xref: /openbmc/qemu/hw/xtensa/xtfpga.c (revision 04accf43)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/reset.h"
45 #include "sysemu/runstate.h"
46 #include "qemu/error-report.h"
47 #include "qemu/option.h"
48 #include "bootparam.h"
49 #include "xtensa_memory.h"
50 #include "hw/xtensa/mx_pic.h"
51 #include "migration/vmstate.h"
52 
53 typedef struct XtfpgaFlashDesc {
54     hwaddr base;
55     size_t size;
56     size_t boot_base;
57     size_t sector_size;
58 } XtfpgaFlashDesc;
59 
60 typedef struct XtfpgaBoardDesc {
61     const XtfpgaFlashDesc *flash;
62     size_t sram_size;
63     const hwaddr *io;
64 } XtfpgaBoardDesc;
65 
66 typedef struct XtfpgaFpgaState {
67     MemoryRegion iomem;
68     uint32_t freq;
69     uint32_t leds;
70     uint32_t switches;
71 } XtfpgaFpgaState;
72 
73 static void xtfpga_fpga_reset(void *opaque)
74 {
75     XtfpgaFpgaState *s = opaque;
76 
77     s->leds = 0;
78     s->switches = 0;
79 }
80 
81 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
82         unsigned size)
83 {
84     XtfpgaFpgaState *s = opaque;
85 
86     switch (addr) {
87     case 0x0: /*build date code*/
88         return 0x09272011;
89 
90     case 0x4: /*processor clock frequency, Hz*/
91         return s->freq;
92 
93     case 0x8: /*LEDs (off = 0, on = 1)*/
94         return s->leds;
95 
96     case 0xc: /*DIP switches (off = 0, on = 1)*/
97         return s->switches;
98     }
99     return 0;
100 }
101 
102 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
103         uint64_t val, unsigned size)
104 {
105     XtfpgaFpgaState *s = opaque;
106 
107     switch (addr) {
108     case 0x8: /*LEDs (off = 0, on = 1)*/
109         s->leds = val;
110         break;
111 
112     case 0x10: /*board reset*/
113         if (val == 0xdead) {
114             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
115         }
116         break;
117     }
118 }
119 
120 static const MemoryRegionOps xtfpga_fpga_ops = {
121     .read = xtfpga_fpga_read,
122     .write = xtfpga_fpga_write,
123     .endianness = DEVICE_NATIVE_ENDIAN,
124 };
125 
126 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
127                                          hwaddr base, uint32_t freq)
128 {
129     XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1);
130 
131     memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
132                           "xtfpga.fpga", 0x10000);
133     memory_region_add_subregion(address_space, base, &s->iomem);
134     s->freq = freq;
135     xtfpga_fpga_reset(s);
136     qemu_register_reset(xtfpga_fpga_reset, s);
137     return s;
138 }
139 
140 static void xtfpga_net_init(MemoryRegion *address_space,
141         hwaddr base,
142         hwaddr descriptors,
143         hwaddr buffers,
144         qemu_irq irq)
145 {
146     DeviceState *dev;
147     SysBusDevice *s;
148     MemoryRegion *ram;
149 
150     dev = qemu_create_nic_device("open_eth", true, NULL);
151     if (!dev) {
152         return;
153     }
154 
155     s = SYS_BUS_DEVICE(dev);
156     sysbus_realize_and_unref(s, &error_fatal);
157     sysbus_connect_irq(s, 0, irq);
158     memory_region_add_subregion(address_space, base,
159             sysbus_mmio_get_region(s, 0));
160     memory_region_add_subregion(address_space, descriptors,
161             sysbus_mmio_get_region(s, 1));
162 
163     ram = g_malloc(sizeof(*ram));
164     memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
165                            &error_fatal);
166     vmstate_register_ram_global(ram);
167     memory_region_add_subregion(address_space, buffers, ram);
168 }
169 
170 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
171                                       const XtfpgaBoardDesc *board,
172                                       DriveInfo *dinfo, int be)
173 {
174     SysBusDevice *s;
175     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
176 
177     qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
178     qdev_prop_set_uint32(dev, "num-blocks",
179                          board->flash->size / board->flash->sector_size);
180     qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
181     qdev_prop_set_uint8(dev, "width", 2);
182     qdev_prop_set_bit(dev, "big-endian", be);
183     qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
184     s = SYS_BUS_DEVICE(dev);
185     sysbus_realize_and_unref(s, &error_fatal);
186     memory_region_add_subregion(address_space, board->flash->base,
187                                 sysbus_mmio_get_region(s, 0));
188     return PFLASH_CFI01(dev);
189 }
190 
191 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
192 {
193     XtensaCPU *cpu = opaque;
194 
195     return cpu_get_phys_page_debug(CPU(cpu), addr);
196 }
197 
198 static void xtfpga_reset(void *opaque)
199 {
200     XtensaCPU *cpu = opaque;
201 
202     cpu_reset(CPU(cpu));
203 }
204 
205 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
206         unsigned size)
207 {
