1 /* 2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * * Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * * Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * * Neither the name of the Open Source and Linux Lab nor the 13 * names of its contributors may be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include "qemu/osdep.h" 29 #include "qemu/units.h" 30 #include "qapi/error.h" 31 #include "cpu.h" 32 #include "sysemu/sysemu.h" 33 #include "hw/boards.h" 34 #include "hw/loader.h" 35 #include "hw/qdev-properties.h" 36 #include "elf.h" 37 #include "exec/memory.h" 38 #include "hw/char/serial-mm.h" 39 #include "net/net.h" 40 #include "hw/sysbus.h" 41 #include "hw/block/flash.h" 42 #include "chardev/char.h" 43 #include "sysemu/device_tree.h" 44 #include "sysemu/reset.h" 45 #include "sysemu/runstate.h" 46 #include "qemu/error-report.h" 47 #include "qemu/option.h" 48 #include "bootparam.h" 49 #include "xtensa_memory.h" 50 #include "hw/xtensa/mx_pic.h" 51 #include "migration/vmstate.h" 52 53 typedef struct XtfpgaFlashDesc { 54 hwaddr base; 55 size_t size; 56 size_t boot_base; 57 size_t sector_size; 58 } XtfpgaFlashDesc; 59 60 typedef struct XtfpgaBoardDesc { 61 const XtfpgaFlashDesc *flash; 62 size_t sram_size; 63 const hwaddr *io; 64 } XtfpgaBoardDesc; 65 66 typedef struct XtfpgaFpgaState { 67 MemoryRegion iomem; 68 uint32_t freq; 69 uint32_t leds; 70 uint32_t switches; 71 } XtfpgaFpgaState; 72 73 static void xtfpga_fpga_reset(void *opaque) 74 { 75 XtfpgaFpgaState *s = opaque; 76 77 s->leds = 0; 78 s->switches = 0; 79 } 80 81 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr, 82 unsigned size) 83 { 84 XtfpgaFpgaState *s = opaque; 85 86 switch (addr) { 87 case 0x0: /*build date code*/ 88 return 0x09272011; 89 90 case 0x4: /*processor clock frequency, Hz*/ 91 return s->freq; 92 93 case 0x8: /*LEDs (off = 0, on = 1)*/ 94 return s->leds; 95 96 case 0xc: /*DIP switches (off = 0, on = 1)*/ 97 return s->switches; 98 } 99 return 0; 100 } 101 102 static void xtfpga_fpga_write(void *opaque, hwaddr addr, 103 uint64_t val, unsigned size) 104 { 105 XtfpgaFpgaState *s = opaque; 106 107 switch (addr) { 108 case 0x8: /*LEDs (off = 0, on = 1)*/ 109 s->leds = val; 110 break; 111 112 case 0x10: /*board reset*/ 113 if (val == 0xdead) { 114 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 115 } 116 break; 117 } 118 } 119 120 static const MemoryRegionOps xtfpga_fpga_ops = { 121 .read = xtfpga_fpga_read, 122 .write = xtfpga_fpga_write, 123 .endianness = DEVICE_NATIVE_ENDIAN, 124 }; 125 126 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space, 127 hwaddr base, uint32_t freq) 128 { 129 XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1); 130 131 memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s, 132 "xtfpga.fpga", 0x10000); 133 memory_region_add_subregion(address_space, base, &s->iomem); 134 s->freq = freq; 135 xtfpga_fpga_reset(s); 136 qemu_register_reset(xtfpga_fpga_reset, s); 137 return s; 138 } 139 140 static void xtfpga_net_init(MemoryRegion *address_space, 141 hwaddr base, 142 hwaddr descriptors, 143 hwaddr buffers, 144 qemu_irq irq) 145 { 146 DeviceState *dev; 147 SysBusDevice *s; 148 MemoryRegion *ram; 149 150 dev = qemu_create_nic_device("open_eth", true, NULL); 151 if (!dev) { 152 return; 153 } 154 155 s = SYS_BUS_DEVICE(dev); 156 sysbus_realize_and_unref(s, &error_fatal); 157 sysbus_connect_irq(s, 0, irq); 158 memory_region_add_subregion(address_space, base, 159 sysbus_mmio_get_region(s, 0)); 160 