1 /* 2 * Virtual hardware watchdog. 3 * 4 * Copyright (C) 2009 Red Hat Inc. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 * 19 * By Richard W.M. Jones (rjones@redhat.com). 20 */ 21 22 #include <inttypes.h> 23 24 #include "qemu-common.h" 25 #include "qemu/timer.h" 26 #include "sysemu/watchdog.h" 27 #include "hw/hw.h" 28 #include "hw/pci/pci.h" 29 30 /*#define I6300ESB_DEBUG 1*/ 31 32 #ifdef I6300ESB_DEBUG 33 #define i6300esb_debug(fs,...) \ 34 fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__) 35 #else 36 #define i6300esb_debug(fs,...) 37 #endif 38 39 /* PCI configuration registers */ 40 #define ESB_CONFIG_REG 0x60 /* Config register */ 41 #define ESB_LOCK_REG 0x68 /* WDT lock register */ 42 43 /* Memory mapped registers (offset from base address) */ 44 #define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */ 45 #define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */ 46 #define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */ 47 #define ESB_RELOAD_REG 0x0c /* Reload register */ 48 49 /* Lock register bits */ 50 #define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */ 51 #define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */ 52 #define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */ 53 54 /* Config register bits */ 55 #define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */ 56 #define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */ 57 #define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */ 58 59 /* Reload register bits */ 60 #define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */ 61 62 /* Magic constants */ 63 #define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */ 64 #define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */ 65 66 /* Device state. */ 67 struct I6300State { 68 PCIDevice dev; 69 MemoryRegion io_mem; 70 71 int reboot_enabled; /* "Reboot" on timer expiry. The real action 72 * performed depends on the -watchdog-action 73 * param passed on QEMU command line. 74 */ 75 int clock_scale; /* Clock scale. */ 76 #define CLOCK_SCALE_1KHZ 0 77 #define CLOCK_SCALE_1MHZ 1 78 79 int int_type; /* Interrupt type generated. */ 80 #define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */ 81 #define INT_TYPE_SMI 2 82 #define INT_TYPE_DISABLED 3 83 84 int free_run; /* If true, reload timer on expiry. */ 85 int locked; /* If true, enabled field cannot be changed. */ 86 int enabled; /* If true, watchdog is enabled. */ 87 88 QEMUTimer *timer; /* The actual watchdog timer. */ 89 90 uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */ 91 uint32_t timer2_preload; 92 int stage; /* Stage (1 or 2). */ 93 94 int unlock_state; /* Guest writes 0x80, 0x86 to unlock the 95 * registers, and we transition through 96 * states 0 -> 1 -> 2 when this happens. 97 */ 98 99 int previous_reboot_flag; /* If the watchdog caused the previous 100 * reboot, this flag will be set. 101 */ 102 }; 103 104 typedef struct I6300State I6300State; 105 106 /* This function is called when the watchdog has either been enabled 107 * (hence it starts counting down) or has been keep-alived. 108 */ 109 static void i6300esb_restart_timer(I6300State *d, int stage) 110 { 111 int64_t timeout; 112 113 if (!d->enabled) 114 return; 115 116 d->stage = stage; 117 118 if (d->stage <= 1) 119 timeout = d->timer1_preload; 120 else 121 timeout = d->timer2_preload; 122 123 if (d->clock_scale == CLOCK_SCALE_1KHZ) 124 timeout <<= 15; 125 else 126 timeout <<= 5; 127 128 /* Get the timeout in units of ticks_per_sec. */ 129 timeout = get_ticks_per_sec() * timeout / 33000000; 130 131 i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout); 132 133 qemu_mod_timer(d->timer, qemu_get_clock_ns(vm_clock) + timeout); 134 } 135 136 /* This is called when the guest disables the watchdog. */ 137 static void i6300esb_disable_timer(I6300State *d) 138 { 139 i6300esb_debug("timer disabled\n"); 140 141 qemu_del_timer(d->timer); 142 } 143 144 static void i6300esb_reset(DeviceState *dev) 145 { 146 PCIDevice *pdev = PCI_DEVICE(dev); 147 I6300State *d = DO_UPCAST(I6300State, dev, pdev); 148 149 i6300esb_debug("I6300State = %p\n", d); 150 151 i6300esb_disable_timer(d); 152 153 /* NB: Don't change d->previous_reboot_flag in this function. */ 154 155 d->reboot_enabled = 1; 156 d->clock_scale = CLOCK_SCALE_1KHZ; 157 d->int_type = INT_TYPE_IRQ; 158 d->free_run = 0; 159 d->locked = 0; 160 d->enabled = 0; 161 d->timer1_preload = 0xfffff; 162 d->timer2_preload = 0xfffff; 163 d->stage = 1; 164 d->unlock_state = 0; 165 } 166 167 /* This function is called when the watchdog expires. Note that 168 * the hardware has two timers, and so expiry happens in two stages. 