xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 9c4218e9)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "sysemu/sysemu.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "elf.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "hw/char/serial.h"
36 #include "net/net.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/flash.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/char.h"
41 #include "sysemu/device_tree.h"
42 #include "qemu/error-report.h"
43 #include "bootparam.h"
44 
45 typedef struct LxBoardDesc {
46     hwaddr flash_base;
47     size_t flash_size;
48     size_t flash_boot_base;
49     size_t flash_sector_size;
50     size_t sram_size;
51 } LxBoardDesc;
52 
53 typedef struct Lx60FpgaState {
54     MemoryRegion iomem;
55     uint32_t leds;
56     uint32_t switches;
57 } Lx60FpgaState;
58 
59 static void lx60_fpga_reset(void *opaque)
60 {
61     Lx60FpgaState *s = opaque;
62 
63     s->leds = 0;
64     s->switches = 0;
65 }
66 
67 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
68         unsigned size)
69 {
70     Lx60FpgaState *s = opaque;
71 
72     switch (addr) {
73     case 0x0: /*build date code*/
74         return 0x09272011;
75 
76     case 0x4: /*processor clock frequency, Hz*/
77         return 10000000;
78 
79     case 0x8: /*LEDs (off = 0, on = 1)*/
80         return s->leds;
81 
82     case 0xc: /*DIP switches (off = 0, on = 1)*/
83         return s->switches;
84     }
85     return 0;
86 }
87 
88 static void lx60_fpga_write(void *opaque, hwaddr addr,
89         uint64_t val, unsigned size)
90 {
91     Lx60FpgaState *s = opaque;
92 
93     switch (addr) {
94     case 0x8: /*LEDs (off = 0, on = 1)*/
95         s->leds = val;
96         break;
97 
98     case 0x10: /*board reset*/
99         if (val == 0xdead) {
100             qemu_system_reset_request();
101         }
102         break;
103     }
104 }
105 
106 static const MemoryRegionOps lx60_fpga_ops = {
107     .read = lx60_fpga_read,
108     .write = lx60_fpga_write,
109     .endianness = DEVICE_NATIVE_ENDIAN,
110 };
111 
112 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
113         hwaddr base)
114 {
115     Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
116 
117     memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
118             "lx60.fpga", 0x10000);
119     memory_region_add_subregion(address_space, base, &s->iomem);
120     lx60_fpga_reset(s);
121     qemu_register_reset(lx60_fpga_reset, s);
122     return s;
123 }
124 
125 static void lx60_net_init(MemoryRegion *address_space,
126         hwaddr base,
127         hwaddr descriptors,
128         hwaddr buffers,
129         qemu_irq irq, NICInfo *nd)
130 {
131     DeviceState *dev;
132     SysBusDevice *s;
133     MemoryRegion *ram;
134 
135     dev = qdev_create(NULL, "open_eth");
136     qdev_set_nic_properties(dev, nd);
137     qdev_init_nofail(dev);
138 
139     s = SYS_BUS_DEVICE(dev);
140     sysbus_connect_irq(s, 0, irq);
141     memory_region_add_subregion(address_space, base,
142             sysbus_mmio_get_region(s, 0));
143     memory_region_add_subregion(address_space, descriptors,
144             sysbus_mmio_get_region(s, 1));
145 
146     ram = g_malloc(sizeof(*ram));
147     memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
148                            &error_fatal);
149     vmstate_register_ram_global(ram);
150     memory_region_add_subregion(address_space, buffers, ram);
151 }
152 
153 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
154                                    const LxBoardDesc *board,
155                                    DriveInfo *dinfo, int be)
156 {
157     SysBusDevice *s;
158     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
159 
160     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
161                         &error_abort);
162     qdev_prop_set_uint32(dev, "num-blocks",
163                          board->flash_size / board->flash_sector_size);
164     qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
165     qdev_prop_set_uint8(dev, "width", 4);
166     qdev_prop_set_bit(dev, "big-endian", be);
167     qdev_prop_set_string(dev, "name", "lx60.io.flash");
168     qdev_init_nofail(dev);
169     s = SYS_BUS_DEVICE(dev);
170     memory_region_add_subregion(address_space, board->flash_base,
171                                 sysbus_mmio_get_region(s, 0));
172     return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
173 }
174 
175 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
176 {
177     XtensaCPU *cpu = opaque;
178 
179     return cpu_get_phys_page_debug(CPU(cpu), addr);
180 }
181 
182 static void lx60_reset(void *opaque)
183 {
184     XtensaCPU *cpu = opaque;
185 
186     cpu_reset(CPU(cpu));
187 }
188 
189 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
190         unsigned size)
191 {
192     return 0;
193 }
194 
195 static void lx60_io_write(void *opaque, hwaddr addr,
196         uint64_t val, unsigned size)
197 {
198 }
199 
200 static const MemoryRegionOps lx60_io_ops = {
201     .read = lx60_io_read,
202     .write = lx60_io_write,
203     .endianness = DEVICE_NATIVE_ENDIAN,
204 };
205 
206 static void lx_init(const LxBoardDesc *board, MachineState *machine)
207 {
208 #ifdef TARGET_WORDS_BIGENDIAN
209     int be = 1;
210 #else
211     int be = 0;
212 #endif
213     MemoryRegion *system_memory = get_system_memory();
214     XtensaCPU *cpu = NULL;
215     CPUXtensaState *env = NULL;
216     MemoryRegion *ram, *rom, *system_io;
217     DriveInfo *dinfo;
218     pflash_t *flash = NULL;
219     QemuOpts *machine_opts = qemu_get_machine_opts();
220     const char *cpu_model = machine->cpu_model;
221     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
222     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
223     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
224     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
225     int n;
226 
227     if (!cpu_model) {
228         cpu_model = XTENSA_DEFAULT_CPU_MODEL;
229     }
230 
231     for (n = 0; n < smp_cpus; n++) {
232         cpu = cpu_xtensa_init(cpu_model);
233         if (cpu == NULL) {
234             error_report("unable to find CPU definition '%s'",
235                          cpu_model);
236             exit(EXIT_FAILURE);
237         }
238         env = &cpu->env;
239 
240         env->sregs[PRID] = n;
241         qemu_register_reset(lx60_reset, cpu);
242         /* Need MMU initialized prior to ELF loading,