208     return 0;
209 }
210 
211 static void xtfpga_io_write(void *opaque, hwaddr addr,
212         uint64_t val, unsigned size)
213 {
214 }
215 
216 static const MemoryRegionOps xtfpga_io_ops = {
217     .read = xtfpga_io_read,
218     .write = xtfpga_io_write,
219     .endianness = DEVICE_NATIVE_ENDIAN,
220 };
221 
222 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
223 {
224     MemoryRegion *system_memory = get_system_memory();
225     XtensaCPU *cpu = NULL;
226     CPUXtensaState *env = NULL;
227     MemoryRegion *system_io;
228     XtensaMxPic *mx_pic = NULL;
229     qemu_irq *extints;
230     DriveInfo *dinfo;
231     PFlashCFI01 *flash = NULL;
232     const char *kernel_filename = machine->kernel_filename;
233     const char *kernel_cmdline = machine->kernel_cmdline;
234     const char *dtb_filename = machine->dtb;
235     const char *initrd_filename = machine->initrd_filename;
236     const unsigned system_io_size = 224 * MiB;
237     uint32_t freq = 10000000;
238     int n;
239     unsigned int smp_cpus = machine->smp.cpus;
240 
241     if (smp_cpus > 1) {
242         mx_pic = xtensa_mx_pic_init(31);
243         qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
244     }
245     for (n = 0; n < smp_cpus; n++) {
246         CPUXtensaState *cenv = NULL;
247 
248         cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
249         cenv = &cpu->env;
250         if (!env) {
251             env = cenv;
252             freq = env->config->clock_freq_khz * 1000;
253         }
254 
255         if (mx_pic) {
256             MemoryRegion *mx_eri;
257 
258             mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
259                                                 xtensa_get_extints(cenv),
260                                                 xtensa_get_runstall(cenv));
261             memory_region_add_subregion(xtensa_get_er_region(cenv),
262                                         0, mx_eri);
263         }
264         cenv->sregs[PRID] = n;
265         xtensa_select_static_vectors(cenv, n != 0);
266         qemu_register_reset(xtfpga_reset, cpu);
267         /* Need MMU initialized prior to ELF loading,
268          * so that ELF gets loaded into virtual addresses
269          */
270         cpu_reset(CPU(cpu));
271     }
272     if (smp_cpus > 1) {
273         extints = xtensa_mx_pic_get_extints(mx_pic);
274     } else {
275         extints = xtensa_get_extints(env);
276     }
277 
278     if (env) {
279         XtensaMemory sysram = env->config->sysram;
280 
281         sysram.location[0].size = machine->ram_size;
282         xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
283                                      system_memory);
284         xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
285                                      system_memory);
286         xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
287                                      system_memory);
288         xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
289                                      system_memory);
290         xtensa_create_memory_regions(&sysram, "xtensa.sysram",
291                                      system_memory);
292     }
293 
294     system_io = g_malloc(sizeof(*system_io));
295     memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
296                           system_io_size);
297     memory_region_add_subregion(system_memory, board->io[0], system_io);
298     if (board->io[1]) {
299         MemoryRegion *io = g_malloc(sizeof(*io));
300 
301         memory_region_init_alias(io, NULL, "xtfpga.io.cached",
302                                  system_io, 0, system_io_size);
303         memory_region_add_subregion(system_memory, board->io[1], io);
304     }
305     xtfpga_fpga_init(system_io, 0x0d020000, freq);
306     xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, extints[1]);
307 
308     serial_mm_init(system_io, 0x0d050020, 2, extints[0],
309                    115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
310 
311     dinfo = drive_get(IF_PFLASH, 0, 0);
312     if (dinfo) {
313         flash = xtfpga_flash_init(system_io, board, dinfo, TARGET_BIG_ENDIAN);
314     }
315 
316     /* Use presence of kernel file name as 'boot from SRAM' switch. */
317     if (kernel_filename) {
318         uint32_t entry_point = env->pc;
319         size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
320         uint32_t tagptr = env->config->sysrom.location[0].addr +
321             board->sram_size;
322         uint32_t cur_tagptr;
323         BpMemInfo memory_location = {
324             .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
325             .start = tswap32(env->config->sysram.location[0].addr),
326             .end = tswap32(env->config->sysram.location[0].addr +
327                            machine->ram_size),
328         };
329         uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