memory_region_add_subregion(address_space, descriptors, 161 sysbus_mmio_get_region(s, 1)); 162 163 ram = g_malloc(sizeof(*ram)); 164 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB, 165 &error_fatal); 166 vmstate_register_ram_global(ram); 167 memory_region_add_subregion(address_space, buffers, ram); 168 } 169 170 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space, 171 const XtfpgaBoardDesc *board, 172 DriveInfo *dinfo, int be) 173 { 174 SysBusDevice *s; 175 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 176 177 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo)); 178 qdev_prop_set_uint32(dev, "num-blocks", 179 board->flash->size / board->flash->sector_size); 180 qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size); 181 qdev_prop_set_uint8(dev, "width", 2); 182 qdev_prop_set_bit(dev, "big-endian", be); 183 qdev_prop_set_string(dev, "name", "xtfpga.io.flash"); 184 s = SYS_BUS_DEVICE(dev); 185 sysbus_realize_and_unref(s, &error_fatal); 186 memory_region_add_subregion(address_space, board->flash->base, 187 sysbus_mmio_get_region(s, 0)); 188 return PFLASH_CFI01(dev); 189 } 190 191 static uint64_t translate_phys_addr(void *opaque, uint64_t addr) 192 { 193 XtensaCPU *cpu = opaque; 194 195 return cpu_get_phys_page_debug(CPU(cpu), addr); 196 } 197 198 static void xtfpga_reset(void *opaque) 199 { 200 XtensaCPU *cpu = opaque; 201 202 cpu_reset(CPU(cpu)); 203 } 204 205 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr, 206 unsigned size) 207 { 208 return 0; 209 } 210 211 static void xtfpga_io_write(void *opaque, hwaddr addr, 212 uint64_t val, unsigned size) 213 { 214 } 215 216 static const MemoryRegionOps xtfpga_io_ops = { 217 .read = xtfpga_io_read, 218 .write = xtfpga_io_write, 219 .endianness = DEVICE_NATIVE_ENDIAN, 220 }; 221 222 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine) 223 { 224 MemoryRegion *system_memory = get_system_memory(); 225 XtensaCPU *cpu = NULL; 226 CPUXtensaState *env = NULL; 227 MemoryRegion *system_io; 228 XtensaMxPic *mx_pic = NULL; 229 qemu_irq *extints; 230 DriveInfo *dinfo; 231 PFlashCFI01 *flash = NULL; 232 const char *kernel_filename = machine->kernel_filename; 233 const char *kernel_cmdline = machine->kernel_cmdline; 234 const char *dtb_filename = machine->dtb; 235 const char *initrd_filename = machine->initrd_filename; 236 const unsigned system_io_size = 224 * MiB; 237 uint32_t freq = 10000000; 238 int n; 239 unsigned int smp_cpus = machine->smp.cpus; 240 241 if (smp_cpus > 1) { 242 mx_pic = xtensa_mx_pic_init(31); 243 qemu_register_reset(xtensa_mx_pic_reset, mx_pic); 244 } 245 for (n = 0; n < smp_cpus; n++) { 246 CPUXtensaState *cenv = NULL; 247 248 cpu = XTENSA_CPU(cpu_create(machine->cpu_type)); 249 cenv = &cpu->env; 250 if (!env) { 251 env = cenv; 252 freq = env->config->clock_freq_khz * 1000; 253 } 254 255 if (mx_pic) { 256 MemoryRegion *mx_eri; 257 258 mx_eri = xtensa_mx_pic_register_cpu(mx_pic, 259 xtensa_get_extints(cenv), 260 xtensa_get_runstall(cenv)); 261 memory_region_add_subregion(xtensa_get_er_region(cenv), 262 0, mx_eri); 263 } 264 cenv->sregs[PRID] = n; 265 xtensa_select_static_vectors(cenv, n != 0); 266 qemu_register_reset(xtfpga_reset, cpu); 267 /* Need MMU initialized prior to ELF loading, 268 * so that ELF gets loaded into virtual addresses 269 */ 270 cpu_reset(CPU(cpu)); 271 } 272 if (smp_cpus > 1) { 273 extints = xtensa_mx_pic_get_extints(mx_pic); 274 } else { 275 extints = xtensa_get_extints(env); 276 } 277 278 if (env) { 279 XtensaMemory sysram = env->config->sysram; 280 281 sysram.location[0].size = machine->ram_size; 282 xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom", 283 system_memory); 284 xtensa_create_memory_regions(&env->config->instram, "xtensa.instram", 285 system_memory); 286 xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom", 287 system_memory); 288 xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram", 289 system_memory); 290 xtensa_create_memory_regions(&sysram, "xtensa.sysram", 291 system_memory); 292 } 293 294 system_io = g_malloc(sizeof(*system_io)); 295 memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io", 296 system_io_size); 297 memory_region_add_subregion(system_memory, board->io[0], system_io); 298 if (board->io[1]) { 299 MemoryRegion *io = g_malloc(sizeof(*io)); 300 301 memory_region_init_alias(io, NULL, "xtfpga.io.cached", 302 system_io, 0, system_io_size); 303 memory_region_add_subregion(system_memory, board->io[1], io); 304 } 305 xtfpga_fpga_init(system_io, 0x0d020000, freq); 306 xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, extints[1]); 307 308 serial_mm_init(system_io, 0x0d050020, 2, extints[0], 309 115200, serial_hd(0), DEVICE_NATIVE_ENDIAN); 310 311 dinfo = drive_get(IF_PFLASH, 0, 0); 312 if (dinfo) { 313 flash = xtfpga_flash_init(system_io, board, dinfo, TARGET_BIG_ENDIAN); 314 } 315 316 /* Use presence of kernel file name as 'boot from SRAM' switch. */ 317 if (kernel_filename) { 318 uint32_t entry_point = env->pc; 319 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */ 320 uint32_t tagptr = env->config->sysrom.location[0].addr + 321 board->sram_size; 322 uint32_t cur_tagptr; 323 BpMemInfo memory_location = { 324 .type = tswap32(MEMORY_TYPE_CONVENTIONAL), 325 .start = tswap32(env->config->sysram.location[0].addr), 326 .end = tswap32(env->config->sysram.location[0].addr + 327 machine->ram_size), 328 }; 329 uint32_t lowmem_end = machine->ram_size < 0x08000000 ? 330 machine->ram_size : 0x08000000; 331 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096); 332 333 lowmem_end += env->config->sysram.location[0].addr; 334 cur_lowmem += env->config->sysram.location[0].addr; 335 336 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom", 337 system_memory); 338 339 if (kernel_cmdline) { 340 bp_size += get_tag_size(strlen(kernel_cmdline) + 1); 341 } 342 if (dtb_filename) { 343 bp_size += get_tag_size(sizeof(uint32_t)); 344 } 345 if (initrd_filename) { 346 bp_size += get_tag_size(sizeof(BpMemInfo)); 347 } 348 349 /* Put kernel bootparameters to the end of that SRAM */ 350 tagptr = (tagptr - bp_size) & ~0xff; 351 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL); 352 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY, 353 sizeof(memory_location), &memory_location); 354 355 if (kernel_cmdline) { 356 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE, 357 strlen(kernel_cmdline) + 1, kernel_cmdline); 358 } 359 if (dtb_filename) { 360 int fdt_size; 361 void *fdt = load_device_tree(dtb_filename, &fdt_size); 362 uint32_t dtb_addr = tswap32(cur_lowmem); 363 364 if (!fdt) { 365 error_report("could not load DTB '%s'", dtb_filename); 366 exit(EXIT_FAILURE); 367 } 368 369 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size); 370 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT, 371 sizeof(dtb_addr), &dtb_addr); 372 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB); 373 g_free(fdt); 374 } 375 if (initrd_filename) { 376 BpMemInfo initrd_location = { 0 }; 377 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem, 