xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 08b97f7f)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "elf.h"
36 #include "exec/memory.h"
37 #include "exec/address-spaces.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "qemu/error-report.h"
45 #include "qemu/option.h"
46 #include "bootparam.h"
47 #include "xtensa_memory.h"
48 #include "hw/xtensa/mx_pic.h"
49 
50 typedef struct XtfpgaFlashDesc {
51     hwaddr base;
52     size_t size;
53     size_t boot_base;
54     size_t sector_size;
55 } XtfpgaFlashDesc;
56 
57 typedef struct XtfpgaBoardDesc {
58     const XtfpgaFlashDesc *flash;
59     size_t sram_size;
60     const hwaddr *io;
61 } XtfpgaBoardDesc;
62 
63 typedef struct XtfpgaFpgaState {
64     MemoryRegion iomem;
65     uint32_t freq;
66     uint32_t leds;
67     uint32_t switches;
68 } XtfpgaFpgaState;
69 
70 static void xtfpga_fpga_reset(void *opaque)
71 {
72     XtfpgaFpgaState *s = opaque;
73 
74     s->leds = 0;
75     s->switches = 0;
76 }
77 
78 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
79         unsigned size)
80 {
81     XtfpgaFpgaState *s = opaque;
82 
83     switch (addr) {
84     case 0x0: /*build date code*/
85         return 0x09272011;
86 
87     case 0x4: /*processor clock frequency, Hz*/
88         return s->freq;
89 
90     case 0x8: /*LEDs (off = 0, on = 1)*/
91         return s->leds;
92 
93     case 0xc: /*DIP switches (off = 0, on = 1)*/
94         return s->switches;
95     }
96     return 0;
97 }
98 
99 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
100         uint64_t val, unsigned size)
101 {
102     XtfpgaFpgaState *s = opaque;
103 
104     switch (addr) {
105     case 0x8: /*LEDs (off = 0, on = 1)*/
106         s->leds = val;
107         break;
108 
109     case 0x10: /*board reset*/
110         if (val == 0xdead) {
111             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
112         }
113         break;
114     }
115 }
116 
117 static const MemoryRegionOps xtfpga_fpga_ops = {
118     .read = xtfpga_fpga_read,
119     .write = xtfpga_fpga_write,
120     .endianness = DEVICE_NATIVE_ENDIAN,
121 };
122 
123 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
124                                          hwaddr base, uint32_t freq)
125 {
126     XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
127 
128     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
129                           "xtfpga.fpga", 0x10000);
130     memory_region_add_subregion(address_space, base, &s->iomem);
131     s->freq = freq;
132     xtfpga_fpga_reset(s);
133     qemu_register_reset(xtfpga_fpga_reset, s);
134     return s;
135 }
136 
137 static void xtfpga_net_init(MemoryRegion *address_space,
138         hwaddr base,
139         hwaddr descriptors,
140         hwaddr buffers,
141         qemu_irq irq, NICInfo *nd)
142 {
143     DeviceState *dev;
144     SysBusDevice *s;
145     MemoryRegion *ram;
146 
147     dev = qdev_create(NULL, "open_eth");
148     qdev_set_nic_properties(dev, nd);
149     qdev_init_nofail(dev);
150 
151     s = SYS_BUS_DEVICE(dev);
152     sysbus_connect_irq(s, 0, irq);
153     memory_region_add_subregion(address_space, base,
154             sysbus_mmio_get_region(s, 0));
155     memory_region_add_subregion(address_space, descriptors,
156             sysbus_mmio_get_region(s, 1));
157 
158     ram = g_malloc(sizeof(*ram));
159     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
160                            &error_fatal);
161     vmstate_register_ram_global(ram);
162     memory_region_add_subregion(address_space, buffers, ram);
163 }
164 
165 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
166                                       const XtfpgaBoardDesc *board,
167                                       DriveInfo *dinfo, int be)
168 {
169     SysBusDevice *s;
170     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
171 
172     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
173                         &error_abort);
174     qdev_prop_set_uint32(dev, "num-blocks",
175                          board->flash->size / board->flash->sector_size);
176     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
177     qdev_prop_set_uint8(dev, "width", 2);
178     qdev_prop_set_bit(dev, "big-endian", be);
179     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
180     qdev_init_nofail(dev);
181     s = SYS_BUS_DEVICE(dev);
182     memory_region_add_subregion(address_space, board->flash->base,
183                                 sysbus_mmio_get_region(s, 0));
184     return PFLASH_CFI01(dev);
185 }
186 
187 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
188 {
189     XtensaCPU *cpu = opaque;
190 
191     return cpu_get_phys_page_debug(CPU(cpu), addr);
192 }
193 
194 static void xtfpga_reset(void *opaque)
195 {
196     XtensaCPU *cpu = opaque;
197 
198     cpu_reset(CPU(cpu));
199 }
200 
201 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
202         unsigned size)
203 {
