xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 52f2b8961409be834abaee5189bff2cc9e372851)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "elf.h"
36 #include "exec/memory.h"
37 #include "exec/address-spaces.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "qemu/error-report.h"
45 #include "qemu/option.h"
46 #include "bootparam.h"
47 #include "xtensa_memory.h"
48 #include "hw/xtensa/mx_pic.h"
49 
50 typedef struct XtfpgaFlashDesc {
51     hwaddr base;
52     size_t size;
53     size_t boot_base;
54     size_t sector_size;
55 } XtfpgaFlashDesc;
56 
57 typedef struct XtfpgaBoardDesc {
58     const XtfpgaFlashDesc *flash;
59     size_t sram_size;
60     const hwaddr *io;
61 } XtfpgaBoardDesc;
62 
63 typedef struct XtfpgaFpgaState {
64     MemoryRegion iomem;
65     uint32_t freq;
66     uint32_t leds;
67     uint32_t switches;
68 } XtfpgaFpgaState;
69 
70 static void xtfpga_fpga_reset(void *opaque)
71 {
72     XtfpgaFpgaState *s = opaque;
73 
74     s->leds = 0;
75     s->switches = 0;
76 }
77 
78 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
79         unsigned size)
80 {
81     XtfpgaFpgaState *s = opaque;
82 
83     switch (addr) {
84     case 0x0: /*build date code*/
85         return 0x09272011;
86 
87     case 0x4: /*processor clock frequency, Hz*/
88         return s->freq;
89 
90     case 0x8: /*LEDs (off = 0, on = 1)*/
91         return s->leds;
92 
93     case 0xc: /*DIP switches (off = 0, on = 1)*/
94         return s->switches;
95     }
96     return 0;
97 }
98 
99 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
100         uint64_t val, unsigned size)
101 {
102     XtfpgaFpgaState *s = opaque;
103 
104     switch (addr) {
105     case 0x8: /*LEDs (off = 0, on = 1)*/
106         s->leds = val;
107         break;
108 
109     case 0x10: /*board reset*/
110         if (val == 0xdead) {
111             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
112         }
113         break;
114     }
115 }
116 
117 static const MemoryRegionOps xtfpga_fpga_ops = {
118     .read = xtfpga_fpga_read,
119     .write = xtfpga_fpga_write,
120     .endianness = DEVICE_NATIVE_ENDIAN,
121 };
122 
123 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
124                                          hwaddr base, uint32_t freq)
125 {
126     XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
127 
128     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
129                           "xtfpga.fpga", 0x10000);
130     memory_region_add_subregion(address_space, base, &s->iomem);
131     s->freq = freq;
132     xtfpga_fpga_reset(s);
133     qemu_register_reset(xtfpga_fpga_reset, s);
134     return s;
135 }
136 
137 static void xtfpga_net_init(MemoryRegion *address_space,
138         hwaddr base,
139         hwaddr descriptors,
140         hwaddr buffers,
141         qemu_irq irq, NICInfo *nd)
142 {
143     DeviceState *dev;
144     SysBusDevice *s;
145     MemoryRegion *ram;
146 
147     dev = qdev_create(NULL, "open_eth");
148     qdev_set_nic_properties(dev, nd);
149     qdev_init_nofail(dev);
150 
151     s = SYS_BUS_DEVICE(dev);
152     sysbus_connect_irq(s, 0, irq);
153     memory_region_add_subregion(address_space, base,
154             sysbus_mmio_get_region(s, 0));
155     memory_region_add_subregion(address_space, descriptors,
156             sysbus_mmio_get_region(s, 1));
157 
158     ram = g_malloc(sizeof(*ram));
159     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
160                            &error_fatal);
161     vmstate_register_ram_global(ram);
162     memory_region_add_subregion(address_space, buffers, ram);
163 }
164 
165 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
166                                       const XtfpgaBoardDesc *board,
167                                       DriveInfo *dinfo, int be)
168 {
169     SysBusDevice *s;
170     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
171 
172     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
173                         &error_abort);
174     qdev_prop_set_uint32(dev, "num-blocks",
175                          board->flash->size / board->flash->sector_size);
176     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
177     qdev_prop_set_uint8(dev, "width", 2);
178     qdev_prop_set_bit(dev, "big-endian", be);
179     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
180     qdev_init_nofail(dev);
181     s = SYS_BUS_DEVICE(dev);
182     memory_region_add_subregion(address_space, board->flash->base,
183                                 sysbus_mmio_get_region(s, 0));
184     return PFLASH_CFI01(dev);
185 }
186 
187 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
188 {
189     XtensaCPU *cpu = opaque;
190 
191     return cpu_get_phys_page_debug(CPU(cpu), addr);
192 }
193 
194 static void xtfpga_reset(void *opaque)
195 {
196     XtensaCPU *cpu = opaque;
197 
198     cpu_reset(CPU(cpu));
199 }
200 
201 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
