xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 461a2753)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "sysemu/sysemu.h"
29 #include "hw/boards.h"
30 #include "hw/loader.h"
31 #include "elf.h"
32 #include "exec/memory.h"
33 #include "exec/address-spaces.h"
34 #include "hw/char/serial.h"
35 #include "net/net.h"
36 #include "hw/sysbus.h"
37 #include "hw/block/flash.h"
38 #include "sysemu/blockdev.h"
39 #include "sysemu/char.h"
40 #include "sysemu/device_tree.h"
41 #include "qemu/error-report.h"
42 #include "bootparam.h"
43 
44 typedef struct LxBoardDesc {
45     hwaddr flash_base;
46     size_t flash_size;
47     size_t flash_boot_base;
48     size_t flash_sector_size;
49     size_t sram_size;
50 } LxBoardDesc;
51 
52 typedef struct Lx60FpgaState {
53     MemoryRegion iomem;
54     uint32_t leds;
55     uint32_t switches;
56 } Lx60FpgaState;
57 
58 static void lx60_fpga_reset(void *opaque)
59 {
60     Lx60FpgaState *s = opaque;
61 
62     s->leds = 0;
63     s->switches = 0;
64 }
65 
66 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
67         unsigned size)
68 {
69     Lx60FpgaState *s = opaque;
70 
71     switch (addr) {
72     case 0x0: /*build date code*/
73         return 0x09272011;
74 
75     case 0x4: /*processor clock frequency, Hz*/
76         return 10000000;
77 
78     case 0x8: /*LEDs (off = 0, on = 1)*/
79         return s->leds;
80 
81     case 0xc: /*DIP switches (off = 0, on = 1)*/
82         return s->switches;
83     }
84     return 0;
85 }
86 
87 static void lx60_fpga_write(void *opaque, hwaddr addr,
88         uint64_t val, unsigned size)
89 {
90     Lx60FpgaState *s = opaque;
91 
92     switch (addr) {
93     case 0x8: /*LEDs (off = 0, on = 1)*/
94         s->leds = val;
95         break;
96 
97     case 0x10: /*board reset*/
98         if (val == 0xdead) {
99             qemu_system_reset_request();
100         }
101         break;
102     }
103 }
104 
105 static const MemoryRegionOps lx60_fpga_ops = {
106     .read = lx60_fpga_read,
107     .write = lx60_fpga_write,
108     .endianness = DEVICE_NATIVE_ENDIAN,
109 };
110 
111 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
112         hwaddr base)
113 {
114     Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
115 
116     memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
117             "lx60.fpga", 0x10000);
118     memory_region_add_subregion(address_space, base, &s->iomem);
119     lx60_fpga_reset(s);
120     qemu_register_reset(lx60_fpga_reset, s);
121     return s;
122 }
123 
124 static void lx60_net_init(MemoryRegion *address_space,
125         hwaddr base,
126         hwaddr descriptors,
127         hwaddr buffers,
128         qemu_irq irq, NICInfo *nd)
129 {
130     DeviceState *dev;
131     SysBusDevice *s;
132     MemoryRegion *ram;
133 
134     dev = qdev_create(NULL, "open_eth");
135     qdev_set_nic_properties(dev, nd);
136     qdev_init_nofail(dev);
137 
138     s = SYS_BUS_DEVICE(dev);
139     sysbus_connect_irq(s, 0, irq);
140     memory_region_add_subregion(address_space, base,
141             sysbus_mmio_get_region(s, 0));
142     memory_region_add_subregion(address_space, descriptors,
143             sysbus_mmio_get_region(s, 1));
144 
145     ram = g_malloc(sizeof(*ram));
146     memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384, &error_abort);
147     vmstate_register_ram_global(ram);
148     memory_region_add_subregion(address_space, buffers, ram);
149 }
150 
151 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
152 {
153     XtensaCPU *cpu = opaque;
154 
155     return cpu_get_phys_page_debug(CPU(cpu), addr);
156 }
157 
158 static void lx60_reset(void *opaque)
159 {
160     XtensaCPU *cpu = opaque;
161 
162     cpu_reset(CPU(cpu));
163 }
164 
165 static void lx_init(const LxBoardDesc *board, MachineState *machine)
166 {
167 #ifdef TARGET_WORDS_BIGENDIAN
168     int be = 1;
169 #else
170     int be = 0;
171 #endif
172     MemoryRegion *system_memory = get_system_memory();
173     XtensaCPU *cpu = NULL;
174     CPUXtensaState *env = NULL;
175     MemoryRegion *ram, *rom, *system_io;
176     DriveInfo *dinfo;
177     pflash_t *flash = NULL;
178     QemuOpts *machine_opts = qemu_get_machine_opts();
179     const char *cpu_model = machine->cpu_model;
180     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
181     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
182     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
183     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
184     int n;
185 
186     if (!cpu_model) {
187         cpu_model = XTENSA_DEFAULT_CPU_MODEL;
188     }
189 
190     for (n = 0; n < smp_cpus; n++) {
191         cpu = cpu_xtensa_init(cpu_model);
192         if (cpu == NULL) {
193             error_report("unable to find CPU definition '%s'\n",
194                          cpu_model);
