xref: /openbmc/qemu/hw/watchdog/wdt_i6300esb.c (revision 990d2c18)
1 /*
2  * Virtual hardware watchdog.
3  *
4  * Copyright (C) 2009 Red Hat Inc.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * By Richard W.M. Jones (rjones@redhat.com).
20  */
21 
22 #include "qemu/osdep.h"
23 
24 #include "qemu/module.h"
25 #include "qemu/timer.h"
26 #include "sysemu/watchdog.h"
27 #include "hw/pci/pci_device.h"
28 #include "migration/vmstate.h"
29 #include "qom/object.h"
30 
31 /*#define I6300ESB_DEBUG 1*/
32 
33 #ifdef I6300ESB_DEBUG
34 #define i6300esb_debug(fs,...) \
35     fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
36 #else
37 #define i6300esb_debug(fs,...)
38 #endif
39 
40 /* PCI configuration registers */
41 #define ESB_CONFIG_REG  0x60            /* Config register                   */
42 #define ESB_LOCK_REG    0x68            /* WDT lock register                 */
43 
44 /* Memory mapped registers (offset from base address) */
45 #define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
46 #define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
47 #define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
48 #define ESB_RELOAD_REG  0x0c            /* Reload register                   */
49 
50 /* Lock register bits */
51 #define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
52 #define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
53 #define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
54 
55 /* Config register bits */
56 #define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
57 #define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
58 #define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
59 
60 /* Reload register bits */
61 #define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
62 
63 /* Magic constants */
64 #define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
65 #define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
66 
67 /* Device state. */
68 struct I6300State {
69     PCIDevice dev;
70     MemoryRegion io_mem;
71 
72     int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
73                                  * performed depends on the -watchdog-action
74                                  * param passed on QEMU command line.
75                                  */
76     int clock_scale;            /* Clock scale. */
77 #define CLOCK_SCALE_1KHZ 0
78 #define CLOCK_SCALE_1MHZ 1
79 
80     int int_type;               /* Interrupt type generated. */
81 #define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
82 #define INT_TYPE_SMI 2
83 #define INT_TYPE_DISABLED 3
84 
85     int free_run;               /* If true, reload timer on expiry. */
86     int locked;                 /* If true, enabled field cannot be changed. */
87     int enabled;                /* If true, watchdog is enabled. */
88 
89     QEMUTimer *timer;           /* The actual watchdog timer. */
90 
91     uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
92     uint32_t timer2_preload;
93     int stage;                  /* Stage (1 or 2). */
94 
95     int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
96                                  * registers, and we transition through
97                                  * states 0 -> 1 -> 2 when this happens.
98                                  */
99 
100     int previous_reboot_flag;   /* If the watchdog caused the previous
101                                  * reboot, this flag will be set.
102                                  */
103 };
104 
105 
106 #define TYPE_WATCHDOG_I6300ESB_DEVICE "i6300esb"
107 OBJECT_DECLARE_SIMPLE_TYPE(I6300State, WATCHDOG_I6300ESB_DEVICE)
108 
109 /* This function is called when the watchdog has either been enabled
110  * (hence it starts counting down) or has been keep-alived.
111  */
112 static void i6300esb_restart_timer(I6300State *d, int stage)
113 {
114     int64_t timeout;
115 
116     if (!d->enabled)
117         return;
118 
119     d->stage = stage;
120 
121     if (d->stage <= 1)
122         timeout = d->timer1_preload;
123     else
124         timeout = d->timer2_preload;
125 
126     if (d->clock_scale == CLOCK_SCALE_1KHZ)
127         timeout <<= 15;
128     else
129         timeout <<= 5;
130 
131     /* Get the timeout in nanoseconds. */
132 
133     timeout = timeout * 30; /* on a PCI bus, 1 tick is 30 ns*/
134 
135     i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
136 
137     timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
138 }
139 
140 /* This is called when the guest disables the watchdog. */
141 static void i6300esb_disable_timer(I6300State *d)
142 {
143     i6300esb_debug("timer disabled\n");
144 
145     timer_del(d->timer);
146 }
147 
148 static void i6300esb_reset(DeviceState *dev)
149 {
150     PCIDevice *pdev = PCI_DEVICE(dev);
151     I6300State *d = WATCHDOG_I6300ESB_DEVICE(pdev);
152 
153     i6300esb_debug("I6300State = %p\n", d);
154 
155     i6300esb_disable_timer(d);
156 
157     /* NB: Don't change d->previous_reboot_flag in this function. */
158 
159     d->reboot_enabled = 1;
160     d->clock_scale = CLOCK_SCALE_1KHZ;
161     d->int_type = INT_TYPE_IRQ;
162     d->free_run = 0;
163     d->locked = 0;
164     d->enabled = 0;
165     d->timer1_preload = 0xfffff;
166     d->timer2_preload = 0xfffff;
167     d->stage = 1;
168     d->unlock_state = 0;
169 }
170 
171 /* This function is called when the watchdog expires.  Note that
172  * the hardware has two timers, and so expiry happens in two stages.