202         unsigned size)
203 {
204     return 0;
205 }
206 
207 static void xtfpga_io_write(void *opaque, hwaddr addr,
208         uint64_t val, unsigned size)
209 {
210 }
211 
212 static const MemoryRegionOps xtfpga_io_ops = {
213     .read = xtfpga_io_read,
214     .write = xtfpga_io_write,
215     .endianness = DEVICE_NATIVE_ENDIAN,
216 };
217 
218 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
219 {
220 #ifdef TARGET_WORDS_BIGENDIAN
221     int be = 1;
222 #else
223     int be = 0;
224 #endif
225     MemoryRegion *system_memory = get_system_memory();
226     XtensaCPU *cpu = NULL;
227     CPUXtensaState *env = NULL;
228     MemoryRegion *system_io;
229     XtensaMxPic *mx_pic = NULL;
230     qemu_irq *extints;
231     DriveInfo *dinfo;
232     PFlashCFI01 *flash = NULL;
233     QemuOpts *machine_opts = qemu_get_machine_opts();
234     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
235     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
236     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
237     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
238     const unsigned system_io_size = 224 * MiB;
239     uint32_t freq = 10000000;
240     int n;
241 
242     if (smp_cpus > 1) {
243         mx_pic = xtensa_mx_pic_init(31);
244         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
245     }
246     for (n = 0; n < smp_cpus; n++) {
247         CPUXtensaState *cenv = NULL;
248 
249         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
250         cenv = &cpu->env;
251         if (!env) {
252             env = cenv;
253             freq = env->config->clock_freq_khz * 1000;
254         }
255 
256         if (mx_pic) {
257             MemoryRegion *mx_eri;
258 
259             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
260                                                 xtensa_get_extints(cenv),
261                                                 xtensa_get_runstall(cenv));
262             memory_region_add_subregion(xtensa_get_er_region(cenv),
263                                         0, mx_eri);
264         }
265         cenv->sregs[PRID] = n;
266         xtensa_select_static_vectors(cenv, n != 0);
267         qemu_register_reset(xtfpga_reset, cpu);
268         /* Need MMU initialized prior to ELF loading,
269          * so that ELF gets loaded into virtual addresses
270          */
271         cpu_reset(CPU(cpu));
272     }
273     if (smp_cpus > 1) {
274         extints = xtensa_mx_pic_get_extints(mx_pic);
275     } else {
276         extints = xtensa_get_extints(env);
277     }
278 
279     if (env) {
280         XtensaMemory sysram = env->config->sysram;
281 
282         sysram.location[0].size = machine->ram_size;
283         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
284                                      system_memory);
285         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
286                                      system_memory);
287         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
288                                      system_memory);
289         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
290                                      system_memory);
291         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
292                                      system_memory);
293     }
294 
295     system_io = g_malloc(sizeof(*system_io));
296     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
297                           system_io_size);
298     memory_region_add_subregion(system_memory, board->io[0], system_io);
299     if (board->io[1]) {
300         MemoryRegion *io = g_malloc(sizeof(*io));
301 
302         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
303                                  system_io, 0, system_io_size);
304         memory_region_add_subregion(system_memory, board->io[1], io);
305     }
306     xtfpga_fpga_init(system_io, 0x0d020000, freq);
307     if (nd_table[0].used) {
308         xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
309                         extints[1], nd_table);
310     }
311 
312     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
313                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
314 
315     dinfo = drive_get(IF_PFLASH, 0, 0);
316     if (dinfo) {
317         flash = xtfpga_flash_init(system_io, board, dinfo, be);
318     }
319 
320     /* Use presence of kernel file name as 'boot from SRAM' switch. */
321     if (kernel_filename) {
322         uint32_t entry_point = env->pc;
323         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
324         uint32_t tagptr = env->config->sysrom.location[0].addr +
325             board->sram_size;
326         uint32_t cur_tagptr;
327         BpMemInfo memory_location = {
328             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
329             .start = tswap32(env->config->sysram.location[0].addr),
330             .end = tswap32(env->config->sysram.location[0].addr +
