xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 8f2aff64)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "exec/address-spaces.h"
39 #include "hw/char/serial.h"
40 #include "net/net.h"
41 #include "hw/sysbus.h"
42 #include "hw/block/flash.h"
43 #include "chardev/char.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/reset.h"
46 #include "sysemu/runstate.h"
47 #include "qemu/error-report.h"
48 #include "qemu/option.h"
49 #include "bootparam.h"
50 #include "xtensa_memory.h"
51 #include "hw/xtensa/mx_pic.h"
52 #include "migration/vmstate.h"
53 
54 typedef struct XtfpgaFlashDesc {
55     hwaddr base;
56     size_t size;
57     size_t boot_base;
58     size_t sector_size;
59 } XtfpgaFlashDesc;
60 
61 typedef struct XtfpgaBoardDesc {
62     const XtfpgaFlashDesc *flash;
63     size_t sram_size;
64     const hwaddr *io;
65 } XtfpgaBoardDesc;
66 
67 typedef struct XtfpgaFpgaState {
68     MemoryRegion iomem;
69     uint32_t freq;
70     uint32_t leds;
71     uint32_t switches;
72 } XtfpgaFpgaState;
73 
74 static void xtfpga_fpga_reset(void *opaque)
75 {
76     XtfpgaFpgaState *s = opaque;
77 
78     s->leds = 0;
79     s->switches = 0;
80 }
81 
82 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
83         unsigned size)
84 {
85     XtfpgaFpgaState *s = opaque;
86 
87     switch (addr) {
88     case 0x0: /*build date code*/
89         return 0x09272011;
90 
91     case 0x4: /*processor clock frequency, Hz*/
92         return s->freq;
93 
94     case 0x8: /*LEDs (off = 0, on = 1)*/
95         return s->leds;
96 
97     case 0xc: /*DIP switches (off = 0, on = 1)*/
98         return s->switches;
99     }
100     return 0;
101 }
102 
103 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
104         uint64_t val, unsigned size)
105 {
106     XtfpgaFpgaState *s = opaque;
107 
108     switch (addr) {
109     case 0x8: /*LEDs (off = 0, on = 1)*/
110         s->leds = val;
111         break;
112 
113     case 0x10: /*board reset*/
114         if (val == 0xdead) {
115             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
116         }
117         break;
118     }
119 }
120 
121 static const MemoryRegionOps xtfpga_fpga_ops = {
122     .read = xtfpga_fpga_read,
123     .write = xtfpga_fpga_write,
124     .endianness = DEVICE_NATIVE_ENDIAN,
125 };
126 
127 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
128                                          hwaddr base, uint32_t freq)
129 {
130     XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
131 
132     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
133                           "xtfpga.fpga", 0x10000);
134     memory_region_add_subregion(address_space, base, &s->iomem);
135     s->freq = freq;
136     xtfpga_fpga_reset(s);
137     qemu_register_reset(xtfpga_fpga_reset, s);
138     return s;
139 }
140 
141 static void xtfpga_net_init(MemoryRegion *address_space,
142         hwaddr base,
143         hwaddr descriptors,
144         hwaddr buffers,
145         qemu_irq irq, NICInfo *nd)
146 {
147     DeviceState *dev;
148     SysBusDevice *s;
149     MemoryRegion *ram;
150 
151     dev = qdev_new("open_eth");
152     qdev_set_nic_properties(dev, nd);
153 
154     s = SYS_BUS_DEVICE(dev);
155     sysbus_realize_and_unref(s, &error_fatal);
156     sysbus_connect_irq(s, 0, irq);
157     memory_region_add_subregion(address_space, base,
158             sysbus_mmio_get_region(s, 0));
159     memory_region_add_subregion(address_space, descriptors,
160             sysbus_mmio_get_region(s, 1));
161 
162     ram = g_malloc(sizeof(*ram));
163     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
164                            &error_fatal);
165     vmstate_register_ram_global(ram);
166     memory_region_add_subregion(address_space, buffers, ram);
167 }
168 
169 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
170                                       const XtfpgaBoardDesc *board,
171                                       DriveInfo *dinfo, int be)
172 {
173     SysBusDevice *s;
174     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
175 
176     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
177     qdev_prop_set_uint32(dev, "num-blocks",
178                          board->flash->size / board->flash->sector_size);
179     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
180     qdev_prop_set_uint8(dev, "width", 2);
181     qdev_prop_set_bit(dev, "big-endian", be);
182     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
183     s = SYS_BUS_DEVICE(dev);
184     sysbus_realize_and_unref(s, &error_fatal);
185     memory_region_add_subregion(address_space, board->flash->base,
186                                 sysbus_mmio_get_region(s, 0));
187     return PFLASH_CFI01(dev);
188 }
189 
190 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
191 {
192     XtensaCPU *cpu = opaque;
193 
194     return cpu_get_phys_page_debug(CPU(cpu), addr);
195 }
196 
197 static void xtfpga_reset(void *opaque)
198 {
199     XtensaCPU *cpu = opaque;