169 * If d->stage == 1 then we perform the first stage action (usually, 170 * sending an interrupt) and then restart the timer again for the 171 * second stage. If the second stage expires then the watchdog 172 * really has run out. 173 */ 174 static void i6300esb_timer_expired(void *vp) 175 { 176 I6300State *d = vp; 177 178 i6300esb_debug("stage %d\n", d->stage); 179 180 if (d->stage == 1) { 181 /* What to do at the end of stage 1? */ 182 switch (d->int_type) { 183 case INT_TYPE_IRQ: 184 fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n"); 185 break; 186 case INT_TYPE_SMI: 187 fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n"); 188 break; 189 } 190 191 /* Start the second stage. */ 192 i6300esb_restart_timer(d, 2); 193 } else { 194 /* Second stage expired, reboot for real. */ 195 if (d->reboot_enabled) { 196 d->previous_reboot_flag = 1; 197 watchdog_perform_action(); /* This reboots, exits, etc */ 198 i6300esb_reset(&d->dev.qdev); 199 } 200 201 /* In "free running mode" we start stage 1 again. */ 202 if (d->free_run) 203 i6300esb_restart_timer(d, 1); 204 } 205 } 206 207 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr, 208 uint32_t data, int len) 209 { 210 I6300State *d = DO_UPCAST(I6300State, dev, dev); 211 int old; 212 213 i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len); 214 215 if (addr == ESB_CONFIG_REG && len == 2) { 216 d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0; 217 d->clock_scale = 218 (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ; 219 d->int_type = (data & ESB_WDT_INTTYPE); 220 } else if (addr == ESB_LOCK_REG && len == 1) { 221 if (!d->locked) { 222 d->locked = (data & ESB_WDT_LOCK) != 0; 223 d->free_run = (data & ESB_WDT_FUNC) != 0; 224 old = d->enabled; 225 d->enabled = (data & ESB_WDT_ENABLE) != 0; 226 if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */ 227 i6300esb_restart_timer(d, 1); 228 else if (!d->enabled) 229 i6300esb_disable_timer(d); 230 } 231 } else { 232 pci_default_write_config(dev, addr, data, len); 233 } 234 } 235 236 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len) 237 { 238 I6300State *d = DO_UPCAST(I6300State, dev, dev); 239 uint32_t data; 240 241 i6300esb_debug ("addr = %x, len = %d\n", addr, len); 242 243 if (addr == ESB_CONFIG_REG && len == 2) { 244 data = 245 (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) | 246 (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) | 247 d->int_type; 248 return data; 249 } else if (addr == ESB_LOCK_REG && len == 1) { 250 data = 251 (d->free_run ? ESB_WDT_FUNC : 0) | 252 (d->locked ? ESB_WDT_LOCK : 0) | 253 (d->enabled ? ESB_WDT_ENABLE : 0); 254 return data; 255 } else { 256 return pci_default_read_config(dev, addr, len); 257 } 258 } 259 260 static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr) 261 { 262 i6300esb_debug ("addr = %x\n", (int) addr); 263 264 return 0; 265 } 266 267 static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr) 268 { 269 uint32_t data = 0; 270 I6300State *d = vp; 271 272 i6300esb_debug("addr = %x\n", (int) addr); 273 274 if (addr == 0xc) { 275 /* The previous reboot flag is really bit 9, but there is 276 * a bug in the Linux driver where it thinks it's bit 12. 277 * Set both. 278 */ 279 data = d->previous_reboot_flag ? 0x1200 : 0; 280 } 281 282 return data; 283 } 284 285 static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr) 286 { 287 i6300esb_debug("addr = %x\n", (int) addr); 288 289 return 0; 290 } 291 292 static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val) 293 { 294 I6300State *d = vp; 295 296 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val); 297 298 if (addr == 0xc && val == 0x80) 299 d->unlock_state = 1; 300 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) 301 d->unlock_state = 2; 302 } 303 304 static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val) 305 { 306 I6300State *d = vp; 307 308 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val); 309 310 if (addr == 0xc && val == 0x80) 311 d->unlock_state = 1; 312 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) 313 d->unlock_state = 2; 314 else { 315 if (d->unlock_state == 2) { 316 if (addr == 0xc) { 317 if ((val & 0x100) != 0) 318 /* This is the "ping" from the userspace watchdog in 319 * the guest ... 