1 /* 2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * * Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * * Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * * Neither the name of the Open Source and Linux Lab nor the 13 * names of its contributors may be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include "qemu/osdep.h" 29 #include "qapi/error.h" 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "sysemu/sysemu.h" 33 #include "hw/boards.h" 34 #include "hw/loader.h" 35 #include "elf.h" 36 #include "exec/memory.h" 37 #include "exec/address-spaces.h" 38 #include "hw/char/serial.h" 39 #include "net/net.h" 40 #include "hw/sysbus.h" 41 #include "hw/block/flash.h" 42 #include "sysemu/block-backend.h" 43 #include "sysemu/char.h" 44 #include "sysemu/device_tree.h" 45 #include "qemu/error-report.h" 46 #include "bootparam.h" 47 48 typedef struct LxBoardDesc { 49 hwaddr flash_base; 50 size_t flash_size; 51 size_t flash_boot_base; 52 size_t flash_sector_size; 53 size_t sram_size; 54 } LxBoardDesc; 55 56 typedef struct Lx60FpgaState { 57 MemoryRegion iomem; 58 uint32_t leds; 59 uint32_t switches; 60 } Lx60FpgaState; 61 62 static void lx60_fpga_reset(void *opaque) 63 { 64 Lx60FpgaState *s = opaque; 65 66 s->leds = 0; 67 s->switches = 0; 68 } 69 70 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr, 71 unsigned size) 72 { 73 Lx60FpgaState *s = opaque; 74 75 switch (addr) { 76 case 0x0: /*build date code*/ 77 return 0x09272011; 78 79 case 0x4: /*processor clock frequency, Hz*/ 80 return 10000000; 81 82 case 0x8: /*LEDs (off = 0, on = 1)*/ 83 return s->leds; 84 85 case 0xc: /*DIP switches (off = 0, on = 1)*/ 86 return s->switches; 87 } 88 return 0; 89 } 90 91 static void lx60_fpga_write(void *opaque, hwaddr addr, 92 uint64_t val, unsigned size) 93 { 94 Lx60FpgaState *s = opaque; 95 96 switch (addr) { 97 case 0x8: /*LEDs (off = 0, on = 1)*/ 98 s->leds = val; 99 break; 100 101 case 0x10: /*board reset*/ 102 if (val == 0xdead) { 103 qemu_system_reset_request(); 104 } 105 break; 106 } 107 } 108 109 static const MemoryRegionOps lx60_fpga_ops = { 110 .read = lx60_fpga_read, 111 .write = lx60_fpga_write, 112 .endianness = DEVICE_NATIVE_ENDIAN, 113 }; 114 115 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space, 116 hwaddr base) 117 { 118 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState)); 119 120 memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s, 121 "lx60.fpga", 0x10000); 122 memory_region_add_subregion(address_space, base, &s->iomem); 123 lx60_fpga_reset(s); 124 qemu_register_reset(lx60_fpga_reset, s); 125 return s; 126 } 127 128 static void lx60_net_init(MemoryRegion *address_space, 129 hwaddr base, 130 hwaddr descriptors, 131 hwaddr buffers, 132 qemu_irq irq, NICInfo *nd) 133 { 134 DeviceState *dev; 135 SysBusDevice *s; 136 MemoryRegion *ram; 137 138 dev = qdev_create(NULL, "open_eth"); 139 qdev_set_nic_properties(dev, nd); 140 qdev_init_nofail(dev); 141 142 s = SYS_BUS_DEVICE(dev); 143 sysbus_connect_irq(s, 0, irq); 144 memory_region_add_subregion(address_space, base, 145 sysbus_mmio_get_region(s, 0)); 146 memory_region_add_subregion(address_space, descriptors, 147 sysbus_mmio_get_region(s, 1)); 148 149 ram = g_malloc(sizeof(*ram)); 150 memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384, 151 &error_fatal); 152 vmstate_register_ram_global(ram); 153 memory_region_add_subregion(address_space, buffers, ram); 154 } 155 156 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space, 157 const LxBoardDesc *board, 158 DriveInfo *dinfo, int be) 159 { 160 SysBusDevice *s; 161 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 162 163 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 164 &error_abort); 165 qdev_prop_set_uint32(dev, "num-blocks", 166 board->flash_size / board->flash_sector_size); 167 qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size); 168 qdev_prop_set_uint8(dev, "width", 2); 169 qdev_prop_set_bit(dev, "big-endian", be); 170 qdev_prop_set_string(dev, "name", "lx60.io.flash"); 171 qdev_init_nofail(dev); 172 s = SYS_BUS_DEVICE(dev); 173 memory_region_add_subregion(address_space, board->flash_base, 174 sysbus_mmio_get_region(s, 0)); 175 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01"); 176 } 177 178 static uint64_t translate_phys_addr(void *opaque, uint64_t addr) 179 { 180 XtensaCPU *cpu = opaque; 181 182 return cpu_get_phys_page_debug(CPU(cpu), addr); 183 } 184 185 static void lx60_reset(void *opaque) 186 { 187 XtensaCPU *cpu = opaque; 188 189 cpu_reset(CPU(cpu)); 190 } 191 192 static uint64_t lx60_io_read(void *opaque, hwaddr addr, 193 unsigned size) 194 { 195 return 0; 196 } 197 198 static void lx60_io_write(void *opaque, hwaddr addr, 199 uint64_t val, unsigned size) 200 { 201 } 202 203 static const MemoryRegionOps lx60_io_ops = { 204 .read = lx60_io_read, 205 .write = lx60_io_write, 206 .endianness = DEVICE_NATIVE_ENDIAN, 207 }; 208 209 static void lx_init(const LxBoardDesc *board, MachineState *machine) 210 { 211 #ifdef TARGET_WORDS_BIGENDIAN 212 int be = 1; 213 #else 214 int be = 0; 215 #endif 216 MemoryRegion *system_memory = get_system_memory(); 217 XtensaCPU *cpu = NULL; 218 CPUXtensaState *env = NULL; 219 MemoryRegion *ram, *rom, *system_io; 220 DriveInfo *dinfo; 221 pflash_t *flash = NULL; 222 QemuOpts *machine_opts = qemu_get_machine_opts(); 223 const char *cpu_model = machine->cpu_model; 224 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel"); 225 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append"); 226 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb"); 227 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd"); 228 int n; 229 230 if (!cpu_model) { 231 cpu_model = XTENSA_DEFAULT_CPU_MODEL; 232 } 233 234 for (n = 0; n < smp_cpus; n++) { 235 cpu = cpu_xtensa_init(cpu_model); 236 if (cpu == NULL) { 237 error_report("unable to find CPU definition '%s'", 238 cpu_model); 239 exit(EXIT_FAILURE); 240 } 241 env = &cpu->env; 242 243 env->sregs[PRID] = n; 244 qemu_register_reset(lx60_reset, cpu); 245 /* Need MMU initialized prior to ELF loading, 246 * so that ELF gets loaded into virtual addresses 247 */ 248 cpu_reset(CPU(cpu)); 249 } 250 251 ram = g_malloc(sizeof(*ram)); 252 memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size, 253 &error_fatal); 254 vmstate_register_ram_global(ram); 255 memory_region_add_subregion(system_memory, 0, ram); 256 257 system_io = g_malloc(sizeof(*system_io)); 258 memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io", 259 224 * 1024 * 1024); 260 memory_region_add_subregion(system_memory, 0xf0000000, system_io); 261 lx60_fpga_init(system_io, 0x0d020000); 262 if (nd_table[0].used) { 263 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, 264 xtensa_get_extint(env, 1), nd_table); 265 } 266 267 if (!serial_hds[0]) { 268 serial_hds[0] = qemu_chr_new("serial0", "null", NULL); 269 } 270 271 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0), 272 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN); 273 274 dinfo = drive_get(IF_PFLASH, 0, 0); 275 if (dinfo) { 276 flash = xtfpga_flash_init(system_io, board, dinfo, be); 277 } 278 279 /* Use presence of kernel file name as 'boot from SRAM' switch. */ 280 if (kernel_filename) { 281 uint32_t entry_point = env->pc; 282 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */ 283 uint32_t tagptr = 0xfe000000 + board->sram_size; 284 uint32_t cur_tagptr; 285 BpMemInfo memory_location = { 286 .type = tswap32(MEMORY_TYPE_CONVENTIONAL), 287 .start = tswap32(0), 288 .end = tswap32(machine->ram_size), 289 }; 290 uint32_t lowmem_end = machine->ram_size < 0x08000000 ? 