195             exit(EXIT_FAILURE);
196         }
197         env = &cpu->env;
198 
199         env->sregs[PRID] = n;
200         qemu_register_reset(lx60_reset, cpu);
201         /* Need MMU initialized prior to ELF loading,
202          * so that ELF gets loaded into virtual addresses
203          */
204         cpu_reset(CPU(cpu));
205     }
206 
207     ram = g_malloc(sizeof(*ram));
208     memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
209                            &error_abort);
210     vmstate_register_ram_global(ram);
211     memory_region_add_subregion(system_memory, 0, ram);
212 
213     system_io = g_malloc(sizeof(*system_io));
214     memory_region_init(system_io, NULL, "lx60.io", 224 * 1024 * 1024);
215     memory_region_add_subregion(system_memory, 0xf0000000, system_io);
216     lx60_fpga_init(system_io, 0x0d020000);
217     if (nd_table[0].used) {
218         lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
219                 xtensa_get_extint(env, 1), nd_table);
220     }
221 
222     if (!serial_hds[0]) {
223         serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
224     }
225 
226     serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
227             115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
228 
229     dinfo = drive_get(IF_PFLASH, 0, 0);
230     if (dinfo) {
231         flash = pflash_cfi01_register(board->flash_base,
232                 NULL, "lx60.io.flash", board->flash_size,
233                 dinfo->bdrv, board->flash_sector_size,
234                 board->flash_size / board->flash_sector_size,
235                 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
236         if (flash == NULL) {
237             error_report("unable to mount pflash\n");
238             exit(EXIT_FAILURE);
239         }
240     }
241 
242     /* Use presence of kernel file name as 'boot from SRAM' switch. */
243     if (kernel_filename) {
244         uint32_t entry_point = env->pc;
245         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
246         uint32_t tagptr = 0xfe000000 + board->sram_size;
247         uint32_t cur_tagptr;
248         BpMemInfo memory_location = {
249             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
250             .start = tswap32(0),
251             .end = tswap32(machine->ram_size),
252         };
253         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
254             machine->ram_size : 0x08000000;
255         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
256 
257         rom = g_malloc(sizeof(*rom));
258         memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
259                                &error_abort);
260         vmstate_register_ram_global(rom);
261         memory_region_add_subregion(system_memory, 0xfe000000, rom);
262 
263         if (kernel_cmdline) {
264             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
265         }
266         if (dtb_filename) {
267             bp_size += get_tag_size(sizeof(uint32_t));
268         }
269         if (initrd_filename) {
270             bp_size += get_tag_size(sizeof(BpMemInfo));
271         }
272 
273         /* Put kernel bootparameters to the end of that SRAM */
274         tagptr = (tagptr - bp_size) & ~0xff;
275         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
276         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
277                              sizeof(memory_location), &memory_location);
278 
279         if (kernel_cmdline) {
280             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
281                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
282         }
283         if (dtb_filename) {
284             int fdt_size;
285             void *fdt = load_device_tree(dtb_filename, &fdt_size);
286             uint32_t dtb_addr = tswap32(cur_lowmem);
287 
288             if (!fdt) {
289                 error_report("could not load DTB '%s'\n", dtb_filename);
290                 exit(EXIT_FAILURE);
291             }
292 
293             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
294             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
295                                  sizeof(dtb_addr), &dtb_addr);
296             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
297         }
298         if (initrd_filename) {
299             BpMemInfo initrd_location = { 0 };
300             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
301                                            lowmem_end - cur_lowmem);
302 
303             if (initrd_size < 0) {
304                 initrd_size = load_image_targphys(initrd_filename,
305                                                   cur_lowmem,
306                                                   lowmem_end - cur_lowmem);
307             }
308             if (initrd_size < 0) {
