xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 0bdb12c7)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "elf.h"
36 #include "exec/memory.h"
37 #include "exec/address-spaces.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "sysemu/block-backend.h"
43 #include "sysemu/char.h"
44 #include "sysemu/device_tree.h"
45 #include "qemu/error-report.h"
46 #include "bootparam.h"
47 
48 typedef struct LxBoardDesc {
49     hwaddr flash_base;
50     size_t flash_size;
51     size_t flash_boot_base;
52     size_t flash_sector_size;
53     size_t sram_size;
54 } LxBoardDesc;
55 
56 typedef struct Lx60FpgaState {
57     MemoryRegion iomem;
58     uint32_t leds;
59     uint32_t switches;
60 } Lx60FpgaState;
61 
62 static void lx60_fpga_reset(void *opaque)
63 {
64     Lx60FpgaState *s = opaque;
65 
66     s->leds = 0;
67     s->switches = 0;
68 }
69 
70 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
71         unsigned size)
72 {
73     Lx60FpgaState *s = opaque;
74 
75     switch (addr) {
76     case 0x0: /*build date code*/
77         return 0x09272011;
78 
79     case 0x4: /*processor clock frequency, Hz*/
80         return 10000000;
81 
82     case 0x8: /*LEDs (off = 0, on = 1)*/
83         return s->leds;
84 
85     case 0xc: /*DIP switches (off = 0, on = 1)*/
86         return s->switches;
87     }
88     return 0;
89 }
90 
91 static void lx60_fpga_write(void *opaque, hwaddr addr,
92         uint64_t val, unsigned size)
93 {
94     Lx60FpgaState *s = opaque;
95 
96     switch (addr) {
97     case 0x8: /*LEDs (off = 0, on = 1)*/
98         s->leds = val;
99         break;
100 
101     case 0x10: /*board reset*/
102         if (val == 0xdead) {
103             qemu_system_reset_request();
104         }
105         break;
106     }
107 }
108 
109 static const MemoryRegionOps lx60_fpga_ops = {
110     .read = lx60_fpga_read,
111     .write = lx60_fpga_write,
112     .endianness = DEVICE_NATIVE_ENDIAN,
113 };
114 
115 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
116         hwaddr base)
117 {
118     Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
119 
120     memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
121             "lx60.fpga", 0x10000);
122     memory_region_add_subregion(address_space, base, &s->iomem);
123     lx60_fpga_reset(s);
124     qemu_register_reset(lx60_fpga_reset, s);
125     return s;
126 }
127 
128 static void lx60_net_init(MemoryRegion *address_space,
129         hwaddr base,
130         hwaddr descriptors,
131         hwaddr buffers,
132         qemu_irq irq, NICInfo *nd)
133 {
134     DeviceState *dev;
135     SysBusDevice *s;
136     MemoryRegion *ram;
137 
138     dev = qdev_create(NULL, "open_eth");
139     qdev_set_nic_properties(dev, nd);
140     qdev_init_nofail(dev);
141 
142     s = SYS_BUS_DEVICE(dev);
143     sysbus_connect_irq(s, 0, irq);
144     memory_region_add_subregion(address_space, base,
145             sysbus_mmio_get_region(s, 0));
146     memory_region_add_subregion(address_space, descriptors,
147             sysbus_mmio_get_region(s, 1));
148 
149     ram = g_malloc(sizeof(*ram));
150     memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
151                            &error_fatal);
152     vmstate_register_ram_global(ram);
153     memory_region_add_subregion(address_space, buffers, ram);
154 }
155 
156 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
157                                    const LxBoardDesc *board,
158                                    DriveInfo *dinfo, int be)
159 {
160     SysBusDevice *s;
161     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
162 
163     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
164                         &error_abort);
165     qdev_prop_set_uint32(dev, "num-blocks",
166                          board->flash_size / board->flash_sector_size);
167     qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
168     qdev_prop_set_uint8(dev, "width", 2);
169     qdev_prop_set_bit(dev, "big-endian", be);
170     qdev_prop_set_string(dev, "name", "lx60.io.flash");
171     qdev_init_nofail(dev);
172     s = SYS_BUS_DEVICE(dev);
173     memory_region_add_subregion(address_space, board->flash_base,
174                                 sysbus_mmio_get_region(s, 0));
175     return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
176 }
177 
178 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
179 {
180     XtensaCPU *cpu = opaque;
181 
182     return cpu_get_phys_page_debug(CPU(cpu), addr);
183 }
184 
185 static void lx60_reset(void *opaque)
186 {
187     XtensaCPU *cpu = opaque;
188 
189     cpu_reset(CPU(cpu));
190 }
191 
192 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
193         unsigned size)
194 {
195     return 0;
196 }
197 
198 static void lx60_io_write(void *opaque, hwaddr addr,
199         uint64_t val, unsigned size)
200 {
201 }
202 
203 static const MemoryRegionOps lx60_io_ops = {
204     .read = lx60_io_read,
205     .write = lx60_io_write,
206     .endianness = DEVICE_NATIVE_ENDIAN,
207 };
208 
209 static void lx_init(const LxBoardDesc *board, MachineState *machine)
210 {
211 #ifdef TARGET_WORDS_BIGENDIAN
212     int be = 1;
213 #else
214     int be = 0;
215 #endif
216     MemoryRegion *system_memory = get_system_memory();
217     XtensaCPU *cpu = NULL;
218     CPUXtensaState *env = NULL;
219     MemoryRegion *ram, *rom, *system_io;
220     DriveInfo *dinfo;
221     pflash_t *flash = NULL;
222     QemuOpts *machine_opts = qemu_get_machine_opts();
223     const char *cpu_model = machine->cpu_model;
224     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
225     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
226     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
227     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
228     int n;
229 
230     if (!cpu_model) {
231         cpu_model = XTENSA_DEFAULT_CPU_MODEL;
232     }
233 
234     for (n = 0; n < smp_cpus; n++) {
235         cpu = cpu_xtensa_init(cpu_model);
236         if (cpu == NULL) {
237             error_report("unable to find CPU definition '%s'",
238                          cpu_model);
239             exit(EXIT_FAILURE);
240         }
241         env = &cpu->env;
242 
243         env->sregs[PRID] = n;
244         qemu_register_reset(lx60_reset, cpu);
245         /* Need MMU initialized prior to ELF loading,
246          * so that ELF gets loaded into virtual addresses