200 
201     cpu_reset(CPU(cpu));
202 }
203 
204 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
205         unsigned size)
206 {
207     return 0;
208 }
209 
210 static void xtfpga_io_write(void *opaque, hwaddr addr,
211         uint64_t val, unsigned size)
212 {
213 }
214 
215 static const MemoryRegionOps xtfpga_io_ops = {
216     .read = xtfpga_io_read,
217     .write = xtfpga_io_write,
218     .endianness = DEVICE_NATIVE_ENDIAN,
219 };
220 
221 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
222 {
223 #ifdef TARGET_WORDS_BIGENDIAN
224     int be = 1;
225 #else
226     int be = 0;
227 #endif
228     MemoryRegion *system_memory = get_system_memory();
229     XtensaCPU *cpu = NULL;
230     CPUXtensaState *env = NULL;
231     MemoryRegion *system_io;
232     XtensaMxPic *mx_pic = NULL;
233     qemu_irq *extints;
234     DriveInfo *dinfo;
235     PFlashCFI01 *flash = NULL;
236     const char *kernel_filename = machine->kernel_filename;
237     const char *kernel_cmdline = machine->kernel_cmdline;
238     const char *dtb_filename = machine->dtb;
239     const char *initrd_filename = machine->initrd_filename;
240     const unsigned system_io_size = 224 * MiB;
241     uint32_t freq = 10000000;
242     int n;
243     unsigned int smp_cpus = machine->smp.cpus;
244 
245     if (smp_cpus > 1) {
246         mx_pic = xtensa_mx_pic_init(31);
247         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
248     }
249     for (n = 0; n < smp_cpus; n++) {
250         CPUXtensaState *cenv = NULL;
251 
252         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
253         cenv = &cpu->env;
254         if (!env) {
255             env = cenv;
256             freq = env->config->clock_freq_khz * 1000;
257         }
258 
259         if (mx_pic) {
260             MemoryRegion *mx_eri;
261 
262             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
263                                                 xtensa_get_extints(cenv),
264                                                 xtensa_get_runstall(cenv));
265             memory_region_add_subregion(xtensa_get_er_region(cenv),
266                                         0, mx_eri);
267         }
268         cenv->sregs[PRID] = n;
269         xtensa_select_static_vectors(cenv, n != 0);
270         qemu_register_reset(xtfpga_reset, cpu);
271         /* Need MMU initialized prior to ELF loading,
272          * so that ELF gets loaded into virtual addresses
273          */
274         cpu_reset(CPU(cpu));
275     }
276     if (smp_cpus > 1) {
277         extints = xtensa_mx_pic_get_extints(mx_pic);
278     } else {
279         extints = xtensa_get_extints(env);
280     }
281 
282     if (env) {
283         XtensaMemory sysram = env->config->sysram;
284 
285         sysram.location[0].size = machine->ram_size;
286         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
287                                      system_memory);
288         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
289                                      system_memory);
290         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
291                                      system_memory);
292         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
293                                      system_memory);
294         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
295                                      system_memory);
296     }
297 
298     system_io = g_malloc(sizeof(*system_io));
299     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
300                           system_io_size);
301     memory_region_add_subregion(system_memory, board->io[0], system_io);
302     if (board->io[1]) {
303         MemoryRegion *io = g_malloc(sizeof(*io));
304 
305         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
306                                  system_io, 0, system_io_size);
307         memory_region_add_subregion(system_memory, board->io[1], io);
308     }
309     xtfpga_fpga_init(system_io, 0x0d020000, freq);
310     if (nd_table[0].used) {
311         xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
312                         extints[1], nd_table);
313     }
314 
315     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
316                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
317 
318     dinfo = drive_get(IF_PFLASH, 0, 0);
319     if (dinfo) {
320         flash = xtfpga_flash_init(system_io, board, dinfo, be);
321     }
322 
323     /* Use presence of kernel file name as 'boot from SRAM' switch. */
324     if (kernel_filename) {
325         uint32_t entry_point = env->pc;
326         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
327         uint32_t tagptr = env->config->sysrom.location[0].addr +
328             board->sram_size;
329         uint32_t cur_tagptr;
330         BpMemInfo memory_location = {
331             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