173  * If d->stage == 1 then we perform the first stage action (usually,
174  * sending an interrupt) and then restart the timer again for the
175  * second stage.  If the second stage expires then the watchdog
176  * really has run out.
177  */
178 static void i6300esb_timer_expired(void *vp)
179 {
180     I6300State *d = vp;
181 
182     i6300esb_debug("stage %d\n", d->stage);
183 
184     if (d->stage == 1) {
185         /* What to do at the end of stage 1? */
186         switch (d->int_type) {
187         case INT_TYPE_IRQ:
188             fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
189             break;
190         case INT_TYPE_SMI:
191             fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
192             break;
193         }
194 
195         /* Start the second stage. */
196         i6300esb_restart_timer(d, 2);
197     } else {
198         /* Second stage expired, reboot for real. */
199         if (d->reboot_enabled) {
200             d->previous_reboot_flag = 1;
201             watchdog_perform_action(); /* This reboots, exits, etc */
202             i6300esb_reset(DEVICE(d));
203         }
204 
205         /* In "free running mode" we start stage 1 again. */
206         if (d->free_run)
207             i6300esb_restart_timer(d, 1);
208     }
209 }
210 
211 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
212                                   uint32_t data, int len)
213 {
214     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
215     int old;
216 
217     i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
218 
219     if (addr == ESB_CONFIG_REG && len == 2) {
220         d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
221         d->clock_scale =
222             (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
223         d->int_type = (data & ESB_WDT_INTTYPE);
224     } else if (addr == ESB_LOCK_REG && len == 1) {
225         if (!d->locked) {
226             d->locked = (data & ESB_WDT_LOCK) != 0;
227             d->free_run = (data & ESB_WDT_FUNC) != 0;
228             old = d->enabled;
229             d->enabled = (data & ESB_WDT_ENABLE) != 0;
230             if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
231                 i6300esb_restart_timer(d, 1);
232             else if (!d->enabled)
233                 i6300esb_disable_timer(d);
234         }
235     } else {
236         pci_default_write_config(dev, addr, data, len);
237     }
238 }
239 
240 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
241 {
242     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
243     uint32_t data;
244 
245     i6300esb_debug ("addr = %x, len = %d\n", addr, len);
246 
247     if (addr == ESB_CONFIG_REG && len == 2) {
248         data =
249             (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
250             (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
251             d->int_type;
252         return data;
253     } else if (addr == ESB_LOCK_REG && len == 1) {
254         data =
255             (d->free_run ? ESB_WDT_FUNC : 0) |
256             (d->locked ? ESB_WDT_LOCK : 0) |
257             (d->enabled ? ESB_WDT_ENABLE : 0);
258         return data;
259     } else {
260         return pci_default_read_config(dev, addr, len);
261     }
262 }
263 
264 static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
265 {
266     i6300esb_debug ("addr = %x\n", (int) addr);
267 
268     return 0;
269 }
270 
271 static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
272 {
273     uint32_t data = 0;
274     I6300State *d = vp;
275 
276     i6300esb_debug("addr = %x\n", (int) addr);
277 
278     if (addr == 0xc) {
279         /* The previous reboot flag is really bit 9, but there is
280          * a bug in the Linux driver where it thinks it's bit 12.
281          * Set both.
282          */
283         data = d->previous_reboot_flag ? 0x1200 : 0;
284     }
285 
286     return data;
287 }
288 
289 static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
290 {
291     i6300esb_debug("addr = %x\n", (int) addr);
292 
293     return 0;
294 }
295 
296 static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
297 {
298     I6300State *d = vp;
299 
300     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
301 
302     if (addr == 0xc && val == 0x80)
303         d->unlock_state = 1;
304     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
305         d->unlock_state = 2;
306 }
307 
308 static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
309 {
310     I6300State *d = vp;
311 
312     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
313 
314     if (addr == 0xc && val == 0x80)
315         d->unlock_state = 1;
316     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
317         d->unlock_state = 2;
318     else {
319         if (d->unlock_state == 2) {
320             if (addr == 0xc) {
321                 if ((val & 0x100) != 0)
322                     /* This is the "ping" from the userspace watchdog in
323                      * the guest ...
324                      */
325                     i6300esb_restart_timer(d, 1);
326 
327                 /* Setting bit 9 resets the previous reboot flag.
328                  * There's a bug in the Linux driver where it sets
329                  * bit 12 instead.