247          */
248         cpu_reset(CPU(cpu));
249     }
250 
251     ram = g_malloc(sizeof(*ram));
252     memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
253                            &error_fatal);
254     vmstate_register_ram_global(ram);
255     memory_region_add_subregion(system_memory, 0, ram);
256 
257     system_io = g_malloc(sizeof(*system_io));
258     memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
259                           224 * 1024 * 1024);
260     memory_region_add_subregion(system_memory, 0xf0000000, system_io);
261     lx60_fpga_init(system_io, 0x0d020000);
262     if (nd_table[0].used) {
263         lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
264                 xtensa_get_extint(env, 1), nd_table);
265     }
266 
267     if (!serial_hds[0]) {
268         serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
269     }
270 
271     serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
272             115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
273 
274     dinfo = drive_get(IF_PFLASH, 0, 0);
275     if (dinfo) {
276         flash = xtfpga_flash_init(system_io, board, dinfo, be);
277     }
278 
279     /* Use presence of kernel file name as 'boot from SRAM' switch. */
280     if (kernel_filename) {
281         uint32_t entry_point = env->pc;
282         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
283         uint32_t tagptr = 0xfe000000 + board->sram_size;
284         uint32_t cur_tagptr;
285         BpMemInfo memory_location = {
286             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
287             .start = tswap32(0),
288             .end = tswap32(machine->ram_size),
289         };
290         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
291             machine->ram_size : 0x08000000;
292         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
293 
294         rom = g_malloc(sizeof(*rom));
295         memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
296                                &error_fatal);
297         vmstate_register_ram_global(rom);
298         memory_region_add_subregion(system_memory, 0xfe000000, rom);
299 
300         if (kernel_cmdline) {
301             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
302         }
303         if (dtb_filename) {
304             bp_size += get_tag_size(sizeof(uint32_t));
305         }
306         if (initrd_filename) {
307             bp_size += get_tag_size(sizeof(BpMemInfo));
308         }
309 
310         /* Put kernel bootparameters to the end of that SRAM */
311         tagptr = (tagptr - bp_size) & ~0xff;
312         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
313         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
314                              sizeof(memory_location), &memory_location);
315 
316         if (kernel_cmdline) {
317             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
318                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
319         }
320         if (dtb_filename) {
321             int fdt_size;
322             void *fdt = load_device_tree(dtb_filename, &fdt_size);
323             uint32_t dtb_addr = tswap32(cur_lowmem);
324 
325             if (!fdt) {
326                 error_report("could not load DTB '%s'", dtb_filename);
327                 exit(EXIT_FAILURE);
328             }
329 
330             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
331             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
332                                  sizeof(dtb_addr), &dtb_addr);
333             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
334         }
335         if (initrd_filename) {
336             BpMemInfo initrd_location = { 0 };
337             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
338                                            lowmem_end - cur_lowmem);
339 
340             if (initrd_size < 0) {
341                 initrd_size = load_image_targphys(initrd_filename,
342                                                   cur_lowmem,
343                                                   lowmem_end - cur_lowmem);
344             }
345             if (initrd_size < 0) {
346                 error_report("could not load initrd '%s'", initrd_filename);
347                 exit(EXIT_FAILURE);
348             }
349             initrd_location.start = tswap32(cur_lowmem);
350             initrd_location.end = tswap32(cur_lowmem + initrd_size);
351             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
352                                  sizeof(initrd_location), &initrd_location);
353             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
354         }
355         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
356         env->regs[2] = tagptr;
357 
358         uint64_t elf_entry;
359         uint64_t elf_lowaddr;
360         int success = load_elf(kernel_filename, translate_phys_addr, cpu,
361                 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
362         if (success > 0) {
363             entry_point = elf_entry;
364         } else {
365             hwaddr ep;
366             int is_linux;
367             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
368                                   translate_phys_addr, cpu);
369             if (success > 0 && is_linux) {
370                 entry_point = ep;
371             } else {
372                 error_report("could not load kernel '%s'",
373                              kernel_filename);
374                 exit(EXIT_FAILURE);
375             }
376         }
377         if (entry_point != env->pc) {
378             static const uint8_t jx_a0[] = {
379 #ifdef TARGET_WORDS_BIGENDIAN
380                 0x0a, 0, 0,
381 #else
382                 0xa0, 0, 0,
383 #endif
384             };
385             env->regs[0] = entry_point;
386             cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
387         }
388     } else {
389         if (flash) {
390             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
391             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
392 
393             memory_region_init_alias(flash_io, NULL, "lx60.flash",
394                     flash_mr, board->flash_boot_base,
395                     board->flash_size - board->flash_boot_base < 0x02000000 ?