332             .start = tswap32(env->config->sysram.location[0].addr),
333             .end = tswap32(env->config->sysram.location[0].addr +
334                            machine->ram_size),
335         };
336         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
337             machine->ram_size : 0x08000000;
338         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
339 
340         lowmem_end += env->config->sysram.location[0].addr;
341         cur_lowmem += env->config->sysram.location[0].addr;
342 
343         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
344                                      system_memory);
345 
346         if (kernel_cmdline) {
347             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
348         }
349         if (dtb_filename) {
350             bp_size += get_tag_size(sizeof(uint32_t));
351         }
352         if (initrd_filename) {
353             bp_size += get_tag_size(sizeof(BpMemInfo));
354         }
355 
356         /* Put kernel bootparameters to the end of that SRAM */
357         tagptr = (tagptr - bp_size) & ~0xff;
358         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
359         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
360                              sizeof(memory_location), &memory_location);
361 
362         if (kernel_cmdline) {
363             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
364                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
365         }
366 #ifdef CONFIG_FDT
367         if (dtb_filename) {
368             int fdt_size;
369             void *fdt = load_device_tree(dtb_filename, &fdt_size);
370             uint32_t dtb_addr = tswap32(cur_lowmem);
371 
372             if (!fdt) {
373                 error_report("could not load DTB '%s'", dtb_filename);
374                 exit(EXIT_FAILURE);
375             }
376 
377             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
378             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
379                                  sizeof(dtb_addr), &dtb_addr);
380             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
381             g_free(fdt);
382         }
383 #else
384         if (dtb_filename) {
385             error_report("could not load DTB '%s': "
386                          "FDT support is not configured in QEMU",
387                          dtb_filename);
388             exit(EXIT_FAILURE);
389         }
390 #endif
391         if (initrd_filename) {
392             BpMemInfo initrd_location = { 0 };
393             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
394                                            lowmem_end - cur_lowmem);
395 
396             if (initrd_size < 0) {
397                 initrd_size = load_image_targphys(initrd_filename,
398                                                   cur_lowmem,
399                                                   lowmem_end - cur_lowmem);
400             }
401             if (initrd_size < 0) {
402                 error_report("could not load initrd '%s'", initrd_filename);
403                 exit(EXIT_FAILURE);
404             }
405             initrd_location.start = tswap32(cur_lowmem);
406             initrd_location.end = tswap32(cur_lowmem + initrd_size);
407             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
408                                  sizeof(initrd_location), &initrd_location);
409             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
410         }
411         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
412         env->regs[2] = tagptr;
413 
414         uint64_t elf_entry;
415         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
416                 &elf_entry, NULL, NULL, NULL, be, EM_XTENSA, 0, 0);
417         if (success > 0) {
418             entry_point = elf_entry;
419         } else {
420             hwaddr ep;
421             int is_linux;
422             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
423                                   translate_phys_addr, cpu);
424             if (success > 0 && is_linux) {
425                 entry_point = ep;
426             } else {
427                 error_report("could not load kernel '%s'",
428                              kernel_filename);
429                 exit(EXIT_FAILURE);
430             }
431         }
432         if (entry_point != env->pc) {
433             uint8_t boot[] = {
434 #ifdef TARGET_WORDS_BIGENDIAN
435                 0x60, 0x00, 0x08,       /* j    1f */
436                 0x00,                   /* .literal_position */
437                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
438                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
439                                         /* 1: */
440                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
441                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
442                 0x0a, 0x00, 0x00,       /* jx   a0 */
