xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 2055dbc1)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "exec/address-spaces.h"
39 #include "hw/char/serial.h"
40 #include "net/net.h"
41 #include "hw/sysbus.h"
42 #include "hw/block/flash.h"
43 #include "chardev/char.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/reset.h"
46 #include "sysemu/runstate.h"
47 #include "qemu/error-report.h"
48 #include "qemu/option.h"
49 #include "bootparam.h"
50 #include "xtensa_memory.h"
51 #include "hw/xtensa/mx_pic.h"
52 #include "migration/vmstate.h"
53 
54 typedef struct XtfpgaFlashDesc {
55     hwaddr base;
56     size_t size;
57     size_t boot_base;
58     size_t sector_size;
59 } XtfpgaFlashDesc;
60 
61 typedef struct XtfpgaBoardDesc {
62     const XtfpgaFlashDesc *flash;
63     size_t sram_size;
64     const hwaddr *io;
65 } XtfpgaBoardDesc;
66 
67 typedef struct XtfpgaFpgaState {
68     MemoryRegion iomem;
69     uint32_t freq;
70     uint32_t leds;
71     uint32_t switches;
72 } XtfpgaFpgaState;
73 
74 static void xtfpga_fpga_reset(void *opaque)
75 {
76     XtfpgaFpgaState *s = opaque;
77 
78     s->leds = 0;
79     s->switches = 0;
80 }
81 
82 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
83         unsigned size)
84 {
85     XtfpgaFpgaState *s = opaque;
86 
87     switch (addr) {
88     case 0x0: /*build date code*/
89         return 0x09272011;
90 
91     case 0x4: /*processor clock frequency, Hz*/
92         return s->freq;
93 
94     case 0x8: /*LEDs (off = 0, on = 1)*/
95         return s->leds;
96 
97     case 0xc: /*DIP switches (off = 0, on = 1)*/
98         return s->switches;
99     }
100     return 0;
101 }
102 
103 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
104         uint64_t val, unsigned size)
105 {
106     XtfpgaFpgaState *s = opaque;
107 
108     switch (addr) {
109     case 0x8: /*LEDs (off = 0, on = 1)*/
110         s->leds = val;
111         break;
112 
113     case 0x10: /*board reset*/
114         if (val == 0xdead) {
115             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
116         }
117         break;
118     }
119 }
120 
121 static const MemoryRegionOps xtfpga_fpga_ops = {
122     .read = xtfpga_fpga_read,
123     .write = xtfpga_fpga_write,
124     .endianness = DEVICE_NATIVE_ENDIAN,
125 };
126 
127 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
128                                          hwaddr base, uint32_t freq)
129 {
130     XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
131 
132     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
133                           "xtfpga.fpga", 0x10000);
134     memory_region_add_subregion(address_space, base, &s->iomem);
135     s->freq = freq;
136     xtfpga_fpga_reset(s);
137     qemu_register_reset(xtfpga_fpga_reset, s);
138     return s;
139 }
140 
141 static void xtfpga_net_init(MemoryRegion *address_space,
142         hwaddr base,
143         hwaddr descriptors,
144         hwaddr buffers,
145         qemu_irq irq, NICInfo *nd)
146 {
147     DeviceState *dev;
148     SysBusDevice *s;
149     MemoryRegion *ram;
150 
151     dev = qdev_new("open_eth");
152     qdev_set_nic_properties(dev, nd);
153 
154     s = SYS_BUS_DEVICE(dev);
155     sysbus_realize_and_unref(s, &error_fatal);
156     sysbus_connect_irq(s, 0, irq);
157     memory_region_add_subregion(address_space, base,
158             sysbus_mmio_get_region(s, 0));
159     memory_region_add_subregion(address_space, descriptors,
160             sysbus_mmio_get_region(s, 1));
161 
162     ram = g_malloc(sizeof(*ram));
163     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
164                            &error_fatal);
165     vmstate_register_ram_global(ram);
166     memory_region_add_subregion(address_space, buffers, ram);
167 }
168 
169 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
170                                       const XtfpgaBoardDesc *board,
171                                       DriveInfo *dinfo, int be)
172 {
173     SysBusDevice *s;
174     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
175 
176     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
177                         &error_abort);
178     qdev_prop_set_uint32(dev, "num-blocks",
179                          board->flash->size / board->flash->sector_size);
180     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
181     qdev_prop_set_uint8(dev, "width", 2);
182     qdev_prop_set_bit(dev, "big-endian", be);
183     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
184     s = SYS_BUS_DEVICE(dev);
185     sysbus_realize_and_unref(s, &error_fatal);
186     memory_region_add_subregion(address_space, board->flash->base,
187                                 sysbus_mmio_get_region(s, 0));
188     return PFLASH_CFI01(dev);
189 }
190 
191 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
192 {
193     XtensaCPU *cpu = opaque;
194 
195     return cpu_get_phys_page_debug(CPU(cpu), addr);
196 }
197 
198 static void xtfpga_reset(void *opaque)
199 {
