xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 56e2cd24)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "elf.h"
36 #include "exec/memory.h"
37 #include "exec/address-spaces.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "sysemu/block-backend.h"
43 #include "sysemu/char.h"
44 #include "sysemu/device_tree.h"
45 #include "qemu/error-report.h"
46 #include "bootparam.h"
47 
48 typedef struct LxBoardDesc {
49     hwaddr flash_base;
50     size_t flash_size;
51     size_t flash_boot_base;
52     size_t flash_sector_size;
53     size_t sram_size;
54 } LxBoardDesc;
55 
56 typedef struct Lx60FpgaState {
57     MemoryRegion iomem;
58     uint32_t leds;
59     uint32_t switches;
60 } Lx60FpgaState;
61 
62 static void lx60_fpga_reset(void *opaque)
63 {
64     Lx60FpgaState *s = opaque;
65 
66     s->leds = 0;
67     s->switches = 0;
68 }
69 
70 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
71         unsigned size)
72 {
73     Lx60FpgaState *s = opaque;
74 
75     switch (addr) {
76     case 0x0: /*build date code*/
77         return 0x09272011;
78 
79     case 0x4: /*processor clock frequency, Hz*/
80         return 10000000;
81 
82     case 0x8: /*LEDs (off = 0, on = 1)*/
83         return s->leds;
84 
85     case 0xc: /*DIP switches (off = 0, on = 1)*/
86         return s->switches;
87     }
88     return 0;
89 }
90 
91 static void lx60_fpga_write(void *opaque, hwaddr addr,
92         uint64_t val, unsigned size)
93 {
94     Lx60FpgaState *s = opaque;
95 
96     switch (addr) {
97     case 0x8: /*LEDs (off = 0, on = 1)*/
98         s->leds = val;
99         break;
100 
101     case 0x10: /*board reset*/
102         if (val == 0xdead) {
103             qemu_system_reset_request();
104         }
105         break;
106     }
107 }
108 
109 static const MemoryRegionOps lx60_fpga_ops = {
110     .read = lx60_fpga_read,
111     .write = lx60_fpga_write,
112     .endianness = DEVICE_NATIVE_ENDIAN,
113 };
114 
115 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
116         hwaddr base)
117 {
118     Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
119 
120     memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
121             "lx60.fpga", 0x10000);
122     memory_region_add_subregion(address_space, base, &s->iomem);
123     lx60_fpga_reset(s);
124     qemu_register_reset(lx60_fpga_reset, s);
125     return s;
126 }
127 
128 static void lx60_net_init(MemoryRegion *address_space,
129         hwaddr base,
130         hwaddr descriptors,
131         hwaddr buffers,
132         qemu_irq irq, NICInfo *nd)
133 {
134     DeviceState *dev;
135     SysBusDevice *s;
136     MemoryRegion *ram;
137 
138     dev = qdev_create(NULL, "open_eth");
139     qdev_set_nic_properties(dev, nd);
140     qdev_init_nofail(dev);
141 
142     s = SYS_BUS_DEVICE(dev);
143     sysbus_connect_irq(s, 0, irq);
144     memory_region_add_subregion(address_space, base,
145             sysbus_mmio_get_region(s, 0));
146     memory_region_add_subregion(address_space, descriptors,
147             sysbus_mmio_get_region(s, 1));
148 
149     ram = g_malloc(sizeof(*ram));
150     memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
151                            &error_fatal);
152     vmstate_register_ram_global(ram);
153     memory_region_add_subregion(address_space, buffers, ram);
154 }
155 
156 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
157                                    const LxBoardDesc *board,
158                                    DriveInfo *dinfo, int be)
159 {
160     SysBusDevice *s;
161     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
162 
163     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
164                         &error_abort);
165     qdev_prop_set_uint32(dev, "num-blocks",
166                          board->flash_size / board->flash_sector_size);
167     qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
168     qdev_prop_set_uint8(dev, "width", 2);
169     qdev_prop_set_bit(dev, "big-endian", be);
170     qdev_prop_set_string(dev, "name", "lx60.io.flash");
171     qdev_init_nofail(dev);
172     s = SYS_BUS_DEVICE(dev);
173     memory_region_add_subregion(address_space, board->flash_base,
174                                 sysbus_mmio_get_region(s, 0));
175     return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
176 }
177 
178 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
179 {
180     XtensaCPU *cpu = opaque;
181 
182     return cpu_get_phys_page_debug(CPU(cpu), addr);
183 }
184 
185 static void lx60_reset(void *opaque)
186 {
187     XtensaCPU *cpu = opaque;
188 
189     cpu_reset(CPU(cpu));
190 }
191 
192 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
193         unsigned size)
194 {
195     return 0;
196 }
197 
198 static void lx60_io_write(void *opaque, hwaddr addr,
199         uint64_t val, unsigned size)
200 {
201 }
202 
203 static const MemoryRegionOps lx60_io_ops = {
204     .read = lx60_io_read,
205     .write = lx60_io_write,
206     .endianness = DEVICE_NATIVE_ENDIAN,
207 };
208 
209 static void lx_init(const LxBoardDesc *board, MachineState *machine)
210 {
211 #ifdef TARGET_WORDS_BIGENDIAN
212     int be = 1;
213 #else
214     int be = 0;
215 #endif
216     MemoryRegion *system_memory = get_system_memory();
217     XtensaCPU *cpu = NULL;
218     CPUXtensaState *env = NULL;
219     MemoryRegion *ram, *rom, *system_io;
220     DriveInfo *dinfo;
221     pflash_t *flash = NULL;
222     QemuOpts *machine_opts = qemu_get_machine_opts();
223     const char *cpu_model = machine->cpu_model;
224     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
225     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
226     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
227     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
228     int n;
229 
230     if (!cpu_model) {
231         cpu_model = XTENSA_DEFAULT_CPU_MODEL;
232     }
233 
234     for (n = 0; n < smp_cpus; n++) {
235         cpu = cpu_xtensa_init(cpu_model);
236         if (cpu == NULL) {
237             error_report("unable to find CPU definition '%s'",
238                          cpu_model);
239             exit(EXIT_FAILURE);
240         }
241         env = &cpu->env;
242 
243         env->sregs[PRID] = n;
244         qemu_register_reset(lx60_reset, cpu);
245         /* Need MMU initialized prior to ELF loading,
246          * so that ELF gets loaded into virtual addresses
247          */
248         cpu_reset(CPU(cpu));
249     }
250 
251     ram = g_malloc(sizeof(*ram));
