev; 132 SysBusDevice *s; 133 MemoryRegion *ram; 134 135 dev = qdev_create(NULL, "open_eth"); 136 qdev_set_nic_properties(dev, nd); 137 qdev_init_nofail(dev); 138 139 s = SYS_BUS_DEVICE(dev); 140 sysbus_connect_irq(s, 0, irq); 141 memory_region_add_subregion(address_space, base, 142 sysbus_mmio_get_region(s, 0)); 143 memory_region_add_subregion(address_space, descriptors, 144 sysbus_mmio_get_region(s, 1)); 145 146 ram = g_malloc(sizeof(*ram)); 147 memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384, 148 &error_fatal); 149 vmstate_register_ram_global(ram); 150 memory_region_add_subregion(address_space, buffers, ram); 151 } 152 153 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space, 154 const LxBoardDesc *board, 155 DriveInfo *dinfo, int be) 156 { 157 SysBusDevice *s; 158 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 159 160 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 161 &error_abort); 162 qdev_prop_set_uint32(dev, "num-blocks", 163 board->flash_size / board->flash_sector_size); 164 qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size); 165 qdev_prop_set_uint8(dev, "width", 4); 166 qdev_prop_set_bit(dev, "big-endian", be); 167 qdev_prop_set_string(dev, "name", "lx60.io.flash"); 168 qdev_init_nofail(dev); 169 s = SYS_BUS_DEVICE(dev); 170 memory_region_add_subregion(address_space, board->flash_base, 171 sysbus_mmio_get_region(s, 0)); 172 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01"); 173 } 174 175 static uint64_t translate_phys_addr(void *opaque, uint64_t addr) 176 { 177 XtensaCPU *cpu = opaque; 178 179 return cpu_get_phys_page_debug(CPU(cpu), addr); 180 } 181 182 static void lx60_reset(void *opaque) 183 { 184 XtensaCPU *cpu = opaque; 185 186 cpu_reset(CPU(cpu)); 187 } 188 189 static uint64_t lx60_io_read(void *opaque, hwaddr addr, 190 unsigned size) 191 { 192 return 0; 193 } 194 195 static void lx60_io_write(void *opaque, hwaddr addr, 196 uint64_t val, unsigned size) 197 { 198 } 199 200 static const MemoryRegionOps lx60_io_ops = { 201 .read = lx60_io_read, 202 .write = lx60_io_write, 203 .endianness = DEVICE_NATIVE_ENDIAN, 204 }; 205 206 static void lx_init(const LxBoardDesc *board, MachineState *machine) 207 { 208 #ifdef TARGET_WORDS_BIGENDIAN 209 int be = 1; 210 #else 211 int be = 0; 212 #endif 213 MemoryRegion *system_memory = get_system_memory(); 214 XtensaCPU *cpu = NULL; 215 CPUXtensaState *env = NULL; 216 MemoryRegion *ram, *rom, *system_io; 217 DriveInfo *dinfo; 218 pflash_t *flash = NULL; 219 QemuOpts *machine_opts = qemu_get_machine_opts(); 220 const char *cpu_model = machine->cpu_model; 221 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel"); 222 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append"); 223 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb"); 224 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd"); 225 int n; 226 227 if (!cpu_model) { 228 cpu_model = XTENSA_DEFAULT_CPU_MODEL; 229 } 230 231 for (n = 0; n < smp_cpus; n++) { 232 cpu = cpu_xtensa_init(cpu_model); 233 if (cpu == NULL) { 234 error_report("unable to find CPU definition '%s'", 235 cpu_model); 236 exit(EXIT_FAILURE); 237 } 238 env = &cpu->env; 239 240 env->sregs[PRID] = n; 241 qemu_register_reset(lx60_reset, cpu); 242 /* Need MMU initialized prior to ELF loading, 243 * so that ELF gets loaded into virtual addresses 244 */ 245 cpu_reset(CPU(cpu)); 246 } 247 248 ram = g_malloc(sizeof(*ram)); 249 memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size, 250 &error_fatal); 251 vmstate_register_ram_global(ram); 252 memory_region_add_subregion(system_memory, 0, ram); 253 254 system_io = g_malloc(sizeof(*system_io)); 255 memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io", 256 224 * 1024 * 1024); 257 memory_region_add_subregion(system_memory, 0xf0000000, system_io); 258 lx60_fpga_init(system_io, 