200     XtensaCPU *cpu = opaque;
201 
202     cpu_reset(CPU(cpu));
203 }
204 
205 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
206         unsigned size)
207 {
208     return 0;
209 }
210 
211 static void xtfpga_io_write(void *opaque, hwaddr addr,
212         uint64_t val, unsigned size)
213 {
214 }
215 
216 static const MemoryRegionOps xtfpga_io_ops = {
217     .read = xtfpga_io_read,
218     .write = xtfpga_io_write,
219     .endianness = DEVICE_NATIVE_ENDIAN,
220 };
221 
222 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
223 {
224 #ifdef TARGET_WORDS_BIGENDIAN
225     int be = 1;
226 #else
227     int be = 0;
228 #endif
229     MemoryRegion *system_memory = get_system_memory();
230     XtensaCPU *cpu = NULL;
231     CPUXtensaState *env = NULL;
232     MemoryRegion *system_io;
233     XtensaMxPic *mx_pic = NULL;
234     qemu_irq *extints;
235     DriveInfo *dinfo;
236     PFlashCFI01 *flash = NULL;
237     QemuOpts *machine_opts = qemu_get_machine_opts();
238     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
239     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
240     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
241     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
242     const unsigned system_io_size = 224 * MiB;
243     uint32_t freq = 10000000;
244     int n;
245     unsigned int smp_cpus = machine->smp.cpus;
246 
247     if (smp_cpus > 1) {
248         mx_pic = xtensa_mx_pic_init(31);
249         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
250     }
251     for (n = 0; n < smp_cpus; n++) {
252         CPUXtensaState *cenv = NULL;
253 
254         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
255         cenv = &cpu->env;
256         if (!env) {
257             env = cenv;
258             freq = env->config->clock_freq_khz * 1000;
259         }
260 
261         if (mx_pic) {
262             MemoryRegion *mx_eri;
263 
264             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
265                                                 xtensa_get_extints(cenv),
266                                                 xtensa_get_runstall(cenv));
267             memory_region_add_subregion(xtensa_get_er_region(cenv),
268                                         0, mx_eri);
269         }
270         cenv->sregs[PRID] = n;
271         xtensa_select_static_vectors(cenv, n != 0);
272         qemu_register_reset(xtfpga_reset, cpu);
273         /* Need MMU initialized prior to ELF loading,
274          * so that ELF gets loaded into virtual addresses
275          */
276         cpu_reset(CPU(cpu));
277     }
278     if (smp_cpus > 1) {
279         extints = xtensa_mx_pic_get_extints(mx_pic);
280     } else {
281         extints = xtensa_get_extints(env);
282     }
283 
284     if (env) {
285         XtensaMemory sysram = env->config->sysram;
286 
287         sysram.location[0].size = machine->ram_size;
288         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
289                                      system_memory);
290         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
291                                      system_memory);
292         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
293                                      system_memory);
294         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
295                                      system_memory);
296         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
297                                      system_memory);
298     }
299 
300     system_io = g_malloc(sizeof(*system_io));
301     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
302                           system_io_size);
303     memory_region_add_subregion(system_memory, board->io[0], system_io);
304     if (board->io[1]) {
305         MemoryRegion *io = g_malloc(sizeof(*io));
306 
307         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
308                                  system_io, 0, system_io_size);
309         memory_region_add_subregion(system_memory, board->io[1], io);
310     }
311     xtfpga_fpga_init(system_io, 0x0d020000, freq);
312     if (nd_table[0].used) {
313         xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
314                         extints[1], nd_table);
315     }
316 
317     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
318                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
319 
320     dinfo = drive_get(IF_PFLASH, 0, 0);
321     if (dinfo) {
322         flash = xtfpga_flash_init(system_io, board, dinfo, be);
323     }
324 
325     /* Use presence of kernel file name as 'boot from SRAM' switch. */
326     if (kernel_filename) {
327         uint32_t entry_point = env->pc;
328         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
329         uint32_t tagptr = env->config->sysrom.location[0].addr +
330             board->sram_size;
331         uint32_t cur_tagptr;
332         BpMemInfo memory_location = {
333             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