330             machine->ram_size : 0x08000000;
331         uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
332 
333         lowmem_end += env->config->sysram.location[0].addr;
334         cur_lowmem += env->config->sysram.location[0].addr;
335 
336         xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
337                                      system_memory);
338 
339         if (kernel_cmdline) {
340             bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
341         }
342         if (dtb_filename) {
343             bp_size += get_tag_size(sizeof(uint32_t));
344         }
345         if (initrd_filename) {
346             bp_size += get_tag_size(sizeof(BpMemInfo));
347         }
348 
349         /* Put kernel bootparameters to the end of that SRAM */
350         tagptr = (tagptr - bp_size) & ~0xff;
351         cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
352         cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
353                              sizeof(memory_location), &memory_location);
354 
355         if (kernel_cmdline) {
356             cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
357                                  strlen(kernel_cmdline) + 1, kernel_cmdline);
358         }
359 #ifdef CONFIG_FDT
360         if (dtb_filename) {
361             int fdt_size;
362             void *fdt = load_device_tree(dtb_filename, &fdt_size);
363             uint32_t dtb_addr = tswap32(cur_lowmem);
364 
365             if (!fdt) {
366                 error_report("could not load DTB '%s'", dtb_filename);
367                 exit(EXIT_FAILURE);
368             }
369 
370             cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
371             cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
372                                  sizeof(dtb_addr), &dtb_addr);
373             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
374             g_free(fdt);
375         }
376 #else
377         if (dtb_filename) {
378             error_report("could not load DTB '%s': "
379                          "FDT support is not configured in QEMU",
380                          dtb_filename);
381             exit(EXIT_FAILURE);
382         }
383 #endif
384         if (initrd_filename) {
385             BpMemInfo initrd_location = { 0 };
386             int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
387                                            lowmem_end - cur_lowmem);
388 
389             if (initrd_size < 0) {
390                 initrd_size = load_image_targphys(initrd_filename,
391                                                   cur_lowmem,
392                                                   lowmem_end - cur_lowmem);
393             }
394             if (initrd_size < 0) {
395                 error_report("could not load initrd '%s'", initrd_filename);
396                 exit(EXIT_FAILURE);
397             }
398             initrd_location.start = tswap32(cur_lowmem);
399             initrd_location.end = tswap32(cur_lowmem + initrd_size);
400             cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
401                                  sizeof(initrd_location), &initrd_location);
402             cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
403         }
404         cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
405         env->regs[2] = tagptr;
406 
407         uint64_t elf_entry;
408         int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
409                                &elf_entry, NULL, NULL, NULL, TARGET_BIG_ENDIAN,
410                                EM_XTENSA, 0, 0);
411         if (success > 0) {
412             entry_point = elf_entry;
413         } else {
414             hwaddr ep;
415             int is_linux;
416             success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
417                                   translate_phys_addr, cpu);
418             if (success > 0 && is_linux) {
419                 entry_point = ep;
420             } else {
421                 error_report("could not load kernel '%s'",
422                              kernel_filename);
423                 exit(EXIT_FAILURE);
424             }
425         }
426         if (entry_point != env->pc) {
427             uint8_t boot[] = {
428 #if TARGET_BIG_ENDIAN
429                 0x60, 0x00, 0x08,       /* j    1f */
430                 0x00,                   /* .literal_position */
431                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
432                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
433                                         /* 1: */
434                 0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
435                 0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
436                 0x0a, 0x00, 0x00,       /* jx   a0 */
437 #else
438                 0x06, 0x02, 0x00,       /* j    1f */
439                 0x00,                   /* .literal_position */