204     return 0;
205 }
206 
207 static void xtfpga_io_write(void *opaque, hwaddr addr,
208         uint64_t val, unsigned size)
209 {
210 }
211 
212 static const MemoryRegionOps xtfpga_io_ops = {
213     .read = xtfpga_io_read,
214     .write = xtfpga_io_write,
215     .endianness = DEVICE_NATIVE_ENDIAN,
216 };
217 
218 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
219 {
220 #ifdef TARGET_WORDS_BIGENDIAN
221     int be = 1;
222 #else
223     int be = 0;
224 #endif
225     MemoryRegion *system_memory = get_system_memory();
226     XtensaCPU *cpu = NULL;
227     CPUXtensaState *env = NULL;
228     MemoryRegion *system_io;
229     XtensaMxPic *mx_pic = NULL;
230     qemu_irq *extints;
231     DriveInfo *dinfo;
232     PFlashCFI01 *flash = NULL;
233     QemuOpts *machine_opts = qemu_get_machine_opts();
234     const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
235     const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
236     const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
237     const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
238     const unsigned system_io_size = 224 * MiB;
239     uint32_t freq = 10000000;
240     int n;
241     unsigned int smp_cpus = machine->smp.cpus;
242 
243     if (smp_cpus > 1) {
244         mx_pic = xtensa_mx_pic_init(31);
245         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
246     }
247     for (n = 0; n < smp_cpus; n++) {
248         CPUXtensaState *cenv = NULL;
249 
250         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
251         cenv = &cpu->env;
252         if (!env) {
253             env = cenv;
254             freq = env->config->clock_freq_khz * 1000;
255         }
256 
257         if (mx_pic) {
258             MemoryRegion *mx_eri;
259 
260             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
261                                                 xtensa_get_extints(cenv),
262                                                 xtensa_get_runstall(cenv));
263             memory_region_add_subregion(xtensa_get_er_region(cenv),
264                                         0, mx_eri);
265         }
266         cenv->sregs[PRID] = n;
267         xtensa_select_static_vectors(cenv, n != 0);
268         qemu_register_reset(xtfpga_reset, cpu);
269         /* Need MMU initialized prior to ELF loading,
270          * so that ELF gets loaded into virtual addresses
271          */
272         cpu_reset(CPU(cpu));
273     }
274     if (smp_cpus > 1) {
275         extints = xtensa_mx_pic_get_extints(mx_pic);
276     } else {
277         extints = xtensa_get_extints(env);
278     }
279 
280     if (env) {
281         XtensaMemory sysram = env->config->sysram;
282 
283         sysram.location[0].size = machine->ram_size;
284         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
285                                      system_memory);
286         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
287                                      system_memory);
288         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
289                                      system_memory);
290         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
291                                      system_memory);
292         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
293                                      system_memory);
294     }
295 
296     system_io = g_malloc(sizeof(*system_io));
297     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
298                           system_io_size);
299     memory_region_add_subregion(system_memory, board->io[0], system_io);
300     if (board->io[1]) {
301         MemoryRegion *io = g_malloc(sizeof(*io));
302 
303         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
304                                  system_io, 0, system_io_size);
305         memory_region_add_subregion(system_memory, board->io[1], io);
306     }
307     xtfpga_fpga_init(system_io, 0x0d020000, freq);
308     if (nd_table[0].used) {
309         xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
310                         extints[1], nd_table);
311     }
312 
313     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
314                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
315 
316     dinfo = drive_get(IF_PFLASH, 0, 0);
317     if (dinfo) {
318         flash = xtfpga_flash_init(system_io, board, dinfo, be);
319     }
320 
321     /* Use presence of kernel file name as 'boot from SRAM' switch. */
322     if (kernel_filename) {
323         uint32_t entry_point = env->pc;
324         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
325         uint32_t tagptr = env->config->sysrom.location[0].addr +
326             board->sram_size;
327         uint32_t cur_tagptr;
328         BpMemInfo memory_location = {
329             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
330             .start = tswap32(env->config->sysram.location[0].addr),