334             .start = tswap32(env->config->sysram.location[0].addr),
335             .end = tswap32(env->config->sysram.location[0].addr +
336                            machine->ram_size),
337         };
338         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
339             machine->ram_size : 0x08000000;
340         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
341 
342         lowmem_end += env->config->sysram.location[0].addr;
343         cur_lowmem += env->config->sysram.location[0].addr;
344 
345         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
346                                      system_memory);
347 
348         if (kernel_cmdline) {
349             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
350         }
351         if (dtb_filename) {
352             bp_size += get_tag_size(sizeof(uint32_t));
353         }
354         if (initrd_filename) {
355             bp_size += get_tag_size(sizeof(BpMemInfo));
356         }
357 
358         /* Put kernel bootparameters to the end of that SRAM */
359         tagptr = (tagptr - bp_size) & ~0xff;
360         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
361         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
362                              sizeof(memory_location), &memory_location);
363 
364         if (kernel_cmdline) {
365             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
366                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
367         }
368 #ifdef CONFIG_FDT
369         if (dtb_filename) {
370             int fdt_size;
371             void *fdt = load_device_tree(dtb_filename, &fdt_size);
372             uint32_t dtb_addr = tswap32(cur_lowmem);
373 
374             if (!fdt) {
375                 error_report("could not load DTB '%s'", dtb_filename);
376                 exit(EXIT_FAILURE);
377             }
378 
379             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
380             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
381                                  sizeof(dtb_addr), &dtb_addr);
382             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
383             g_free(fdt);
384         }
385 #else
386         if (dtb_filename) {
387             error_report("could not load DTB '%s': "
388                          "FDT support is not configured in QEMU",
389                          dtb_filename);
390             exit(EXIT_FAILURE);
391         }
392 #endif
393         if (initrd_filename) {
394             BpMemInfo initrd_location = { 0 };
395             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
396                                            lowmem_end - cur_lowmem);
397 
398             if (initrd_size < 0) {
399                 initrd_size = load_image_targphys(initrd_filename,
400                                                   cur_lowmem,
401                                                   lowmem_end - cur_lowmem);
402             }
403             if (initrd_size < 0) {
404                 error_report("could not load initrd '%s'", initrd_filename);
405                 exit(EXIT_FAILURE);
406             }
407             initrd_location.start = tswap32(cur_lowmem);
408             initrd_location.end = tswap32(cur_lowmem + initrd_size);
409             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
410                                  sizeof(initrd_location), &initrd_location);
411             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
412         }
413         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
414         env->regs[2] = tagptr;
415 
416         uint64_t elf_entry;
417         uint64_t elf_lowaddr;
418         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
419                 &elf_entry, &elf_lowaddr, NULL, NULL, be, EM_XTENSA, 0, 0);
420         if (success > 0) {
421             entry_point = elf_entry;
422         } else {
423             hwaddr ep;
424             int is_linux;
425             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
426                                   translate_phys_addr, cpu);
427             if (success > 0 && is_linux) {
428                 entry_point = ep;
429             } else {
430                 error_report("could not load kernel '%s'",
431                              kernel_filename);
432                 exit(EXIT_FAILURE);
433             }
434         }
435         if (entry_point != env->pc) {
436             uint8_t boot[] = {
437 #ifdef TARGET_WORDS_BIGENDIAN
438                 0x60, 0x00, 0x08,       /* j    1f */
439                 0x00,                   /* .literal_position */
440                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
441                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
442                                         /* 1: */
443                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
444                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