378 lowmem_end - cur_lowmem); 379 380 if (initrd_size < 0) { 381 initrd_size = load_image_targphys(initrd_filename, 382 cur_lowmem, 383 lowmem_end - cur_lowmem); 384 } 385 if (initrd_size < 0) { 386 error_report("could not load initrd '%s'", initrd_filename); 387 exit(EXIT_FAILURE); 388 } 389 initrd_location.start = tswap32(cur_lowmem); 390 initrd_location.end = tswap32(cur_lowmem + initrd_size); 391 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD, 392 sizeof(initrd_location), &initrd_location); 393 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB); 394 } 395 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL); 396 env->regs[2] = tagptr; 397 398 uint64_t elf_entry; 399 int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu, 400 &elf_entry, NULL, NULL, NULL, TARGET_BIG_ENDIAN, 401 EM_XTENSA, 0, 0); 402 if (success > 0) { 403 entry_point = elf_entry; 404 } else { 405 hwaddr ep; 406 int is_linux; 407 success = load_uimage(kernel_filename, &ep, NULL, &is_linux, 408 translate_phys_addr, cpu); 409 if (success > 0 && is_linux) { 410 entry_point = ep; 411 } else { 412 error_report("could not load kernel '%s'", 413 kernel_filename); 414 exit(EXIT_FAILURE); 415 } 416 } 417 if (entry_point != env->pc) { 418 uint8_t boot[] = { 419 #if TARGET_BIG_ENDIAN 420 0x60, 0x00, 0x08, /* j 1f */ 421 0x00, /* .literal_position */ 422 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */ 423 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */ 424 /* 1: */ 425 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */ 426 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */ 427 0x0a, 0x00, 0x00, /* jx a0 */ 428 #else 429 0x06, 0x02, 0x00, /* j 1f */ 430 0x00, /* .literal_position */ 431 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */ 432 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */ 433 /* 1: */ 434 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */ 435 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */ 436 0xa0, 0x00, 0x00, /* jx a0 */ 437 #endif 438 }; 439 uint32_t entry_pc = tswap32(entry_point); 440 uint32_t entry_a2 = tswap32(tagptr); 441 442 memcpy(boot + 4, &entry_pc, sizeof(entry_pc)); 443 memcpy(boot + 8, &entry_a2, sizeof(entry_a2)); 444 cpu_physical_memory_write(env->pc, boot, sizeof(boot)); 445 } 446 } else { 447 if (flash) { 448 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash); 449 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io)); 450 uint32_t size = env->config->sysrom.location[0].size; 451 452 if (board->flash->size - board->flash->boot_base < size) { 453 size = board->flash->size - board->flash->boot_base; 454 } 455 456 memory_region_init_alias(flash_io, NULL, "xtfpga.flash", 457 flash_mr, board->flash->boot_base, size); 458 memory_region_add_subregion(system_memory, 459 env->config->sysrom.location[0].addr, 460 flash_io); 461 } else { 462 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom", 463 system_memory); 464 } 465 } 466 } 467 468 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB) 469 470 static const hwaddr xtfpga_mmu_io[2] = { 471 0xf0000000, 472 }; 473 474 static const hwaddr xtfpga_nommu_io[2] = { 475 0x90000000, 476 0x70000000, 477 }; 478 479 static const XtfpgaFlashDesc lx60_flash = { 480 .base = 0x08000000, 481 .size = 0x00400000, 482 .sector_size = 0x10000, 483 }; 484 485 static void xtfpga_lx60_init(MachineState *machine) 486 { 487 static const XtfpgaBoardDesc lx60_board = { 488 .flash = &lx60_flash, 489 .sram_size = 0x20000, 