0x0d020000); 259 if (nd_table[0].used) { 260 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, 261 xtensa_get_extint(env, 1), nd_table); 262 } 263 264 if (!serial_hds[0]) { 265 serial_hds[0] = qemu_chr_new("serial0", "null", NULL); 266 } 267 268 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0), 269 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN); 270 271 dinfo = drive_get(IF_PFLASH, 0, 0); 272 if (dinfo) { 273 flash = xtfpga_flash_init(system_io, board, dinfo, be); 274 } 275 276 /* Use presence of kernel file name as 'boot from SRAM' switch. */ 277 if (kernel_filename) { 278 uint32_t entry_point = env->pc; 279 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */ 280 uint32_t tagptr = 0xfe000000 + board->sram_size; 281 uint32_t cur_tagptr; 282 BpMemInfo memory_location = { 283 .type = tswap32(MEMORY_TYPE_CONVENTIONAL), 284 .start = tswap32(0), 285 .end = tswap32(machine->ram_size), 286 }; 287 uint32_t lowmem_end = machine->ram_size < 0x08000000 ? 288 machine->ram_size : 0x08000000; 289 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096); 290 291 rom = g_malloc(sizeof(*rom)); 292 memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size, 293 &error_fatal); 294 vmstate_register_ram_global(rom); 295 memory_region_add_subregion(system_memory, 0xfe000000, rom); 296 297 if (kernel_cmdline) { 298 bp_size += get_tag_size(strlen(kernel_cmdline) + 1); 299 } 300 if (dtb_filename) { 301 bp_size += get_tag_size(sizeof(uint32_t)); 302 } 303 if (initrd_filename) { 304 bp_size += get_tag_size(sizeof(BpMemInfo)); 305 } 306 307 /* Put kernel bootparameters to the end of that SRAM */ 308 tagptr = (tagptr - bp_size) & ~0xff; 309 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL); 310 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY, 311 sizeof(memory_location), &memory_location); 312 313 if (kernel_cmdline) { 314 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE, 315 strlen(kernel_cmdline) + 1, kernel_cmdline); 316 } 317 if (dtb_filename) { 318 int fdt_size; 319 void *fdt = load_device_tree(dtb_filename, &fdt_size); 320 uint32_t dtb_addr = tswap32(cur_lowmem); 321 322 if (!fdt) { 323 error_report("could not load DTB '%s'", dtb_filename); 324 exit(EXIT_FAILURE); 325 } 326 327 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size); 328 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT, 329 sizeof(dtb_addr), &dtb_addr); 330 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096); 331 } 332 if (initrd_filename) { 333 BpMemInfo initrd_location = { 0 }; 334 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem, 335 lowmem_end - cur_lowmem); 336 337 if (initrd_size < 0) { 338 initrd_size = load_image_targphys(initrd_filename, 339 cur_lowmem, 340 lowmem_end - cur_lowmem); 341 } 342 if (initrd_size < 0) { 343 error_report("could not load initrd '%s'", initrd_filename); 344 exit(EXIT_FAILURE); 345 } 346 initrd_location.start = tswap32(cur_lowmem); 347 initrd_location.end = tswap32(cur_lowmem + initrd_size); 348 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD, 349 sizeof(initrd_location), &initrd_location); 350 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096); 351 } 352 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL); 353 env->regs[2] = tagptr; 354 355 uint64_t elf_entry; 356 uint64_t elf_lowaddr; 357 int success = load_elf(kernel_filename, translate_phys_addr, cpu, 358 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0); 359 if (success > 0) { 360 entry_point = elf_entry; 361 } else { 362 hwaddr ep; 363 int is_linux; 364 success = load_uimage(kernel_filename, &ep, NULL, &is_linux, 365 translate_phys_addr, cpu); 366 if (success > 0 && is_linux) { 367 entry_point = ep; 368 } else { 369 error_report("could not load kernel '%s'", 370 kernel_filename); 371 exit(EXIT_FAILURE); 372 } 373 } 374 if (entry_point != env->pc) { 375 static const uint8_t jx_a0[] = { 376 #ifdef TARGET_WORDS_BIGENDIAN 377 0x0a, 0, 0, 378 #else 379 0xa0, 0, 0, 380 #endif 381 }; 382 env->regs[0] = entry_point; 383 cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0)); 384 } 385 } else { 386 if (flash) { 387 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash); 388 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io)); 389 390 memory_region_init_alias(flash_io, NULL, "lx60.flash", 391 flash_mr, board->flash_boot_base, 392 board->flash_size - board->flash_boot_base < 0x02000000 ? 