330                  */
331                 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
332                     d->previous_reboot_flag = 0;
333                 }
334             }
335 
336             d->unlock_state = 0;
337         }
338     }
339 }
340 
341 static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
342 {
343     I6300State *d = vp;
344 
345     i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
346 
347     if (addr == 0xc && val == 0x80)
348         d->unlock_state = 1;
349     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
350         d->unlock_state = 2;
351     else {
352         if (d->unlock_state == 2) {
353             if (addr == 0)
354                 d->timer1_preload = val & 0xfffff;
355             else if (addr == 4)
356                 d->timer2_preload = val & 0xfffff;
357 
358             d->unlock_state = 0;
359         }
360     }
361 }
362 
363 static uint64_t i6300esb_mem_readfn(void *opaque, hwaddr addr, unsigned size)
364 {
365     switch (size) {
366     case 1:
367         return i6300esb_mem_readb(opaque, addr);
368     case 2:
369         return i6300esb_mem_readw(opaque, addr);
370     case 4:
371         return i6300esb_mem_readl(opaque, addr);
372     default:
373         g_assert_not_reached();
374     }
375 }
376 
377 static void i6300esb_mem_writefn(void *opaque, hwaddr addr,
378                                  uint64_t value, unsigned size)
379 {
380     switch (size) {
381     case 1:
382         i6300esb_mem_writeb(opaque, addr, value);
383         break;
384     case 2:
385         i6300esb_mem_writew(opaque, addr, value);
386         break;
387     case 4:
388         i6300esb_mem_writel(opaque, addr, value);
389         break;
390     default:
391         g_assert_not_reached();
392     }
393 }
394 
395 static const MemoryRegionOps i6300esb_ops = {
396     .read = i6300esb_mem_readfn,
397     .write = i6300esb_mem_writefn,
398     .valid.min_access_size = 1,
399     .valid.max_access_size = 4,
400     .endianness = DEVICE_LITTLE_ENDIAN,
401 };
402 
403 static const VMStateDescription vmstate_i6300esb = {
404     .name = "i6300esb_wdt",
405     /* With this VMSD's introduction, version_id/minimum_version_id were
406      * erroneously set to sizeof(I6300State), causing a somewhat random
407      * version_id to be set for every build. This eventually broke
408      * migration.
409      *
410      * To correct this without breaking old->new migration for older
411      * versions of QEMU, we've set version_id to a value high enough
412      * to exceed all past values of sizeof(I6300State) across various
413      * build environments, and have reset minimum_version_id to 1,
414      * since this VMSD has never changed and thus can accept all past
415      * versions.
416      *
417      * For future changes we can treat these values as we normally would.
418      */
419     .version_id = 10000,
420     .minimum_version_id = 1,
421     .fields = (const VMStateField[]) {
422         VMSTATE_PCI_DEVICE(dev, I6300State),
423         VMSTATE_INT32(reboot_enabled, I6300State),
424         VMSTATE_INT32(clock_scale, I6300State),
425         VMSTATE_INT32(int_type, I6300State),
426         VMSTATE_INT32(free_run, I6300State),
427         VMSTATE_INT32(locked, I6300State),
428         VMSTATE_INT32(enabled, I6300State),
429         VMSTATE_TIMER_PTR(timer, I6300State),
430         VMSTATE_UINT32(timer1_preload, I6300State),
431         VMSTATE_UINT32(timer2_preload, I6300State),
432         VMSTATE_INT32(stage, I6300State),
433         VMSTATE_INT32(unlock_state, I6300State),
434         VMSTATE_INT32(previous_reboot_flag, I6300State),
435         VMSTATE_END_OF_LIST()
436     }
437 };
438 
439 static void i6300esb_realize(PCIDevice *dev, Error **errp)
440 {
441     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
442 
443     i6300esb_debug("I6300State = %p\n", d);
444 
445     d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d);
446     d->previous_reboot_flag = 0;
447 
448     memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
449                           "i6300esb", 0x10);
450     pci_register_bar(&d->dev, 0, 0, &d->io_mem);
451 }
452 
453 static void i6300esb_exit(PCIDevice *dev)
454 {
455     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
456 
457     timer_free(d->timer);
458 }
459 
460 static void i6300esb_class_init(ObjectClass *klass, void *data)
461 {
462     DeviceClass *dc = DEVICE_CLASS(klass);
463     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
464 
465     k->config_read = i6300esb_config_read;
466     k->config_write = i6300esb_config_write;
467     k->realize = i6300esb_realize;
468     k->exit = i6300esb_exit;
469     k->vendor_id = PCI_VENDOR_ID_INTEL;
470     k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
471     k->class_id = PCI_CLASS_SYSTEM_OTHER;
472     device_class_set_legacy_reset(dc, i6300esb_reset);
473     dc->vmsd = &vmstate_i6300esb;
474     set_bit(DEVICE_CATEGORY_WATCHDOG, dc->categories);
475     dc->desc = "Intel 6300ESB";
476 }
477 
478 static const TypeInfo i6300esb_info = {
479     .name          = TYPE_WATCHDOG_I6300ESB_DEVICE,
480     .parent        = TYPE_PCI_DEVICE,
481     .instance_size = sizeof(I6300State),
482     .class_init    = i6300esb_class_init,
483     .interfaces = (InterfaceInfo[]) {
484         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
485         { },
486     },
487 };
488 
489 static void i6300esb_register_types(void)
490 {
491     type_register_static(&i6300esb_info);
492 }
493 
494 type_init(i6300esb_register_types)
495