331             .end = tswap32(env->config->sysram.location[0].addr +
332                            machine->ram_size),
333         };
334         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
335             machine->ram_size : 0x08000000;
336         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
337 
338         lowmem_end += env->config->sysram.location[0].addr;
339         cur_lowmem += env->config->sysram.location[0].addr;
340 
341         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
342                                      system_memory);
343 
344         if (kernel_cmdline) {
345             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
346         }
347         if (dtb_filename) {
348             bp_size += get_tag_size(sizeof(uint32_t));
349         }
350         if (initrd_filename) {
351             bp_size += get_tag_size(sizeof(BpMemInfo));
352         }
353 
354         /* Put kernel bootparameters to the end of that SRAM */
355         tagptr = (tagptr - bp_size) & ~0xff;
356         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
357         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
358                              sizeof(memory_location), &memory_location);
359 
360         if (kernel_cmdline) {
361             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
362                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
363         }
364 #ifdef CONFIG_FDT
365         if (dtb_filename) {
366             int fdt_size;
367             void *fdt = load_device_tree(dtb_filename, &fdt_size);
368             uint32_t dtb_addr = tswap32(cur_lowmem);
369 
370             if (!fdt) {
371                 error_report("could not load DTB '%s'", dtb_filename);
372                 exit(EXIT_FAILURE);
373             }
374 
375             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
376             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
377                                  sizeof(dtb_addr), &dtb_addr);
378             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
379         }
380 #else
381         if (dtb_filename) {
382             error_report("could not load DTB '%s': "
383                          "FDT support is not configured in QEMU",
384                          dtb_filename);
385             exit(EXIT_FAILURE);
386         }
387 #endif
388         if (initrd_filename) {
389             BpMemInfo initrd_location = { 0 };
390             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
391                                            lowmem_end - cur_lowmem);
392 
393             if (initrd_size < 0) {
394                 initrd_size = load_image_targphys(initrd_filename,
395                                                   cur_lowmem,
396                                                   lowmem_end - cur_lowmem);
397             }
398             if (initrd_size < 0) {
399                 error_report("could not load initrd '%s'", initrd_filename);
400                 exit(EXIT_FAILURE);
401             }
402             initrd_location.start = tswap32(cur_lowmem);
403             initrd_location.end = tswap32(cur_lowmem + initrd_size);
404             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
405                                  sizeof(initrd_location), &initrd_location);
406             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
407         }
408         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
409         env->regs[2] = tagptr;
410 
411         uint64_t elf_entry;
412         uint64_t elf_lowaddr;
413         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
414                 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
415         if (success > 0) {
416             entry_point = elf_entry;
417         } else {
418             hwaddr ep;
419             int is_linux;
420             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
421                                   translate_phys_addr, cpu);
422             if (success > 0 && is_linux) {
423                 entry_point = ep;
424             } else {
425                 error_report("could not load kernel '%s'",
426                              kernel_filename);
427                 exit(EXIT_FAILURE);
428             }
429         }
430         if (entry_point != env->pc) {
431             uint8_t boot[] = {
432 #ifdef TARGET_WORDS_BIGENDIAN
433                 0x60, 0x00, 0x08,       /* j    1f */
434                 0x00,                   /* .literal_position */
435                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
436                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
437                                         /* 1: */
438                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
439                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
440                 0x0a, 0x00, 0x00,       /* jx   a0 */
441 #else