291 machine->ram_size : 0x08000000; 292 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096); 293 294 rom = g_malloc(sizeof(*rom)); 295 memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size, 296 &error_fatal); 297 vmstate_register_ram_global(rom); 298 memory_region_add_subregion(system_memory, 0xfe000000, rom); 299 300 if (kernel_cmdline) { 301 bp_size += get_tag_size(strlen(kernel_cmdline) + 1); 302 } 303 if (dtb_filename) { 304 bp_size += get_tag_size(sizeof(uint32_t)); 305 } 306 if (initrd_filename) { 307 bp_size += get_tag_size(sizeof(BpMemInfo)); 308 } 309 310 /* Put kernel bootparameters to the end of that SRAM */ 311 tagptr = (tagptr - bp_size) & ~0xff; 312 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL); 313 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY, 314 sizeof(memory_location), &memory_location); 315 316 if (kernel_cmdline) { 317 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE, 318 strlen(kernel_cmdline) + 1, kernel_cmdline); 319 } 320 if (dtb_filename) { 321 int fdt_size; 322 void *fdt = load_device_tree(dtb_filename, &fdt_size); 323 uint32_t dtb_addr = tswap32(cur_lowmem); 324 325 if (!fdt) { 326 error_report("could not load DTB '%s'", dtb_filename); 327 exit(EXIT_FAILURE); 328 } 329 330 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size); 331 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT, 332 sizeof(dtb_addr), &dtb_addr); 333 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096); 334 } 335 if (initrd_filename) { 336 BpMemInfo initrd_location = { 0 }; 337 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem, 338 lowmem_end - cur_lowmem); 339 340 if (initrd_size < 0) { 341 initrd_size = load_image_targphys(initrd_filename, 342 cur_lowmem, 343 lowmem_end - cur_lowmem); 344 } 345 if (initrd_size < 0) { 346 error_report("could not load initrd '%s'", initrd_filename); 347 exit(EXIT_FAILURE); 348 } 349 initrd_location.start = tswap32(cur_lowmem); 350 initrd_location.end = tswap32(cur_lowmem + initrd_size); 351 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD, 352 sizeof(initrd_location), &initrd_location); 353 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096); 354 } 355 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL); 356 env->regs[2] = tagptr; 357 358 uint64_t elf_entry; 359 uint64_t elf_lowaddr; 360 int success = load_elf(kernel_filename, translate_phys_addr, cpu, 361 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0); 362 if (success > 0) { 363 entry_point = elf_entry; 364 } else { 365 hwaddr ep; 366 int is_linux; 367 success = load_uimage(kernel_filename, &ep, NULL, &is_linux, 368 translate_phys_addr, cpu); 369 if (success > 0 && is_linux) { 370 entry_point = ep; 371 } else { 372 error_report("could not load kernel '%s'", 373 kernel_filename); 374 exit(EXIT_FAILURE); 375 } 376 } 377 if (entry_point != env->pc) { 378 static const uint8_t jx_a0[] = { 379 #ifdef TARGET_WORDS_BIGENDIAN 380 0x0a, 0, 0, 381 #else 382 0xa0, 0, 0, 383 #endif 384 }; 385 env->regs[0] = entry_point; 386 cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0)); 387 } 388 } else { 389 if (flash) { 390 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash); 391 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io)); 392 393 memory_region_init_alias(flash_io, NULL, "lx60.flash", 394 flash_mr, board->flash_boot_base, 395 board->flash_size - board->flash_boot_base < 0x02000000 ? 