252     memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
253                            &error_fatal);
254     vmstate_register_ram_global(ram);
255     memory_region_add_subregion(system_memory, 0, ram);
256 
257     system_io = g_malloc(sizeof(*system_io));
258     memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
259                           224 * 1024 * 1024);
260     memory_region_add_subregion(system_memory, 0xf0000000, system_io);
261     lx60_fpga_init(system_io, 0x0d020000);
262     if (nd_table[0].used) {
263         lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
264                 xtensa_get_extint(env, 1), nd_table);
265     }
266 
267     if (!serial_hds[0]) {
268         serial_hds[0] = qemu_chr_new("serial0", "null");
269     }
270 
271     serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
272             115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
273 
274     dinfo = drive_get(IF_PFLASH, 0, 0);
275     if (dinfo) {
276         flash = xtfpga_flash_init(system_io, board, dinfo, be);
277     }
278 
279     /* Use presence of kernel file name as 'boot from SRAM' switch. */
280     if (kernel_filename) {
281         uint32_t entry_point = env->pc;
282         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
283         uint32_t tagptr = 0xfe000000 + board->sram_size;
284         uint32_t cur_tagptr;
285         BpMemInfo memory_location = {
286             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
287             .start = tswap32(0),
288             .end = tswap32(machine->ram_size),
289         };
290         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
291             machine->ram_size : 0x08000000;
292         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
293 
294         rom = g_malloc(sizeof(*rom));
295         memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
296                                &error_fatal);
297         vmstate_register_ram_global(rom);
298         memory_region_add_subregion(system_memory, 0xfe000000, rom);
299 
300         if (kernel_cmdline) {
301             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
302         }
303         if (dtb_filename) {
304             bp_size += get_tag_size(sizeof(uint32_t));
305         }
306         if (initrd_filename) {
307             bp_size += get_tag_size(sizeof(BpMemInfo));
308         }
309 
310         /* Put kernel bootparameters to the end of that SRAM */
311         tagptr = (tagptr - bp_size) & ~0xff;
312         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
313         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
314                              sizeof(memory_location), &memory_location);
315 
316         if (kernel_cmdline) {
317             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
318                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
319         }
320 #ifdef CONFIG_FDT
321         if (dtb_filename) {
322             int fdt_size;
323             void *fdt = load_device_tree(dtb_filename, &fdt_size);
324             uint32_t dtb_addr = tswap32(cur_lowmem);
325 
326             if (!fdt) {
327                 error_report("could not load DTB '%s'", dtb_filename);
328                 exit(EXIT_FAILURE);
329             }
330 
331             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
332             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
333                                  sizeof(dtb_addr), &dtb_addr);
334             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
335         }
336 #else
337         if (dtb_filename) {
338             error_report("could not load DTB '%s': "
339                          "FDT support is not configured in QEMU",
340                          dtb_filename);
341             exit(EXIT_FAILURE);
342         }
343 #endif
344         if (initrd_filename) {
345             BpMemInfo initrd_location = { 0 };
346             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
347                                            lowmem_end - cur_lowmem);
348 
349             if (initrd_size < 0) {
350                 initrd_size = load_image_targphys(initrd_filename,
351                                                   cur_lowmem,
352                                                   lowmem_end - cur_lowmem);
353             }
354             if (initrd_size < 0) {
355                 error_report("could not load initrd '%s'", initrd_filename);
356                 exit(EXIT_FAILURE);
357             }
358             initrd_location.start = tswap32(cur_lowmem);
359             initrd_location.end = tswap32(cur_lowmem + initrd_size);
360             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
361                                  sizeof(initrd_location), &initrd_location);
362             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
363         }
364         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
365         env->regs[2] = tagptr;
366 
367         uint64_t elf_entry;
368         uint64_t elf_lowaddr;
369         int success = load_elf(kernel_filename, translate_phys_addr, cpu,
370                 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
371         if (success > 0) {
372             entry_point = elf_entry;
373         } else {
374             hwaddr ep;
375             int is_linux;
376             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
377                                   translate_phys_addr, cpu);
378             if (success > 0 && is_linux) {
379                 entry_point = ep;
380             } else {
381                 error_report("could not load kernel '%s'",
382                              kernel_filename);
383                 exit(EXIT_FAILURE);
384             }
385         }
386         if (entry_point != env->pc) {
387             static const uint8_t jx_a0[] = {
388 #ifdef TARGET_WORDS_BIGENDIAN
389                 0x0a, 0, 0,
390 #else
391                 0xa0, 0, 0,
392 #endif
393             };
394             env->regs[0] = entry_point;
395             cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
396         }
397     } else {
398         if (flash) {
399             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
400             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
401 
402             memory_region_init_alias(flash_io, NULL, "lx60.flash",
403                     flash_mr, board->flash_boot_base,
404                     board->flash_size - board->flash_boot_base < 0x02000000 ?