331                            machine->ram_size),
332         };
333         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
334             machine->ram_size : 0x08000000;
335         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
336 
337         lowmem_end += env->config->sysram.location[0].addr;
338         cur_lowmem += env->config->sysram.location[0].addr;
339 
340         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
341                                      system_memory);
342 
343         if (kernel_cmdline) {
344             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
345         }
346         if (dtb_filename) {
347             bp_size += get_tag_size(sizeof(uint32_t));
348         }
349         if (initrd_filename) {
350             bp_size += get_tag_size(sizeof(BpMemInfo));
351         }
352 
353         /* Put kernel bootparameters to the end of that SRAM */
354         tagptr = (tagptr - bp_size) & ~0xff;
355         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
356         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
357                              sizeof(memory_location), &memory_location);
358 
359         if (kernel_cmdline) {
360             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
361                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
362         }
363 #ifdef CONFIG_FDT
364         if (dtb_filename) {
365             int fdt_size;
366             void *fdt = load_device_tree(dtb_filename, &fdt_size);
367             uint32_t dtb_addr = tswap32(cur_lowmem);
368 
369             if (!fdt) {
370                 error_report("could not load DTB '%s'", dtb_filename);
371                 exit(EXIT_FAILURE);
372             }
373 
374             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
375             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
376                                  sizeof(dtb_addr), &dtb_addr);
377             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
378         }
379 #else
380         if (dtb_filename) {
381             error_report("could not load DTB '%s': "
382                          "FDT support is not configured in QEMU",
383                          dtb_filename);
384             exit(EXIT_FAILURE);
385         }
386 #endif
387         if (initrd_filename) {
388             BpMemInfo initrd_location = { 0 };
389             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
390                                            lowmem_end - cur_lowmem);
391 
392             if (initrd_size < 0) {
393                 initrd_size = load_image_targphys(initrd_filename,
394                                                   cur_lowmem,
395                                                   lowmem_end - cur_lowmem);
396             }
397             if (initrd_size < 0) {
398                 error_report("could not load initrd '%s'", initrd_filename);
399                 exit(EXIT_FAILURE);
400             }
401             initrd_location.start = tswap32(cur_lowmem);
402             initrd_location.end = tswap32(cur_lowmem + initrd_size);
403             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
404                                  sizeof(initrd_location), &initrd_location);
405             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
406         }
407         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
408         env->regs[2] = tagptr;
409 
410         uint64_t elf_entry;
411         uint64_t elf_lowaddr;
412         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
413                 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
414         if (success > 0) {
415             entry_point = elf_entry;
416         } else {
417             hwaddr ep;
418             int is_linux;
419             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
420                                   translate_phys_addr, cpu);
421             if (success > 0 && is_linux) {
422                 entry_point = ep;
423             } else {
424                 error_report("could not load kernel '%s'",
425                              kernel_filename);
426                 exit(EXIT_FAILURE);
427             }
428         }
429         if (entry_point != env->pc) {
430             uint8_t boot[] = {
431 #ifdef TARGET_WORDS_BIGENDIAN
432                 0x60, 0x00, 0x08,       /* j    1f */
433                 0x00,                   /* .literal_position */
434                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
435                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
436                                         /* 1: */
437                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
438                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
439                 0x0a, 0x00, 0x00,       /* jx   a0 */
440 #else
441                 0x06, 0x02, 0x00,       /* j    1f */