393 board->flash_size - board->flash_boot_base : 0x02000000); 394 memory_region_add_subregion(system_memory, 0xfe000000, 395 flash_io); 396 } 397 } 398 } 399 400 static void xtensa_lx60_init(MachineState *machine) 401 { 402 static const LxBoardDesc lx60_board = { 403 .flash_base = 0x08000000, 404 .flash_size = 0x00400000, 405 .flash_sector_size = 0x10000, 406 .sram_size = 0x20000, 407 }; 408 lx_init(&lx60_board, machine); 409 } 410 411 static void xtensa_lx200_init(MachineState *machine) 412 { 413 static const LxBoardDesc lx200_board = { 414 .flash_base = 0x08000000, 415 .flash_size = 0x01000000, 416 .flash_sector_size = 0x20000, 417 .sram_size = 0x2000000, 418 }; 419 lx_init(&lx200_board, machine); 420 } 421 422 static void xtensa_ml605_init(MachineState *machine) 423 { 424 static const LxBoardDesc ml605_board = { 425 .flash_base = 0x08000000, 426 .flash_size = 0x01000000, 427 .flash_sector_size = 0x20000, 428 .sram_size = 0x2000000, 429 }; 430 lx_init(&ml605_board, machine); 431 } 432 433 static void xtensa_kc705_init(MachineState *machine) 434 { 435 static const LxBoardDesc kc705_board = { 436 .flash_base = 0x00000000, 437 .flash_size = 0x08000000, 438 .flash_boot_base = 0x06000000, 439 .flash_sector_size = 0x20000, 440 .sram_size = 0x2000000, 441 }; 442 lx_init(&kc705_board, machine); 443 } 444 445 static void xtensa_lx60_class_init(ObjectClass *oc, void *data) 446 { 447 MachineClass *mc = MACHINE_CLASS(oc); 448 449 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 450 mc->init = xtensa_lx60_init; 451 mc->max_cpus = 4; 452 } 453 454 static const TypeInfo xtensa_lx60_type = { 455 .name = MACHINE_TYPE_NAME("lx60"), 456 .parent = TYPE_MACHINE, 457 .class_init = xtensa_lx60_class_init, 458 }; 459 460 static void xtensa_lx200_class_init(ObjectClass *oc, void *data) 461 { 462 MachineClass *mc = MACHINE_CLASS(oc); 463 464 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 465 mc->init = xtensa_lx200_init; 466 mc->max_cpus = 4; 467 } 468 469 static const TypeInfo xtensa_lx200_type = { 470 .name = MACHINE_TYPE_NAME("lx200"), 471 .parent = TYPE_MACHINE, 472 .class_init = xtensa_lx200_class_init, 473 }; 474 475 static void xtensa_ml605_class_init(ObjectClass *oc, void *data) 476 { 477 MachineClass *mc = MACHINE_CLASS(oc); 478 479 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 480 mc->init = xtensa_ml605_init; 481 mc->max_cpus = 4; 482 } 483 484 static const TypeInfo xtensa_ml605_type = { 485 .name = MACHINE_TYPE_NAME("ml605"), 486 .parent = TYPE_MACHINE, 487 .class_init = xtensa_ml605_class_init, 488 }; 489 490 static void xtensa_kc705_class_init(ObjectClass *oc, void *data) 491 { 492 MachineClass *mc = MACHINE_CLASS(oc); 493 494 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 495 mc->init = xtensa_kc705_init; 496 mc->max_cpus = 4; 497 } 498 499 static const TypeInfo xtensa_kc705_type = { 500 .name = MACHINE_TYPE_NAME("kc705"), 501 .parent = TYPE_MACHINE, 502 .class_init = xtensa_kc705_class_init, 503 }; 504 505 static void xtensa_lx_machines_init(void) 506 { 507 type_register_static(&xtensa_lx60_type); 508 type_register_static(&xtensa_lx200_type); 509 type_register_static(&xtensa_ml605_type); 510 type_register_static(&xtensa_kc705_type); 511 } 512 513 machine_init(xtensa_lx_machines_init) 514