243          * so that ELF gets loaded into virtual addresses
244          */
245         cpu_reset(CPU(cpu));
246     }
247 
248     ram = g_malloc(sizeof(*ram));
249     memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
250                            &error_fatal);
251     vmstate_register_ram_global(ram);
252     memory_region_add_subregion(system_memory, 0, ram);
253 
254     system_io = g_malloc(sizeof(*system_io));
255     memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
256                           224 * 1024 * 1024);
257     memory_region_add_subregion(system_memory, 0xf0000000, system_io);
258     lx60_fpga_init(system_io, 0x0d020000);
259     if (nd_table[0].used) {
260         lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
261                 xtensa_get_extint(env, 1), nd_table);
262     }
263 
264     if (!serial_hds[0]) {
265         serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
266     }
267 
268     serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
269             115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
270 
271     dinfo = drive_get(IF_PFLASH, 0, 0);
272     if (dinfo) {
273         flash = xtfpga_flash_init(system_io, board, dinfo, be);
274     }
275 
276     /* Use presence of kernel file name as 'boot from SRAM' switch. */
277     if (kernel_filename) {
278         uint32_t entry_point = env->pc;
279         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
280         uint32_t tagptr = 0xfe000000 + board->sram_size;
281         uint32_t cur_tagptr;
282         BpMemInfo memory_location = {
283             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
284             .start = tswap32(0),
285             .end = tswap32(machine->ram_size),
286         };
287         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
288             machine->ram_size : 0x08000000;
289         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
290 
291         rom = g_malloc(sizeof(*rom));
292         memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
293                                &error_fatal);
294         vmstate_register_ram_global(rom);
295         memory_region_add_subregion(system_memory, 0xfe000000, rom);
296 
297         if (kernel_cmdline) {
298             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
299         }
300         if (dtb_filename) {
301             bp_size += get_tag_size(sizeof(uint32_t));
302         }
303         if (initrd_filename) {
304             bp_size += get_tag_size(sizeof(BpMemInfo));
305         }
306 
307         /* Put kernel bootparameters to the end of that SRAM */
308         tagptr = (tagptr - bp_size) & ~0xff;
309         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
310         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
311                              sizeof(memory_location), &memory_location);
312 
313         if (kernel_cmdline) {
314             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
315                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
316         }
317         if (dtb_filename) {
318             int fdt_size;
319             void *fdt = load_device_tree(dtb_filename, &fdt_size);
320             uint32_t dtb_addr = tswap32(cur_lowmem);
321 
322             if (!fdt) {
323                 error_report("could not load DTB '%s'", dtb_filename);
324                 exit(EXIT_FAILURE);
325             }
326 
327             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
328             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
329                                  sizeof(dtb_addr), &dtb_addr);
330             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
331         }
332         if (initrd_filename) {
333             BpMemInfo initrd_location = { 0 };
334             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
335                                            lowmem_end - cur_lowmem);
336 
337             if (initrd_size < 0) {
338                 initrd_size = load_image_targphys(initrd_filename,
339                                                   cur_lowmem,
340                                                   lowmem_end - cur_lowmem);
341             }
342             if (initrd_size < 0) {
343                 error_report("could not load initrd '%s'", initrd_filename);
344                 exit(EXIT_FAILURE);
345             }
346             initrd_location.start = tswap32(cur_lowmem);
347             initrd_location.end = tswap32(cur_lowmem + initrd_size);
348             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
349                                  sizeof(initrd_location), &initrd_location);
350             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
351         }
352         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
353         env->regs[2] = tagptr;
354 
355         uint64_t elf_entry;
356         uint64_t elf_lowaddr;
357         int success = load_elf(kernel_filename, translate_phys_addr, cpu,
358                 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0);
359         if (success > 0) {
360             entry_point = elf_entry;
361         } else {
362             hwaddr ep;
363             int is_linux;
364             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
365                                   translate_phys_addr, cpu);
366             if (success > 0 && is_linux) {
367                 entry_point = ep;
368             } else {
369                 error_report("could not load kernel '%s'",
370                              kernel_filename);
371                 exit(EXIT_FAILURE);
372             }
373         }
374         if (entry_point != env->pc) {
375             static const uint8_t jx_a0[] = {
376 #ifdef TARGET_WORDS_BIGENDIAN
377                 0x0a, 0, 0,
378 #else
379                 0xa0, 0, 0,
380 #endif
381             };
382             env->regs[0] = entry_point;
383             cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
384         }
385     } else {
386         if (flash) {
387             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
388             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
389 
390             memory_region_init_alias(flash_io, NULL, "lx60.flash",
391                     flash_mr, board->flash_boot_base,
392                     board->flash_size - board->flash_boot_base < 0x02000000 ?