396                     board->flash_size - board->flash_boot_base : 0x02000000);
397             memory_region_add_subregion(system_memory, 0xfe000000,
398                     flash_io);
399         }
400     }
401 }
402 
403 static void xtensa_lx60_init(MachineState *machine)
404 {
405     static const LxBoardDesc lx60_board = {
406         .flash_base = 0x08000000,
407         .flash_size = 0x00400000,
408         .flash_sector_size = 0x10000,
409         .sram_size = 0x20000,
410     };
411     lx_init(&lx60_board, machine);
412 }
413 
414 static void xtensa_lx200_init(MachineState *machine)
415 {
416     static const LxBoardDesc lx200_board = {
417         .flash_base = 0x08000000,
418         .flash_size = 0x01000000,
419         .flash_sector_size = 0x20000,
420         .sram_size = 0x2000000,
421     };
422     lx_init(&lx200_board, machine);
423 }
424 
425 static void xtensa_ml605_init(MachineState *machine)
426 {
427     static const LxBoardDesc ml605_board = {
428         .flash_base = 0x08000000,
429         .flash_size = 0x01000000,
430         .flash_sector_size = 0x20000,
431         .sram_size = 0x2000000,
432     };
433     lx_init(&ml605_board, machine);
434 }
435 
436 static void xtensa_kc705_init(MachineState *machine)
437 {
438     static const LxBoardDesc kc705_board = {
439         .flash_base = 0x00000000,
440         .flash_size = 0x08000000,
441         .flash_boot_base = 0x06000000,
442         .flash_sector_size = 0x20000,
443         .sram_size = 0x2000000,
444     };
445     lx_init(&kc705_board, machine);
446 }
447 
448 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
449 {
450     MachineClass *mc = MACHINE_CLASS(oc);
451 
452     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
453     mc->init = xtensa_lx60_init;
454     mc->max_cpus = 4;
455 }
456 
457 static const TypeInfo xtensa_lx60_type = {
458     .name = MACHINE_TYPE_NAME("lx60"),
459     .parent = TYPE_MACHINE,
460     .class_init = xtensa_lx60_class_init,
461 };
462 
463 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
464 {
465     MachineClass *mc = MACHINE_CLASS(oc);
466 
467     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
468     mc->init = xtensa_lx200_init;
469     mc->max_cpus = 4;
470 }
471 
472 static const TypeInfo xtensa_lx200_type = {
473     .name = MACHINE_TYPE_NAME("lx200"),
474     .parent = TYPE_MACHINE,
475     .class_init = xtensa_lx200_class_init,
476 };
477 
478 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
479 {
480     MachineClass *mc = MACHINE_CLASS(oc);
481 
482     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
483     mc->init = xtensa_ml605_init;
484     mc->max_cpus = 4;
485 }
486 
487 static const TypeInfo xtensa_ml605_type = {
488     .name = MACHINE_TYPE_NAME("ml605"),
489     .parent = TYPE_MACHINE,
490     .class_init = xtensa_ml605_class_init,
491 };
492 
493 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
494 {
495     MachineClass *mc = MACHINE_CLASS(oc);
496 
497     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
498     mc->init = xtensa_kc705_init;
499     mc->max_cpus = 4;
500 }
501 
502 static const TypeInfo xtensa_kc705_type = {
503     .name = MACHINE_TYPE_NAME("kc705"),
504     .parent = TYPE_MACHINE,
505     .class_init = xtensa_kc705_class_init,
506 };
507 
508 static void xtensa_lx_machines_init(void)
509 {
510     type_register_static(&xtensa_lx60_type);
511     type_register_static(&xtensa_lx200_type);
512     type_register_static(&xtensa_ml605_type);
513     type_register_static(&xtensa_kc705_type);
514 }
515 
516 type_init(xtensa_lx_machines_init)
517