442                 0x00,                   /* .literal_position */
443                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
444                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
445                                         /* 1: */
446                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
447                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
448                 0xa0, 0x00, 0x00,       /* jx   a0 */
449 #endif
450             };
451             uint32_t entry_pc = tswap32(entry_point);
452             uint32_t entry_a2 = tswap32(tagptr);
453 
454             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
455             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
456             cpu_physical_memory_write(env->pc, boot, sizeof(boot));
457         }
458     } else {
459         if (flash) {
460             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
461             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
462             uint32_t size = env->config->sysrom.location[0].size;
463 
464             if (board->flash->size - board->flash->boot_base < size) {
465                 size = board->flash->size - board->flash->boot_base;
466             }
467 
468             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
469                                      flash_mr, board->flash->boot_base, size);
470             memory_region_add_subregion(system_memory,
471                                         env->config->sysrom.location[0].addr,
472                                         flash_io);
473         } else {
474             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
475                                          system_memory);
476         }
477     }
478 }
479 
480 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
481 
482 static const hwaddr xtfpga_mmu_io[2] = {
483     0xf0000000,
484 };
485 
486 static const hwaddr xtfpga_nommu_io[2] = {
487     0x90000000,
488     0x70000000,
489 };
490 
491 static const XtfpgaFlashDesc lx60_flash = {
492     .base = 0x08000000,
493     .size = 0x00400000,
494     .sector_size = 0x10000,
495 };
496 
497 static void xtfpga_lx60_init(MachineState *machine)
498 {
499     static const XtfpgaBoardDesc lx60_board = {
500         .flash = &lx60_flash,
501         .sram_size = 0x20000,
502         .io = xtfpga_mmu_io,
503     };
504     xtfpga_init(&lx60_board, machine);
505 }
506 
507 static void xtfpga_lx60_nommu_init(MachineState *machine)
508 {
509     static const XtfpgaBoardDesc lx60_board = {
510         .flash = &lx60_flash,
511         .sram_size = 0x20000,
512         .io = xtfpga_nommu_io,
513     };
514     xtfpga_init(&lx60_board, machine);
515 }
516 
517 static const XtfpgaFlashDesc lx200_flash = {
518     .base = 0x08000000,
519     .size = 0x01000000,
520     .sector_size = 0x20000,
521 };
522 
523 static void xtfpga_lx200_init(MachineState *machine)
524 {
525     static const XtfpgaBoardDesc lx200_board = {
526         .flash = &lx200_flash,
527         .sram_size = 0x2000000,
528         .io = xtfpga_mmu_io,
529     };
530     xtfpga_init(&lx200_board, machine);
531 }
532 
533 static void xtfpga_lx200_nommu_init(MachineState *machine)
534 {
535     static const XtfpgaBoardDesc lx200_board = {
536         .flash = &lx200_flash,
537         .sram_size = 0x2000000,
538         .io = xtfpga_nommu_io,
539     };
540     xtfpga_init(&lx200_board, machine);
541 }
542 
543 static const XtfpgaFlashDesc ml605_flash = {
544     .base = 0x08000000,
545     .size = 0x01000000,
546     .sector_size = 0x20000,
547 };
548 
549 static void xtfpga_ml605_init(MachineState *machine)
550 {
551     static const XtfpgaBoardDesc ml605_board = {
552         .flash = &ml605_flash,
553         .sram_size = 0x2000000,
554         .io = xtfpga_mmu_io,
555     };
556     xtfpga_init(&ml605_board, machine);
557 }
558 
559 static void xtfpga_ml605_nommu_init(MachineState *machine)
560 {
561     static const XtfpgaBoardDesc ml605_board = {
562         .flash = &ml605_flash,
563         .sram_size = 0x2000000,
564         .io = xtfpga_nommu_io,
565     };
566     xtfpga_init(&ml605_board, machine);
567 }
568 
569 static const XtfpgaFlashDesc kc705_flash = {
570     .base = 0x00000000,
571     .size = 0x08000000,
572     .boot_base = 0x06000000,
573     .sector_size = 0x20000,
574 };
575 
576 static void xtfpga_kc705_init(MachineState *machine)
577 {
578     static const XtfpgaBoardDesc kc705_board = {
579         .flash = &kc705_flash,
580         .sram_size = 0x2000000,
581         .io = xtfpga_mmu_io,
582     };
583     xtfpga_init(&kc705_board, machine);
584 }
585 
586 static void xtfpga_kc705_nommu_init(MachineState *machine)
587 {
588     static const XtfpgaBoardDesc kc705_board = {
589         .flash = &kc705_flash,
590         .sram_size = 0x2000000,
591         .io = xtfpga_nommu_io,
592     };
593     xtfpga_init(&kc705_board, machine);