445                 0x0a, 0x00, 0x00,       /* jx   a0 */
446 #else
447                 0x06, 0x02, 0x00,       /* j    1f */
448                 0x00,                   /* .literal_position */
449                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
450                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
451                                         /* 1: */
452                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
453                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
454                 0xa0, 0x00, 0x00,       /* jx   a0 */
455 #endif
456             };
457             uint32_t entry_pc = tswap32(entry_point);
458             uint32_t entry_a2 = tswap32(tagptr);
459 
460             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
461             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
462             cpu_physical_memory_write(env->pc, boot, sizeof(boot));
463         }
464     } else {
465         if (flash) {
466             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
467             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
468             uint32_t size = env->config->sysrom.location[0].size;
469 
470             if (board->flash->size - board->flash->boot_base < size) {
471                 size = board->flash->size - board->flash->boot_base;
472             }
473 
474             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
475                                      flash_mr, board->flash->boot_base, size);
476             memory_region_add_subregion(system_memory,
477                                         env->config->sysrom.location[0].addr,
478                                         flash_io);
479         } else {
480             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
481                                          system_memory);
482         }
483     }
484 }
485 
486 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
487 
488 static const hwaddr xtfpga_mmu_io[2] = {
489     0xf0000000,
490 };
491 
492 static const hwaddr xtfpga_nommu_io[2] = {
493     0x90000000,
494     0x70000000,
495 };
496 
497 static const XtfpgaFlashDesc lx60_flash = {
498     .base = 0x08000000,
499     .size = 0x00400000,
500     .sector_size = 0x10000,
501 };
502 
503 static void xtfpga_lx60_init(MachineState *machine)
504 {
505     static const XtfpgaBoardDesc lx60_board = {
506         .flash = &lx60_flash,
507         .sram_size = 0x20000,
508         .io = xtfpga_mmu_io,
509     };
510     xtfpga_init(&lx60_board, machine);
511 }
512 
513 static void xtfpga_lx60_nommu_init(MachineState *machine)
514 {
515     static const XtfpgaBoardDesc lx60_board = {
516         .flash = &lx60_flash,
517         .sram_size = 0x20000,
518         .io = xtfpga_nommu_io,
519     };
520     xtfpga_init(&lx60_board, machine);
521 }
522 
523 static const XtfpgaFlashDesc lx200_flash = {
524     .base = 0x08000000,
525     .size = 0x01000000,
526     .sector_size = 0x20000,
527 };
528 
529 static void xtfpga_lx200_init(MachineState *machine)
530 {
531     static const XtfpgaBoardDesc lx200_board = {
532         .flash = &lx200_flash,
533         .sram_size = 0x2000000,
534         .io = xtfpga_mmu_io,
535     };
536     xtfpga_init(&lx200_board, machine);
537 }
538 
539 static void xtfpga_lx200_nommu_init(MachineState *machine)
540 {
541     static const XtfpgaBoardDesc lx200_board = {
542         .flash = &lx200_flash,
543         .sram_size = 0x2000000,
544         .io = xtfpga_nommu_io,
545     };
546     xtfpga_init(&lx200_board, machine);
547 }
548 
549 static const XtfpgaFlashDesc ml605_flash = {
550     .base = 0x08000000,
551     .size = 0x01000000,
552     .sector_size = 0x20000,
553 };
554 
555 static void xtfpga_ml605_init(MachineState *machine)
556 {
557     static const XtfpgaBoardDesc ml605_board = {
558         .flash = &ml605_flash,
559         .sram_size = 0x2000000,
560         .io = xtfpga_mmu_io,
561     };
562     xtfpga_init(&ml605_board, machine);
563 }
564 
565 static void xtfpga_ml605_nommu_init(MachineState *machine)
566 {
567     static const XtfpgaBoardDesc ml605_board = {
568         .flash = &ml605_flash,
569         .sram_size = 0x2000000,
570         .io = xtfpga_nommu_io,
571     };
572     xtfpga_init(&ml605_board, machine);
573 }
574 
575 static const XtfpgaFlashDesc kc705_flash = {
576     .base = 0x00000000,
577     .size = 0x08000000,
578     .boot_base = 0x06000000,
579     .sector_size = 0x20000,
580 };
581 
582 static void xtfpga_kc705_init(MachineState *machine)
583 {
584     static const XtfpgaBoardDesc kc705_board = {
585         .flash = &kc705_flash,
586         .sram_size = 0x2000000,
587         .io = xtfpga_mmu_io,
588     };
589     xtfpga_init(&kc705_board, machine);
590 }
591 
592 static void xtfpga_kc705_nommu_init(MachineState *machine)
593 {
594     static const XtfpgaBoardDesc kc705_board = {
595         .flash = &kc705_flash,
596         .sram_size = 0x2000000,
597         .io = xtfpga_nommu_io,