490 .io = xtfpga_mmu_io, 491 }; 492 xtfpga_init(&lx60_board, machine); 493 } 494 495 static void xtfpga_lx60_nommu_init(MachineState *machine) 496 { 497 static const XtfpgaBoardDesc lx60_board = { 498 .flash = &lx60_flash, 499 .sram_size = 0x20000, 500 .io = xtfpga_nommu_io, 501 }; 502 xtfpga_init(&lx60_board, machine); 503 } 504 505 static const XtfpgaFlashDesc lx200_flash = { 506 .base = 0x08000000, 507 .size = 0x01000000, 508 .sector_size = 0x20000, 509 }; 510 511 static void xtfpga_lx200_init(MachineState *machine) 512 { 513 static const XtfpgaBoardDesc lx200_board = { 514 .flash = &lx200_flash, 515 .sram_size = 0x2000000, 516 .io = xtfpga_mmu_io, 517 }; 518 xtfpga_init(&lx200_board, machine); 519 } 520 521 static void xtfpga_lx200_nommu_init(MachineState *machine) 522 { 523 static const XtfpgaBoardDesc lx200_board = { 524 .flash = &lx200_flash, 525 .sram_size = 0x2000000, 526 .io = xtfpga_nommu_io, 527 }; 528 xtfpga_init(&lx200_board, machine); 529 } 530 531 static const XtfpgaFlashDesc ml605_flash = { 532 .base = 0x08000000, 533 .size = 0x01000000, 534 .sector_size = 0x20000, 535 }; 536 537 static void xtfpga_ml605_init(MachineState *machine) 538 { 539 static const XtfpgaBoardDesc ml605_board = { 540 .flash = &ml605_flash, 541 .sram_size = 0x2000000, 542 .io = xtfpga_mmu_io, 543 }; 544 xtfpga_init(&ml605_board, machine); 545 } 546 547 static void xtfpga_ml605_nommu_init(MachineState *machine) 548 { 549 static const XtfpgaBoardDesc ml605_board = { 550 .flash = &ml605_flash, 551 .sram_size = 0x2000000, 552 .io = xtfpga_nommu_io, 553 }; 554 xtfpga_init(&ml605_board, machine); 555 } 556 557 static const XtfpgaFlashDesc kc705_flash = { 558 .base = 0x00000000, 559 .size = 0x08000000, 560 .boot_base = 0x06000000, 561 .sector_size = 0x20000, 562 }; 563 564 static void xtfpga_kc705_init(MachineState *machine) 565 { 566 static const XtfpgaBoardDesc kc705_board = { 567 .flash = &kc705_flash, 568 .sram_size = 0x2000000, 569 .io = xtfpga_mmu_io, 570 }; 571 xtfpga_init(&kc705_board, machine); 572 } 573 574 static void xtfpga_kc705_nommu_init(MachineState *machine) 575 { 576 static const XtfpgaBoardDesc kc705_board = { 577 .flash = &kc705_flash, 578 .sram_size = 0x2000000, 579 .io = xtfpga_nommu_io, 580 }; 581 xtfpga_init(&kc705_board, machine); 582 } 583 584 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data) 585 { 586 MachineClass *mc = MACHINE_CLASS(oc); 587 588 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 589 mc->init = xtfpga_lx60_init; 590 mc->max_cpus = 32; 591 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE; 592 mc->default_ram_size = 64 * MiB; 593 } 594 595 static const TypeInfo xtfpga_lx60_type = { 596 .name = MACHINE_TYPE_NAME("lx60"), 597 .parent = TYPE_MACHINE, 598 .class_init = xtfpga_lx60_class_init, 599 }; 600 601 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data) 602 { 603 MachineClass *mc = MACHINE_CLASS(oc); 604 605 mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")"; 606 mc->init = xtfpga_lx60_nommu_init; 607 mc->max_cpus = 32; 608 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE; 609 mc->default_ram_size = 64 * MiB; 610 } 611 612 static const TypeInfo xtfpga_lx60_nommu_type = { 613 .name = MACHINE_TYPE_NAME("lx60-nommu"), 614 .parent = TYPE_MACHINE, 615 .class_init = xtfpga_lx60_nommu_class_init, 616 }; 617 618 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data) 619 { 620 MachineClass *mc = MACHINE_CLASS(oc); 621 622 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 