440                 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
441                 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
442                                         /* 1: */
443                 0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
444                 0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
445                 0xa0, 0x00, 0x00,       /* jx   a0 */
446 #endif
447             };
448             uint32_t entry_pc = tswap32(entry_point);
449             uint32_t entry_a2 = tswap32(tagptr);
450 
451             memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
452             memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
453             cpu_physical_memory_write(env->pc, boot, sizeof(boot));
454         }
455     } else {
456         if (flash) {
457             MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
458             MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
459             uint32_t size = env->config->sysrom.location[0].size;
460 
461             if (board->flash->size - board->flash->boot_base < size) {
462                 size = board->flash->size - board->flash->boot_base;
463             }
464 
465             memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
466                                      flash_mr, board->flash->boot_base, size);
467             memory_region_add_subregion(system_memory,
468                                         env->config->sysrom.location[0].addr,
469                                         flash_io);
470         } else {
471             xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
472                                          system_memory);
473         }
474     }
475 }
476 
477 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
478 
479 static const hwaddr xtfpga_mmu_io[2] = {
480     0xf0000000,
481 };
482 
483 static const hwaddr xtfpga_nommu_io[2] = {
484     0x90000000,
485     0x70000000,
486 };
487 
488 static const XtfpgaFlashDesc lx60_flash = {
489     .base = 0x08000000,
490     .size = 0x00400000,
491     .sector_size = 0x10000,
492 };
493 
494 static void xtfpga_lx60_init(MachineState *machine)
495 {
496     static const XtfpgaBoardDesc lx60_board = {
497         .flash = &lx60_flash,
498         .sram_size = 0x20000,
499         .io = xtfpga_mmu_io,
500     };
501     xtfpga_init(&lx60_board, machine);
502 }
503 
504 static void xtfpga_lx60_nommu_init(MachineState *machine)
505 {
506     static const XtfpgaBoardDesc lx60_board = {
507         .flash = &lx60_flash,
508         .sram_size = 0x20000,
509         .io = xtfpga_nommu_io,
510     };
511     xtfpga_init(&lx60_board, machine);
512 }
513 
514 static const XtfpgaFlashDesc lx200_flash = {
515     .base = 0x08000000,
516     .size = 0x01000000,
517     .sector_size = 0x20000,
518 };
519 
520 static void xtfpga_lx200_init(MachineState *machine)
521 {
522     static const XtfpgaBoardDesc lx200_board = {
523         .flash = &lx200_flash,
524         .sram_size = 0x2000000,
525         .io = xtfpga_mmu_io,
526     };
527     xtfpga_init(&lx200_board, machine);
528 }
529 
530 static void xtfpga_lx200_nommu_init(MachineState *machine)
531 {
532     static const XtfpgaBoardDesc lx200_board = {
533         .flash = &lx200_flash,
534         .sram_size = 0x2000000,
535         .io = xtfpga_nommu_io,
536     };
537     xtfpga_init(&lx200_board, machine);
538 }
539 
540 static const XtfpgaFlashDesc ml605_flash = {
541     .base = 0x08000000,
542     .size = 0x01000000,
543     .sector_size = 0x20000,
544 };
545 
546 static void xtfpga_ml605_init(MachineState *machine)
547 {
548     static const XtfpgaBoardDesc ml605_board = {
549         .flash = &ml605_flash,
550         .sram_size = 0x2000000,
551         .io = xtfpga_mmu_io,
552     };
553     xtfpga_init(&ml605_board, machine);
554 }
555 
556 static void xtfpga_ml605_nommu_init(MachineState *machine)
557 {
558     static const XtfpgaBoardDesc ml605_board = {
559         .flash = &ml605_flash,
560         .sram_size = 0x2000000,
561         .io = xtfpga_nommu_io,
562     };
563     xtfpga_init(&ml605_board, machine);
564 }
565 
566 static const XtfpgaFlashDesc kc705_flash = {
567     .base = 0x00000000,
568     .size = 0x08000000,
569     .boot_base = 0x06000000,
570     .sector_size = 0x20000,
571 };
572 
573 static void xtfpga_kc705_init(MachineState *machine)
574 {
575     static const XtfpgaBoardDesc kc705_board = {
576         .flash = &kc705_flash,
577         .sram_size = 0x2000000,
578         .io = xtfpga_mmu_io,
579     };
580     xtfpga_init(&kc705_board, machine);
581 }
582 
583 static void xtfpga_kc705_nommu_init(MachineState *machine)
584 {
585     static const XtfpgaBoardDesc kc705_board = {
586         .flash = &kc705_flash,
587         .sram_size = 0x2000000,
588         .io = xtfpga_nommu_io,
589     };
590     xtfpga_init(&kc705_board, machine);
591 }
592 