442                 0x06, 0x02, 0x00,       /* j    1f */
443                 0x00,                   /* .literal_position */
444                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
445                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
446                                         /* 1: */
447                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
448                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
449                 0xa0, 0x00, 0x00,       /* jx   a0 */
450 #endif
451             };
452             uint32_t entry_pc = tswap32(entry_point);
453             uint32_t entry_a2 = tswap32(tagptr);
454 
455             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
456             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
457             cpu_physical_memory_write(env->pc, boot, sizeof(boot));
458         }
459     } else {
460         if (flash) {
461             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
462             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
463             uint32_t size = env->config->sysrom.location[0].size;
464 
465             if (board->flash->size - board->flash->boot_base < size) {
466                 size = board->flash->size - board->flash->boot_base;
467             }
468 
469             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
470                                      flash_mr, board->flash->boot_base, size);
471             memory_region_add_subregion(system_memory,
472                                         env->config->sysrom.location[0].addr,
473                                         flash_io);
474         } else {
475             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
476                                          system_memory);
477         }
478     }
479 }
480 
481 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
482 
483 static const hwaddr xtfpga_mmu_io[2] = {
484     0xf0000000,
485 };
486 
487 static const hwaddr xtfpga_nommu_io[2] = {
488     0x90000000,
489     0x70000000,
490 };
491 
492 static const XtfpgaFlashDesc lx60_flash = {
493     .base = 0x08000000,
494     .size = 0x00400000,
495     .sector_size = 0x10000,
496 };
497 
498 static void xtfpga_lx60_init(MachineState *machine)
499 {
500     static const XtfpgaBoardDesc lx60_board = {
501         .flash = &lx60_flash,
502         .sram_size = 0x20000,
503         .io = xtfpga_mmu_io,
504     };
505     xtfpga_init(&lx60_board, machine);
506 }
507 
508 static void xtfpga_lx60_nommu_init(MachineState *machine)
509 {
510     static const XtfpgaBoardDesc lx60_board = {
511         .flash = &lx60_flash,
512         .sram_size = 0x20000,
513         .io = xtfpga_nommu_io,
514     };
515     xtfpga_init(&lx60_board, machine);
516 }
517 
518 static const XtfpgaFlashDesc lx200_flash = {
519     .base = 0x08000000,
520     .size = 0x01000000,
521     .sector_size = 0x20000,
522 };
523 
524 static void xtfpga_lx200_init(MachineState *machine)
525 {
526     static const XtfpgaBoardDesc lx200_board = {
527         .flash = &lx200_flash,
528         .sram_size = 0x2000000,
529         .io = xtfpga_mmu_io,
530     };
531     xtfpga_init(&lx200_board, machine);
532 }
533 
534 static void xtfpga_lx200_nommu_init(MachineState *machine)
535 {
536     static const XtfpgaBoardDesc lx200_board = {
537         .flash = &lx200_flash,
538         .sram_size = 0x2000000,
539         .io = xtfpga_nommu_io,
540     };
541     xtfpga_init(&lx200_board, machine);
542 }
543 
544 static const XtfpgaFlashDesc ml605_flash = {
545     .base = 0x08000000,
546     .size = 0x01000000,
547     .sector_size = 0x20000,
548 };
549 
550 static void xtfpga_ml605_init(MachineState *machine)
551 {
552     static const XtfpgaBoardDesc ml605_board = {
553         .flash = &ml605_flash,
554         .sram_size = 0x2000000,
555         .io = xtfpga_mmu_io,
556     };
557     xtfpga_init(&ml605_board, machine);
558 }
559 
560 static void xtfpga_ml605_nommu_init(MachineState *machine)
561 {
562     static const XtfpgaBoardDesc ml605_board = {
563         .flash = &ml605_flash,
564         .sram_size = 0x2000000,
565         .io = xtfpga_nommu_io,
566     };
567     xtfpga_init(&ml605_board, machine);
568 }
569 
570 static const XtfpgaFlashDesc kc705_flash = {
571     .base = 0x00000000,
572     .size = 0x08000000,
573     .boot_base = 0x06000000,
574     .sector_size = 0x20000,
575 };
576 
577 static void xtfpga_kc705_init(MachineState *machine)
578 {
579     static const XtfpgaBoardDesc kc705_board = {
580         .flash = &kc705_flash,
581         .sram_size = 0x2000000,
582         .io = xtfpga_mmu_io,
583     };
584     xtfpga_init(&kc705_board, machine);
585 }
586 
587 static void xtfpga_kc705_nommu_init(MachineState *machine)
588 {
589     static const XtfpgaBoardDesc kc705_board = {
590         .flash = &kc705_flash,
591         .sram_size = 0x2000000,
592         .io = xtfpga_nommu_io,
593     };
594     xtfpga_init(&kc705_board, machine);