598     };
599     xtfpga_init(&kc705_board, machine);
600 }
601 
602 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
603 {
604     MachineClass *mc = MACHINE_CLASS(oc);
605 
606     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
607     mc->init = xtfpga_lx60_init;
608     mc->max_cpus = 32;
609     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
610     mc->default_ram_size = 64 * MiB;
611 }
612 
613 static const TypeInfo xtfpga_lx60_type = {
614     .name = MACHINE_TYPE_NAME("lx60"),
615     .parent = TYPE_MACHINE,
616     .class_init = xtfpga_lx60_class_init,
617 };
618 
619 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
620 {
621     MachineClass *mc = MACHINE_CLASS(oc);
622 
623     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
624     mc->init = xtfpga_lx60_nommu_init;
625     mc->max_cpus = 32;
626     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
627     mc->default_ram_size = 64 * MiB;
628 }
629 
630 static const TypeInfo xtfpga_lx60_nommu_type = {
631     .name = MACHINE_TYPE_NAME("lx60-nommu"),
632     .parent = TYPE_MACHINE,
633     .class_init = xtfpga_lx60_nommu_class_init,
634 };
635 
636 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
637 {
638     MachineClass *mc = MACHINE_CLASS(oc);
639 
640     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
641     mc->init = xtfpga_lx200_init;
642     mc->max_cpus = 32;
643     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
644     mc->default_ram_size = 96 * MiB;
645 }
646 
647 static const TypeInfo xtfpga_lx200_type = {
648     .name = MACHINE_TYPE_NAME("lx200"),
649     .parent = TYPE_MACHINE,
650     .class_init = xtfpga_lx200_class_init,
651 };
652 
653 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
654 {
655     MachineClass *mc = MACHINE_CLASS(oc);
656 
657     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
658     mc->init = xtfpga_lx200_nommu_init;
659     mc->max_cpus = 32;
660     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
661     mc->default_ram_size = 96 * MiB;
662 }
663 
664 static const TypeInfo xtfpga_lx200_nommu_type = {
665     .name = MACHINE_TYPE_NAME("lx200-nommu"),
666     .parent = TYPE_MACHINE,
667     .class_init = xtfpga_lx200_nommu_class_init,
668 };
669 
670 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
671 {
672     MachineClass *mc = MACHINE_CLASS(oc);
673 
674     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
675     mc->init = xtfpga_ml605_init;
676     mc->max_cpus = 32;
677     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
678     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
679 }
680 
681 static const TypeInfo xtfpga_ml605_type = {
682     .name = MACHINE_TYPE_NAME("ml605"),
683     .parent = TYPE_MACHINE,
684     .class_init = xtfpga_ml605_class_init,
685 };
686 
687 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
688 {
689     MachineClass *mc = MACHINE_CLASS(oc);
690 
691     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
692     mc->init = xtfpga_ml605_nommu_init;
693     mc->max_cpus = 32;
694     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
695     mc->default_ram_size = 256 * MiB;
696 }
697 
698 static const TypeInfo xtfpga_ml605_nommu_type = {
699     .name = MACHINE_TYPE_NAME("ml605-nommu"),
700     .parent = TYPE_MACHINE,
701     .class_init = xtfpga_ml605_nommu_class_init,
702 };
703 
704 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
705 {
706     MachineClass *mc = MACHINE_CLASS(oc);
707 
708     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
709     mc->init = xtfpga_kc705_init;
710     mc->max_cpus = 32;
711     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
712     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
713 }
714 
715 static const TypeInfo xtfpga_kc705_type = {
716     .name = MACHINE_TYPE_NAME("kc705"),
717     .parent = TYPE_MACHINE,
718     .class_init = xtfpga_kc705_class_init,
719 };
720 
721 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
722 {
723     MachineClass *mc = MACHINE_CLASS(oc);
724 
725     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
726     mc->init = xtfpga_kc705_nommu_init;
727     mc->max_cpus = 32;
728     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
729     mc->default_ram_size = 256 * MiB;
730 }
731 
732 static const TypeInfo xtfpga_kc705_nommu_type = {
733     .name = MACHINE_TYPE_NAME("kc705-nommu"),
734     .parent = TYPE_MACHINE,
735     .class_init = xtfpga_kc705_nommu_class_init,
736 };
737 
738 static void xtfpga_machines_init(void)
739 {
740     type_register_static(&xtfpga_lx60_type);
741     type_register_static(&xtfpga_lx200_type);
742     type_register_static(&xtfpga_ml605_type);
743     type_register_static(&xtfpga_kc705_type);
744     type_register_static(&xtfpga_lx60_nommu_type);
745     type_register_static(&xtfpga_lx200_nommu_type);
746     type_register_static(&xtfpga_ml605_nommu_type);
747     type_register_static(&xtfpga_kc705_nommu_type);
748 }
749 
750 type_init(xtfpga_machines_init)
751