309                 error_report("could not load initrd '%s'\n", initrd_filename);
310                 exit(EXIT_FAILURE);
311             }
312             initrd_location.start = tswap32(cur_lowmem);
313             initrd_location.end = tswap32(cur_lowmem + initrd_size);
314             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
315                                  sizeof(initrd_location), &initrd_location);
316             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
317         }
318         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
319         env->regs[2] = tagptr;
320 
321         uint64_t elf_entry;
322         uint64_t elf_lowaddr;
323         int success = load_elf(kernel_filename, translate_phys_addr, cpu,
324                 &elf_entry, &elf_lowaddr, NULL, be, ELF_MACHINE, 0);
325         if (success > 0) {
326             entry_point = elf_entry;
327         } else {
328             hwaddr ep;
329             int is_linux;
330             success = load_uimage(kernel_filename, &ep, NULL, &is_linux);
331             if (success > 0 && is_linux) {
332                 entry_point = ep;
333             } else {
334                 error_report("could not load kernel '%s'\n",
335                              kernel_filename);
336                 exit(EXIT_FAILURE);
337             }
338         }
339         if (entry_point != env->pc) {
340             static const uint8_t jx_a0[] = {
341 #ifdef TARGET_WORDS_BIGENDIAN
342                 0x0a, 0, 0,
343 #else
344                 0xa0, 0, 0,
345 #endif
346             };
347             env->regs[0] = entry_point;
348             cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
349         }
350     } else {
351         if (flash) {
352             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
353             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
354 
355             memory_region_init_alias(flash_io, NULL, "lx60.flash",
356                     flash_mr, board->flash_boot_base,
357                     board->flash_size - board->flash_boot_base < 0x02000000 ?
358                     board->flash_size - board->flash_boot_base : 0x02000000);
359             memory_region_add_subregion(system_memory, 0xfe000000,
360                     flash_io);
361         }
362     }
363 }
364 
365 static void xtensa_lx60_init(MachineState *machine)
366 {
367     static const LxBoardDesc lx60_board = {
368         .flash_base = 0xf8000000,
369         .flash_size = 0x00400000,
370         .flash_sector_size = 0x10000,
371         .sram_size = 0x20000,
372     };
373     lx_init(&lx60_board, machine);
374 }
375 
376 static void xtensa_lx200_init(MachineState *machine)
377 {
378     static const LxBoardDesc lx200_board = {
379         .flash_base = 0xf8000000,
380         .flash_size = 0x01000000,
381         .flash_sector_size = 0x20000,
382         .sram_size = 0x2000000,
383     };
384     lx_init(&lx200_board, machine);
385 }
386 
387 static void xtensa_ml605_init(MachineState *machine)
388 {
389     static const LxBoardDesc ml605_board = {
390         .flash_base = 0xf8000000,
391         .flash_size = 0x02000000,
392         .flash_sector_size = 0x20000,
393         .sram_size = 0x2000000,
394     };
395     lx_init(&ml605_board, machine);
396 }
397 
398 static void xtensa_kc705_init(MachineState *machine)
399 {
400     static const LxBoardDesc kc705_board = {
401         .flash_base = 0xf0000000,
402         .flash_size = 0x08000000,
403         .flash_boot_base = 0x06000000,
404         .flash_sector_size = 0x20000,
405         .sram_size = 0x2000000,
406     };
407     lx_init(&kc705_board, machine);
408 }
409 
410 static QEMUMachine xtensa_lx60_machine = {
411     .name = "lx60",
412     .desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
413     .init = xtensa_lx60_init,
414     .max_cpus = 4,
415 };
416 
417 static QEMUMachine xtensa_lx200_machine = {
418     .name = "lx200",
419     .desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
420     .init = xtensa_lx200_init,
421     .max_cpus = 4,
422 };
423 
424 static QEMUMachine xtensa_ml605_machine = {
425     .name = "ml605",
426     .desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
427     .init = xtensa_ml605_init,
428     .max_cpus = 4,
429 };
430 
431 static QEMUMachine xtensa_kc705_machine = {
432     .name = "kc705",
433     .desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
434     .init = xtensa_kc705_init,
435     .max_cpus = 4,
436 };
437 
438 static void xtensa_lx_machines_init(void)
439 {
440     qemu_register_machine(&xtensa_lx60_machine);
441     qemu_register_machine(&xtensa_lx200_machine);
442     qemu_register_machine(&xtensa_ml605_machine);
443     qemu_register_machine(&xtensa_kc705_machine);
444 }
445 
446 machine_init(xtensa_lx_machines_init);
447