593 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
594 {
595     MachineClass *mc = MACHINE_CLASS(oc);
596 
597     mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
598     mc->init = xtfpga_lx60_init;
599     mc->max_cpus = 32;
600     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
601     mc->default_ram_size = 64 * MiB;
602 }
603 
604 static const TypeInfo xtfpga_lx60_type = {
605     .name = MACHINE_TYPE_NAME("lx60"),
606     .parent = TYPE_MACHINE,
607     .class_init = xtfpga_lx60_class_init,
608 };
609 
610 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
611 {
612     MachineClass *mc = MACHINE_CLASS(oc);
613 
614     mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
615     mc->init = xtfpga_lx60_nommu_init;
616     mc->max_cpus = 32;
617     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
618     mc->default_ram_size = 64 * MiB;
619 }
620 
621 static const TypeInfo xtfpga_lx60_nommu_type = {
622     .name = MACHINE_TYPE_NAME("lx60-nommu"),
623     .parent = TYPE_MACHINE,
624     .class_init = xtfpga_lx60_nommu_class_init,
625 };
626 
627 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
628 {
629     MachineClass *mc = MACHINE_CLASS(oc);
630 
631     mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
632     mc->init = xtfpga_lx200_init;
633     mc->max_cpus = 32;
634     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
635     mc->default_ram_size = 96 * MiB;
636 }
637 
638 static const TypeInfo xtfpga_lx200_type = {
639     .name = MACHINE_TYPE_NAME("lx200"),
640     .parent = TYPE_MACHINE,
641     .class_init = xtfpga_lx200_class_init,
642 };
643 
644 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
645 {
646     MachineClass *mc = MACHINE_CLASS(oc);
647 
648     mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
649     mc->init = xtfpga_lx200_nommu_init;
650     mc->max_cpus = 32;
651     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
652     mc->default_ram_size = 96 * MiB;
653 }
654 
655 static const TypeInfo xtfpga_lx200_nommu_type = {
656     .name = MACHINE_TYPE_NAME("lx200-nommu"),
657     .parent = TYPE_MACHINE,
658     .class_init = xtfpga_lx200_nommu_class_init,
659 };
660 
661 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
662 {
663     MachineClass *mc = MACHINE_CLASS(oc);
664 
665     mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
666     mc->init = xtfpga_ml605_init;
667     mc->max_cpus = 32;
668     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
669     mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
670 }
671 
672 static const TypeInfo xtfpga_ml605_type = {
673     .name = MACHINE_TYPE_NAME("ml605"),
674     .parent = TYPE_MACHINE,
675     .class_init = xtfpga_ml605_class_init,
676 };
677 
678 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
679 {
680     MachineClass *mc = MACHINE_CLASS(oc);
681 
682     mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
683     mc->init = xtfpga_ml605_nommu_init;
684     mc->max_cpus = 32;
685     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
686     mc->default_ram_size = 256 * MiB;
687 }
688 
689 static const TypeInfo xtfpga_ml605_nommu_type = {
690     .name = MACHINE_TYPE_NAME("ml605-nommu"),
691     .parent = TYPE_MACHINE,
692     .class_init = xtfpga_ml605_nommu_class_init,
693 };
694 
695 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
696 {
697     MachineClass *mc = MACHINE_CLASS(oc);
698 
699     mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
700     mc->init = xtfpga_kc705_init;
701     mc->max_cpus = 32;
702     mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
703     mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
704 }
705 
706 static const TypeInfo xtfpga_kc705_type = {
707     .name = MACHINE_TYPE_NAME("kc705"),
708     .parent = TYPE_MACHINE,
709     .class_init = xtfpga_kc705_class_init,
710 };
711 
712 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
713 {
714     MachineClass *mc = MACHINE_CLASS(oc);
715 
716     mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
717     mc->init = xtfpga_kc705_nommu_init;
718     mc->max_cpus = 32;
719     mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
720     mc->default_ram_size = 256 * MiB;
721 }
722 
723 static const TypeInfo xtfpga_kc705_nommu_type = {
724     .name = MACHINE_TYPE_NAME("kc705-nommu"),
725     .parent = TYPE_MACHINE,
726     .class_init = xtfpga_kc705_nommu_class_init,
727 };
728 
729 static void xtfpga_machines_init(void)
730 {
731     type_register_static(&xtfpga_lx60_type);
732     type_register_static(&xtfpga_lx200_type);
733     type_register_static(&xtfpga_ml605_type);
734     type_register_static(&xtfpga_kc705_type);
735     type_register_static(&xtfpga_lx60_nommu_type);
736     type_register_static(&xtfpga_lx200_nommu_type);
737     type_register_static(&xtfpga_ml605_nommu_type);
738     type_register_static(&xtfpga_kc705_nommu_type);
739 }
740 
741 type_init(xtfpga_machines_init)
742