396 board->flash_size - board->flash_boot_base : 0x02000000); 397 memory_region_add_subregion(system_memory, 0xfe000000, 398 flash_io); 399 } 400 } 401 } 402 403 static void xtensa_lx60_init(MachineState *machine) 404 { 405 static const LxBoardDesc lx60_board = { 406 .flash_base = 0x08000000, 407 .flash_size = 0x00400000, 408 .flash_sector_size = 0x10000, 409 .sram_size = 0x20000, 410 }; 411 lx_init(&lx60_board, machine); 412 } 413 414 static void xtensa_lx200_init(MachineState *machine) 415 { 416 static const LxBoardDesc lx200_board = { 417 .flash_base = 0x08000000, 418 .flash_size = 0x01000000, 419 .flash_sector_size = 0x20000, 420 .sram_size = 0x2000000, 421 }; 422 lx_init(&lx200_board, machine); 423 } 424 425 static void xtensa_ml605_init(MachineState *machine) 426 { 427 static const LxBoardDesc ml605_board = { 428 .flash_base = 0x08000000, 429 .flash_size = 0x01000000, 430 .flash_sector_size = 0x20000, 431 .sram_size = 0x2000000, 432 }; 433 lx_init(&ml605_board, machine); 434 } 435 436 static void xtensa_kc705_init(MachineState *machine) 437 { 438 static const LxBoardDesc kc705_board = { 439 .flash_base = 0x00000000, 440 .flash_size = 0x08000000, 441 .flash_boot_base = 0x06000000, 442 .flash_sector_size = 0x20000, 443 .sram_size = 0x2000000, 444 }; 445 lx_init(&kc705_board, machine); 446 } 447 448 static void xtensa_lx60_class_init(ObjectClass *oc, void *data) 449 { 450 MachineClass *mc = MACHINE_CLASS(oc); 451 452 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 453 mc->init = xtensa_lx60_init; 454 mc->max_cpus = 4; 455 } 456 457 static const TypeInfo xtensa_lx60_type = { 458 .name = MACHINE_TYPE_NAME("lx60"), 459 .parent = TYPE_MACHINE, 460 .class_init = xtensa_lx60_class_init, 461 }; 462 463 static void xtensa_lx200_class_init(ObjectClass *oc, void *data) 464 { 465 MachineClass *mc = MACHINE_CLASS(oc); 466 467 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 468 mc->init = xtensa_lx200_init; 469 mc->max_cpus = 4; 470 } 471 472 static const TypeInfo xtensa_lx200_type = { 473 .name = MACHINE_TYPE_NAME("lx200"), 474 .parent = TYPE_MACHINE, 475 .class_init = xtensa_lx200_class_init, 476 }; 477 478 static void xtensa_ml605_class_init(ObjectClass *oc, void *data) 479 { 480 MachineClass *mc = MACHINE_CLASS(oc); 481 482 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 483 mc->init = xtensa_ml605_init; 484 mc->max_cpus = 4; 485 } 486 487 static const TypeInfo xtensa_ml605_type = { 488 .name = MACHINE_TYPE_NAME("ml605"), 489 .parent = TYPE_MACHINE, 490 .class_init = xtensa_ml605_class_init, 491 }; 492 493 static void xtensa_kc705_class_init(ObjectClass *oc, void *data) 494 { 495 MachineClass *mc = MACHINE_CLASS(oc); 496 497 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; 498 mc->init = xtensa_kc705_init; 499 mc->max_cpus = 4; 500 } 501 502 static const TypeInfo xtensa_kc705_type = { 503 .name = MACHINE_TYPE_NAME("kc705"), 504 .parent = TYPE_MACHINE, 505 .class_init = xtensa_kc705_class_init, 506 }; 507 508 static void xtensa_lx_machines_init(void) 509 { 510 type_register_static(&xtensa_lx60_type); 511 type_register_static(&xtensa_lx200_type); 512 type_register_static(&xtensa_ml605_type); 513 type_register_static(&xtensa_kc705_type); 514 } 515 516 type_init(xtensa_lx_machines_init) 517