594 }
595 
596 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
597 {
598     MachineClass *mc = MACHINE_CLASS(oc);
599 
600     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
601     mc->init = xtfpga_lx60_init;
602     mc->max_cpus = 32;
603     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
604     mc->default_ram_size = 64 * MiB;
605 }
606 
607 static const TypeInfo xtfpga_lx60_type = {
608     .name = MACHINE_TYPE_NAME("lx60"),
609     .parent = TYPE_MACHINE,
610     .class_init = xtfpga_lx60_class_init,
611 };
612 
613 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
614 {
615     MachineClass *mc = MACHINE_CLASS(oc);
616 
617     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
618     mc->init = xtfpga_lx60_nommu_init;
619     mc->max_cpus = 32;
620     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
621     mc->default_ram_size = 64 * MiB;
622 }
623 
624 static const TypeInfo xtfpga_lx60_nommu_type = {
625     .name = MACHINE_TYPE_NAME("lx60-nommu"),
626     .parent = TYPE_MACHINE,
627     .class_init = xtfpga_lx60_nommu_class_init,
628 };
629 
630 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
631 {
632     MachineClass *mc = MACHINE_CLASS(oc);
633 
634     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
635     mc->init = xtfpga_lx200_init;
636     mc->max_cpus = 32;
637     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
638     mc->default_ram_size = 96 * MiB;
639 }
640 
641 static const TypeInfo xtfpga_lx200_type = {
642     .name = MACHINE_TYPE_NAME("lx200"),
643     .parent = TYPE_MACHINE,
644     .class_init = xtfpga_lx200_class_init,
645 };
646 
647 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
648 {
649     MachineClass *mc = MACHINE_CLASS(oc);
650 
651     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
652     mc->init = xtfpga_lx200_nommu_init;
653     mc->max_cpus = 32;
654     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
655     mc->default_ram_size = 96 * MiB;
656 }
657 
658 static const TypeInfo xtfpga_lx200_nommu_type = {
659     .name = MACHINE_TYPE_NAME("lx200-nommu"),
660     .parent = TYPE_MACHINE,
661     .class_init = xtfpga_lx200_nommu_class_init,
662 };
663 
664 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
665 {
666     MachineClass *mc = MACHINE_CLASS(oc);
667 
668     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
669     mc->init = xtfpga_ml605_init;
670     mc->max_cpus = 32;
671     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
672     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
673 }
674 
675 static const TypeInfo xtfpga_ml605_type = {
676     .name = MACHINE_TYPE_NAME("ml605"),
677     .parent = TYPE_MACHINE,
678     .class_init = xtfpga_ml605_class_init,
679 };
680 
681 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
682 {
683     MachineClass *mc = MACHINE_CLASS(oc);
684 
685     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
686     mc->init = xtfpga_ml605_nommu_init;
687     mc->max_cpus = 32;
688     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
689     mc->default_ram_size = 256 * MiB;
690 }
691 
692 static const TypeInfo xtfpga_ml605_nommu_type = {
693     .name = MACHINE_TYPE_NAME("ml605-nommu"),
694     .parent = TYPE_MACHINE,
695     .class_init = xtfpga_ml605_nommu_class_init,
696 };
697 
698 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
699 {
700     MachineClass *mc = MACHINE_CLASS(oc);
701 
702     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
703     mc->init = xtfpga_kc705_init;
704     mc->max_cpus = 32;
705     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
706     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
707 }
708 
709 static const TypeInfo xtfpga_kc705_type = {
710     .name = MACHINE_TYPE_NAME("kc705"),
711     .parent = TYPE_MACHINE,
712     .class_init = xtfpga_kc705_class_init,
713 };
714 
715 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
716 {
717     MachineClass *mc = MACHINE_CLASS(oc);
718 
719     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
720     mc->init = xtfpga_kc705_nommu_init;
721     mc->max_cpus = 32;
722     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
723     mc->default_ram_size = 256 * MiB;
724 }
725 
726 static const TypeInfo xtfpga_kc705_nommu_type = {
727     .name = MACHINE_TYPE_NAME("kc705-nommu"),
728     .parent = TYPE_MACHINE,
729     .class_init = xtfpga_kc705_nommu_class_init,
730 };
731 
732 static void xtfpga_machines_init(void)
733 {
734     type_register_static(&xtfpga_lx60_type);
735     type_register_static(&xtfpga_lx200_type);
736     type_register_static(&xtfpga_ml605_type);
737     type_register_static(&xtfpga_kc705_type);
738     type_register_static(&xtfpga_lx60_nommu_type);
739     type_register_static(&xtfpga_lx200_nommu_type);
740     type_register_static(&xtfpga_ml605_nommu_type);
741     type_register_static(&xtfpga_kc705_nommu_type);
742 }
743 
744 type_init(xtfpga_machines_init)
745