405                     board->flash_size - board->flash_boot_base : 0x02000000);
406             memory_region_add_subregion(system_memory, 0xfe000000,
407                     flash_io);
408         }
409     }
410 }
411 
412 static void xtensa_lx60_init(MachineState *machine)
413 {
414     static const LxBoardDesc lx60_board = {
415         .flash_base = 0x08000000,
416         .flash_size = 0x00400000,
417         .flash_sector_size = 0x10000,
418         .sram_size = 0x20000,
419     };
420     lx_init(&lx60_board, machine);
421 }
422 
423 static void xtensa_lx200_init(MachineState *machine)
424 {
425     static const LxBoardDesc lx200_board = {
426         .flash_base = 0x08000000,
427         .flash_size = 0x01000000,
428         .flash_sector_size = 0x20000,
429         .sram_size = 0x2000000,
430     };
431     lx_init(&lx200_board, machine);
432 }
433 
434 static void xtensa_ml605_init(MachineState *machine)
435 {
436     static const LxBoardDesc ml605_board = {
437         .flash_base = 0x08000000,
438         .flash_size = 0x01000000,
439         .flash_sector_size = 0x20000,
440         .sram_size = 0x2000000,
441     };
442     lx_init(&ml605_board, machine);
443 }
444 
445 static void xtensa_kc705_init(MachineState *machine)
446 {
447     static const LxBoardDesc kc705_board = {
448         .flash_base = 0x00000000,
449         .flash_size = 0x08000000,
450         .flash_boot_base = 0x06000000,
451         .flash_sector_size = 0x20000,
452         .sram_size = 0x2000000,
453     };
454     lx_init(&kc705_board, machine);
455 }
456 
457 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
458 {
459     MachineClass *mc = MACHINE_CLASS(oc);
460 
461     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
462     mc->init = xtensa_lx60_init;
463     mc->max_cpus = 4;
464 }
465 
466 static const TypeInfo xtensa_lx60_type = {
467     .name = MACHINE_TYPE_NAME("lx60"),
468     .parent = TYPE_MACHINE,
469     .class_init = xtensa_lx60_class_init,
470 };
471 
472 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
473 {
474     MachineClass *mc = MACHINE_CLASS(oc);
475 
476     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
477     mc->init = xtensa_lx200_init;
478     mc->max_cpus = 4;
479 }
480 
481 static const TypeInfo xtensa_lx200_type = {
482     .name = MACHINE_TYPE_NAME("lx200"),
483     .parent = TYPE_MACHINE,
484     .class_init = xtensa_lx200_class_init,
485 };
486 
487 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
488 {
489     MachineClass *mc = MACHINE_CLASS(oc);
490 
491     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
492     mc->init = xtensa_ml605_init;
493     mc->max_cpus = 4;
494 }
495 
496 static const TypeInfo xtensa_ml605_type = {
497     .name = MACHINE_TYPE_NAME("ml605"),
498     .parent = TYPE_MACHINE,
499     .class_init = xtensa_ml605_class_init,
500 };
501 
502 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
503 {
504     MachineClass *mc = MACHINE_CLASS(oc);
505 
506     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
507     mc->init = xtensa_kc705_init;
508     mc->max_cpus = 4;
509 }
510 
511 static const TypeInfo xtensa_kc705_type = {
512     .name = MACHINE_TYPE_NAME("kc705"),
513     .parent = TYPE_MACHINE,
514     .class_init = xtensa_kc705_class_init,
515 };
516 
517 static void xtensa_lx_machines_init(void)
518 {
519     type_register_static(&xtensa_lx60_type);
520     type_register_static(&xtensa_lx200_type);
521     type_register_static(&xtensa_ml605_type);
522     type_register_static(&xtensa_kc705_type);
523 }
524 
525 type_init(xtensa_lx_machines_init)
526