393                     board->flash_size - board->flash_boot_base : 0x02000000);
394             memory_region_add_subregion(system_memory, 0xfe000000,
395                     flash_io);
396         }
397     }
398 }
399 
400 static void xtensa_lx60_init(MachineState *machine)
401 {
402     static const LxBoardDesc lx60_board = {
403         .flash_base = 0x08000000,
404         .flash_size = 0x00400000,
405         .flash_sector_size = 0x10000,
406         .sram_size = 0x20000,
407     };
408     lx_init(&lx60_board, machine);
409 }
410 
411 static void xtensa_lx200_init(MachineState *machine)
412 {
413     static const LxBoardDesc lx200_board = {
414         .flash_base = 0x08000000,
415         .flash_size = 0x01000000,
416         .flash_sector_size = 0x20000,
417         .sram_size = 0x2000000,
418     };
419     lx_init(&lx200_board, machine);
420 }
421 
422 static void xtensa_ml605_init(MachineState *machine)
423 {
424     static const LxBoardDesc ml605_board = {
425         .flash_base = 0x08000000,
426         .flash_size = 0x01000000,
427         .flash_sector_size = 0x20000,
428         .sram_size = 0x2000000,
429     };
430     lx_init(&ml605_board, machine);
431 }
432 
433 static void xtensa_kc705_init(MachineState *machine)
434 {
435     static const LxBoardDesc kc705_board = {
436         .flash_base = 0x00000000,
437         .flash_size = 0x08000000,
438         .flash_boot_base = 0x06000000,
439         .flash_sector_size = 0x20000,
440         .sram_size = 0x2000000,
441     };
442     lx_init(&kc705_board, machine);
443 }
444 
445 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
446 {
447     MachineClass *mc = MACHINE_CLASS(oc);
448 
449     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
450     mc->init = xtensa_lx60_init;
451     mc->max_cpus = 4;
452 }
453 
454 static const TypeInfo xtensa_lx60_type = {
455     .name = MACHINE_TYPE_NAME("lx60"),
456     .parent = TYPE_MACHINE,
457     .class_init = xtensa_lx60_class_init,
458 };
459 
460 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
461 {
462     MachineClass *mc = MACHINE_CLASS(oc);
463 
464     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
465     mc->init = xtensa_lx200_init;
466     mc->max_cpus = 4;
467 }
468 
469 static const TypeInfo xtensa_lx200_type = {
470     .name = MACHINE_TYPE_NAME("lx200"),
471     .parent = TYPE_MACHINE,
472     .class_init = xtensa_lx200_class_init,
473 };
474 
475 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
476 {
477     MachineClass *mc = MACHINE_CLASS(oc);
478 
479     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
480     mc->init = xtensa_ml605_init;
481     mc->max_cpus = 4;
482 }
483 
484 static const TypeInfo xtensa_ml605_type = {
485     .name = MACHINE_TYPE_NAME("ml605"),
486     .parent = TYPE_MACHINE,
487     .class_init = xtensa_ml605_class_init,
488 };
489 
490 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
491 {
492     MachineClass *mc = MACHINE_CLASS(oc);
493 
494     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
495     mc->init = xtensa_kc705_init;
496     mc->max_cpus = 4;
497 }
498 
499 static const TypeInfo xtensa_kc705_type = {
500     .name = MACHINE_TYPE_NAME("kc705"),
501     .parent = TYPE_MACHINE,
502     .class_init = xtensa_kc705_class_init,
503 };
504 
505 static void xtensa_lx_machines_init(void)
506 {
507     type_register_static(&xtensa_lx60_type);
508     type_register_static(&xtensa_lx200_type);
509     type_register_static(&xtensa_ml605_type);
510     type_register_static(&xtensa_kc705_type);
511 }
512 
513 machine_init(xtensa_lx_machines_init)
514