443 #else
444                 0x06, 0x02, 0x00,       /* j    1f */
445                 0x00,                   /* .literal_position */
446                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
447                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
448                                         /* 1: */
449                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
450                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
451                 0xa0, 0x00, 0x00,       /* jx   a0 */
452 #endif
453             };
454             uint32_t entry_pc = tswap32(entry_point);
455             uint32_t entry_a2 = tswap32(tagptr);
456 
457             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
458             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
459             cpu_physical_memory_write(env->pc, boot, sizeof(boot));
460         }
461     } else {
462         if (flash) {
463             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
464             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
465             uint32_t size = env->config->sysrom.location[0].size;
466 
467             if (board->flash->size - board->flash->boot_base < size) {
468                 size = board->flash->size - board->flash->boot_base;
469             }
470 
471             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
472                                      flash_mr, board->flash->boot_base, size);
473             memory_region_add_subregion(system_memory,
474                                         env->config->sysrom.location[0].addr,
475                                         flash_io);
476         } else {
477             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
478                                          system_memory);
479         }
480     }
481 }
482 
483 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
484 
485 static const hwaddr xtfpga_mmu_io[2] = {
486     0xf0000000,
487 };
488 
489 static const hwaddr xtfpga_nommu_io[2] = {
490     0x90000000,
491     0x70000000,
492 };
493 
494 static const XtfpgaFlashDesc lx60_flash = {
495     .base = 0x08000000,
496     .size = 0x00400000,
497     .sector_size = 0x10000,
498 };
499 
500 static void xtfpga_lx60_init(MachineState *machine)
501 {
502     static const XtfpgaBoardDesc lx60_board = {
503         .flash = &lx60_flash,
504         .sram_size = 0x20000,
505         .io = xtfpga_mmu_io,
506     };
507     xtfpga_init(&lx60_board, machine);
508 }
509 
510 static void xtfpga_lx60_nommu_init(MachineState *machine)
511 {
512     static const XtfpgaBoardDesc lx60_board = {
513         .flash = &lx60_flash,
514         .sram_size = 0x20000,
515         .io = xtfpga_nommu_io,
516     };
517     xtfpga_init(&lx60_board, machine);
518 }
519 
520 static const XtfpgaFlashDesc lx200_flash = {
521     .base = 0x08000000,
522     .size = 0x01000000,
523     .sector_size = 0x20000,
524 };
525 
526 static void xtfpga_lx200_init(MachineState *machine)
527 {
528     static const XtfpgaBoardDesc lx200_board = {
529         .flash = &lx200_flash,
530         .sram_size = 0x2000000,
531         .io = xtfpga_mmu_io,
532     };
533     xtfpga_init(&lx200_board, machine);
534 }
535 
536 static void xtfpga_lx200_nommu_init(MachineState *machine)
537 {
538     static const XtfpgaBoardDesc lx200_board = {
539         .flash = &lx200_flash,
540         .sram_size = 0x2000000,
541         .io = xtfpga_nommu_io,
542     };
543     xtfpga_init(&lx200_board, machine);
544 }
545 
546 static const XtfpgaFlashDesc ml605_flash = {
547     .base = 0x08000000,
548     .size = 0x01000000,
549     .sector_size = 0x20000,
550 };
551 
552 static void xtfpga_ml605_init(MachineState *machine)
553 {
554     static const XtfpgaBoardDesc ml605_board = {
555         .flash = &ml605_flash,
556         .sram_size = 0x2000000,
557         .io = xtfpga_mmu_io,
558     };
559     xtfpga_init(&ml605_board, machine);
560 }
561 
562 static void xtfpga_ml605_nommu_init(MachineState *machine)
563 {
564     static const XtfpgaBoardDesc ml605_board = {
565         .flash = &ml605_flash,
566         .sram_size = 0x2000000,
567         .io = xtfpga_nommu_io,
568     };
569     xtfpga_init(&ml605_board, machine);
570 }
571 
572 static const XtfpgaFlashDesc kc705_flash = {
573     .base = 0x00000000,
574     .size = 0x08000000,
575     .boot_base = 0x06000000,
576     .sector_size = 0x20000,
577 };
578 
579 static void xtfpga_kc705_init(MachineState *machine)
580 {
581     static const XtfpgaBoardDesc kc705_board = {
582         .flash = &kc705_flash,
583         .sram_size = 0x2000000,
584         .io = xtfpga_mmu_io,
585     };
586     xtfpga_init(&kc705_board, machine);
587 }
588 
589 static void xtfpga_kc705_nommu_init(MachineState *machine)
590 {
591     static const XtfpgaBoardDesc kc705_board = {
592         .flash = &kc705_flash,
593         .sram_size = 0x2000000,
594         .io = xtfpga_nommu_io,
595     };