623 mc->init = xtfpga_lx200_init; 624 mc->max_cpus = 32; 625 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE; 626 mc->default_ram_size = 96 * MiB; 627 } 628 629 static const TypeInfo xtfpga_lx200_type = { 630 .name = MACHINE_TYPE_NAME("lx200"), 631 .parent = TYPE_MACHINE, 632 .class_init = xtfpga_lx200_class_init, 633 }; 634 635 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data) 636 { 637 MachineClass *mc = MACHINE_CLASS(oc); 638 639 mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")"; 640 mc->init = xtfpga_lx200_nommu_init; 641 mc->max_cpus = 32; 642 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE; 643 mc->default_ram_size = 96 * MiB; 644 } 645 646 static const TypeInfo xtfpga_lx200_nommu_type = { 647 .name = MACHINE_TYPE_NAME("lx200-nommu"), 648 .parent = TYPE_MACHINE, 649 .class_init = xtfpga_lx200_nommu_class_init, 650 }; 651 652 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data) 653 { 654 MachineClass *mc = MACHINE_CLASS(oc); 655 656 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 657 mc->init = xtfpga_ml605_init; 658 mc->max_cpus = 32; 659 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE; 660 mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE; 661 } 662 663 static const TypeInfo xtfpga_ml605_type = { 664 .name = MACHINE_TYPE_NAME("ml605"), 665 .parent = TYPE_MACHINE, 666 .class_init = xtfpga_ml605_class_init, 667 }; 668 669 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data) 670 { 671 MachineClass *mc = MACHINE_CLASS(oc); 672 673 mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")"; 674 mc->init = xtfpga_ml605_nommu_init; 675 mc->max_cpus = 32; 676 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE; 677 mc->default_ram_size = 256 * MiB; 678 } 679 680 static const TypeInfo xtfpga_ml605_nommu_type = { 681 .name = MACHINE_TYPE_NAME("ml605-nommu"), 682 .parent = TYPE_MACHINE, 683 .class_init = xtfpga_ml605_nommu_class_init, 684 }; 685 686 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data) 687 { 688 MachineClass *mc = MACHINE_CLASS(oc); 689 690 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 691 mc->init = xtfpga_kc705_init; 692 mc->max_cpus = 32; 693 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE; 694 mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE; 695 } 696 697 static const TypeInfo xtfpga_kc705_type = { 698 .name = MACHINE_TYPE_NAME("kc705"), 699 .parent = TYPE_MACHINE, 700 .class_init = xtfpga_kc705_class_init, 701 }; 702 703 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data) 704 { 705 MachineClass *mc = MACHINE_CLASS(oc); 706 707 mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")"; 708 mc->init = xtfpga_kc705_nommu_init; 709 mc->max_cpus = 32; 710 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE; 711 mc->default_ram_size = 256 * MiB; 712 } 713 714 static const TypeInfo xtfpga_kc705_nommu_type = { 715 .name = MACHINE_TYPE_NAME("kc705-nommu"), 716 .parent = TYPE_MACHINE, 717 .class_init = xtfpga_kc705_nommu_class_init, 718 }; 719 720 static void xtfpga_machines_init(void) 721 { 722 type_register_static(&xtfpga_lx60_type); 723 type_register_static(&xtfpga_lx200_type); 724 type_register_static(&xtfpga_ml605_type); 725 type_register_static(&xtfpga_kc705_type); 726 type_register_static(&xtfpga_lx60_nommu_type); 727 type_register_static(&xtfpga_lx200_nommu_type); 728 type_register_static(&xtfpga_ml605_nommu_type); 729 type_register_static(&xtfpga_kc705_nommu_type); 730 } 731 732 type_init(xtfpga_machines_init) 733