595 }
596 
597 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
598 {
599     MachineClass *mc = MACHINE_CLASS(oc);
600 
601     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
602     mc->init = xtfpga_lx60_init;
603     mc->max_cpus = 32;
604     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
605     mc->default_ram_size = 64 * MiB;
606 }
607 
608 static const TypeInfo xtfpga_lx60_type = {
609     .name = MACHINE_TYPE_NAME("lx60"),
610     .parent = TYPE_MACHINE,
611     .class_init = xtfpga_lx60_class_init,
612 };
613 
614 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
615 {
616     MachineClass *mc = MACHINE_CLASS(oc);
617 
618     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
619     mc->init = xtfpga_lx60_nommu_init;
620     mc->max_cpus = 32;
621     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
622     mc->default_ram_size = 64 * MiB;
623 }
624 
625 static const TypeInfo xtfpga_lx60_nommu_type = {
626     .name = MACHINE_TYPE_NAME("lx60-nommu"),
627     .parent = TYPE_MACHINE,
628     .class_init = xtfpga_lx60_nommu_class_init,
629 };
630 
631 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
632 {
633     MachineClass *mc = MACHINE_CLASS(oc);
634 
635     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
636     mc->init = xtfpga_lx200_init;
637     mc->max_cpus = 32;
638     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
639     mc->default_ram_size = 96 * MiB;
640 }
641 
642 static const TypeInfo xtfpga_lx200_type = {
643     .name = MACHINE_TYPE_NAME("lx200"),
644     .parent = TYPE_MACHINE,
645     .class_init = xtfpga_lx200_class_init,
646 };
647 
648 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
649 {
650     MachineClass *mc = MACHINE_CLASS(oc);
651 
652     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
653     mc->init = xtfpga_lx200_nommu_init;
654     mc->max_cpus = 32;
655     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
656     mc->default_ram_size = 96 * MiB;
657 }
658 
659 static const TypeInfo xtfpga_lx200_nommu_type = {
660     .name = MACHINE_TYPE_NAME("lx200-nommu"),
661     .parent = TYPE_MACHINE,
662     .class_init = xtfpga_lx200_nommu_class_init,
663 };
664 
665 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
666 {
667     MachineClass *mc = MACHINE_CLASS(oc);
668 
669     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
670     mc->init = xtfpga_ml605_init;
671     mc->max_cpus = 32;
672     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
673     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
674 }
675 
676 static const TypeInfo xtfpga_ml605_type = {
677     .name = MACHINE_TYPE_NAME("ml605"),
678     .parent = TYPE_MACHINE,
679     .class_init = xtfpga_ml605_class_init,
680 };
681 
682 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
683 {
684     MachineClass *mc = MACHINE_CLASS(oc);
685 
686     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
687     mc->init = xtfpga_ml605_nommu_init;
688     mc->max_cpus = 32;
689     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
690     mc->default_ram_size = 256 * MiB;
691 }
692 
693 static const TypeInfo xtfpga_ml605_nommu_type = {
694     .name = MACHINE_TYPE_NAME("ml605-nommu"),
695     .parent = TYPE_MACHINE,
696     .class_init = xtfpga_ml605_nommu_class_init,
697 };
698 
699 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
700 {
701     MachineClass *mc = MACHINE_CLASS(oc);
702 
703     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
704     mc->init = xtfpga_kc705_init;
705     mc->max_cpus = 32;
706     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
707     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
708 }
709 
710 static const TypeInfo xtfpga_kc705_type = {
711     .name = MACHINE_TYPE_NAME("kc705"),
712     .parent = TYPE_MACHINE,
713     .class_init = xtfpga_kc705_class_init,
714 };
715 
716 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
717 {
718     MachineClass *mc = MACHINE_CLASS(oc);
719 
720     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
721     mc->init = xtfpga_kc705_nommu_init;
722     mc->max_cpus = 32;
723     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
724     mc->default_ram_size = 256 * MiB;
725 }
726 
727 static const TypeInfo xtfpga_kc705_nommu_type = {
728     .name = MACHINE_TYPE_NAME("kc705-nommu"),
729     .parent = TYPE_MACHINE,
730     .class_init = xtfpga_kc705_nommu_class_init,
731 };
732 
733 static void xtfpga_machines_init(void)
734 {
735     type_register_static(&xtfpga_lx60_type);
736     type_register_static(&xtfpga_lx200_type);
737     type_register_static(&xtfpga_ml605_type);
738     type_register_static(&xtfpga_kc705_type);
739     type_register_static(&xtfpga_lx60_nommu_type);
740     type_register_static(&xtfpga_lx200_nommu_type);
741     type_register_static(&xtfpga_ml605_nommu_type);
742     type_register_static(&xtfpga_kc705_nommu_type);
743 }
744 
745 type_init(xtfpga_machines_init)
746