596     xtfpga_init(&kc705_board, machine);
597 }
598 
599 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
600 {
601     MachineClass *mc = MACHINE_CLASS(oc);
602 
603     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
604     mc->init = xtfpga_lx60_init;
605     mc->max_cpus = 32;
606     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
607     mc->default_ram_size = 64 * MiB;
608 }
609 
610 static const TypeInfo xtfpga_lx60_type = {
611     .name = MACHINE_TYPE_NAME("lx60"),
612     .parent = TYPE_MACHINE,
613     .class_init = xtfpga_lx60_class_init,
614 };
615 
616 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
617 {
618     MachineClass *mc = MACHINE_CLASS(oc);
619 
620     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
621     mc->init = xtfpga_lx60_nommu_init;
622     mc->max_cpus = 32;
623     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
624     mc->default_ram_size = 64 * MiB;
625 }
626 
627 static const TypeInfo xtfpga_lx60_nommu_type = {
628     .name = MACHINE_TYPE_NAME("lx60-nommu"),
629     .parent = TYPE_MACHINE,
630     .class_init = xtfpga_lx60_nommu_class_init,
631 };
632 
633 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
634 {
635     MachineClass *mc = MACHINE_CLASS(oc);
636 
637     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
638     mc->init = xtfpga_lx200_init;
639     mc->max_cpus = 32;
640     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
641     mc->default_ram_size = 96 * MiB;
642 }
643 
644 static const TypeInfo xtfpga_lx200_type = {
645     .name = MACHINE_TYPE_NAME("lx200"),
646     .parent = TYPE_MACHINE,
647     .class_init = xtfpga_lx200_class_init,
648 };
649 
650 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
651 {
652     MachineClass *mc = MACHINE_CLASS(oc);
653 
654     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
655     mc->init = xtfpga_lx200_nommu_init;
656     mc->max_cpus = 32;
657     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
658     mc->default_ram_size = 96 * MiB;
659 }
660 
661 static const TypeInfo xtfpga_lx200_nommu_type = {
662     .name = MACHINE_TYPE_NAME("lx200-nommu"),
663     .parent = TYPE_MACHINE,
664     .class_init = xtfpga_lx200_nommu_class_init,
665 };
666 
667 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
668 {
669     MachineClass *mc = MACHINE_CLASS(oc);
670 
671     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
672     mc->init = xtfpga_ml605_init;
673     mc->max_cpus = 32;
674     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
675     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
676 }
677 
678 static const TypeInfo xtfpga_ml605_type = {
679     .name = MACHINE_TYPE_NAME("ml605"),
680     .parent = TYPE_MACHINE,
681     .class_init = xtfpga_ml605_class_init,
682 };
683 
684 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
685 {
686     MachineClass *mc = MACHINE_CLASS(oc);
687 
688     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
689     mc->init = xtfpga_ml605_nommu_init;
690     mc->max_cpus = 32;
691     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
692     mc->default_ram_size = 256 * MiB;
693 }
694 
695 static const TypeInfo xtfpga_ml605_nommu_type = {
696     .name = MACHINE_TYPE_NAME("ml605-nommu"),
697     .parent = TYPE_MACHINE,
698     .class_init = xtfpga_ml605_nommu_class_init,
699 };
700 
701 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
702 {
703     MachineClass *mc = MACHINE_CLASS(oc);
704 
705     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
706     mc->init = xtfpga_kc705_init;
707     mc->max_cpus = 32;
708     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
709     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
710 }
711 
712 static const TypeInfo xtfpga_kc705_type = {
713     .name = MACHINE_TYPE_NAME("kc705"),
714     .parent = TYPE_MACHINE,
715     .class_init = xtfpga_kc705_class_init,
716 };
717 
718 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
719 {
720     MachineClass *mc = MACHINE_CLASS(oc);
721 
722     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
723     mc->init = xtfpga_kc705_nommu_init;
724     mc->max_cpus = 32;
725     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
726     mc->default_ram_size = 256 * MiB;
727 }
728 
729 static const TypeInfo xtfpga_kc705_nommu_type = {
730     .name = MACHINE_TYPE_NAME("kc705-nommu"),
731     .parent = TYPE_MACHINE,
732     .class_init = xtfpga_kc705_nommu_class_init,
733 };
734 
735 static void xtfpga_machines_init(void)
736 {
737     type_register_static(&xtfpga_lx60_type);
738     type_register_static(&xtfpga_lx200_type);
739     type_register_static(&xtfpga_ml605_type);
740     type_register_static(&xtfpga_kc705_type);
741     type_register_static(&xtfpga_lx60_nommu_type);
742     type_register_static(&xtfpga_lx200_nommu_type);
743     type_register_static(&xtfpga_ml605_nommu_type);
744     type_register_static(&xtfpga_kc705_nommu_type);
745 }
746 
747 type_init(xtfpga_machines_init)
748