320 */ 321 i6300esb_restart_timer(d, 1); 322 323 /* Setting bit 9 resets the previous reboot flag. 324 * There's a bug in the Linux driver where it sets 325 * bit 12 instead. 326 */ 327 if ((val & 0x200) != 0 || (val & 0x1000) != 0) { 328 d->previous_reboot_flag = 0; 329 } 330 } 331 332 d->unlock_state = 0; 333 } 334 } 335 } 336 337 static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val) 338 { 339 I6300State *d = vp; 340 341 i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val); 342 343 if (addr == 0xc && val == 0x80) 344 d->unlock_state = 1; 345 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) 346 d->unlock_state = 2; 347 else { 348 if (d->unlock_state == 2) { 349 if (addr == 0) 350 d->timer1_preload = val & 0xfffff; 351 else if (addr == 4) 352 d->timer2_preload = val & 0xfffff; 353 354 d->unlock_state = 0; 355 } 356 } 357 } 358 359 static const MemoryRegionOps i6300esb_ops = { 360 .old_mmio = { 361 .read = { 362 i6300esb_mem_readb, 363 i6300esb_mem_readw, 364 i6300esb_mem_readl, 365 }, 366 .write = { 367 i6300esb_mem_writeb, 368 i6300esb_mem_writew, 369 i6300esb_mem_writel, 370 }, 371 }, 372 .endianness = DEVICE_NATIVE_ENDIAN, 373 }; 374 375 static const VMStateDescription vmstate_i6300esb = { 376 .name = "i6300esb_wdt", 377 /* With this VMSD's introduction, version_id/minimum_version_id were 378 * erroneously set to sizeof(I6300State), causing a somewhat random 379 * version_id to be set for every build. This eventually broke 380 * migration. 381 * 382 * To correct this without breaking old->new migration for older versions 383 * of QEMU, we've set version_id to a value high enough to exceed all past 384 * values of sizeof(I6300State) across various build environments, and have 385 * reset minimum_version_id_old/minimum_version_id to 1, since this VMSD 386 * has never changed and thus can accept all past versions. 387 * 388 * For future changes we can treat these values as we normally would. 389 */ 390 .version_id = 10000, 391 .minimum_version_id = 1, 392 .minimum_version_id_old = 1, 393 .fields = (VMStateField []) { 394 VMSTATE_PCI_DEVICE(dev, I6300State), 395 VMSTATE_INT32(reboot_enabled, I6300State), 396 VMSTATE_INT32(clock_scale, I6300State), 397 VMSTATE_INT32(int_type, I6300State), 398 VMSTATE_INT32(free_run, I6300State), 399 VMSTATE_INT32(locked, I6300State), 400 VMSTATE_INT32(enabled, I6300State), 401 VMSTATE_TIMER(timer, I6300State), 402 VMSTATE_UINT32(timer1_preload, I6300State), 403 VMSTATE_UINT32(timer2_preload, I6300State), 404 VMSTATE_INT32(stage, I6300State), 405 VMSTATE_INT32(unlock_state, I6300State), 406 VMSTATE_INT32(previous_reboot_flag, I6300State), 407 VMSTATE_END_OF_LIST() 408 } 409 }; 410 411 static int i6300esb_init(PCIDevice *dev) 412 { 413 I6300State *d = DO_UPCAST(I6300State, dev, dev); 414 415 i6300esb_debug("I6300State = %p\n", d); 416 417 d->timer = qemu_new_timer_ns(vm_clock, i6300esb_timer_expired, d); 418 d->previous_reboot_flag = 0; 419 420 memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d, 421 "i6300esb", 0x10); 422 pci_register_bar(&d->dev, 0, 0, &d->io_mem); 423 /* qemu_register_coalesced_mmio (addr, 0x10); ? */ 424 425 return 0; 426 } 427 428 static void i6300esb_exit(PCIDevice *dev) 429 { 430 I6300State *d = DO_UPCAST(I6300State, dev, dev); 431 432 memory_region_destroy(&d->io_mem); 433 } 434 435 static WatchdogTimerModel model = { 436 .wdt_name = "i6300esb", 437 .wdt_description = "Intel 6300ESB", 438 }; 439 440 static void i6300esb_class_init(ObjectClass *klass, void *data) 441 { 442 DeviceClass *dc = DEVICE_CLASS(klass); 443 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 444 445 k->config_read = i6300esb_config_read; 446 k->config_write = i6300esb_config_write; 447 k->init = i6300esb_init; 448 k->exit = i6300esb_exit; 449 k->vendor_id = PCI_VENDOR_ID_INTEL; 450 k->device_id = PCI_DEVICE_ID_INTEL_ESB_9; 451 k->class_id = PCI_CLASS_SYSTEM_OTHER; 452 dc->reset = i6300esb_reset; 453 dc->vmsd = &vmstate_i6300esb; 454 } 455 456 static const TypeInfo i6300esb_info = { 457 .name = "i6300esb", 458 .parent = TYPE_PCI_DEVICE, 459 .instance_size = sizeof(I6300State), 460 .class_init = i6300esb_class_init, 461 }; 462 463 static void i6300esb_register_types(void) 464 { 465 watchdog_add_model(&model); 466 type_register_static(&i6300esb_info); 467 } 468 469 type_init(i6300esb_register_types) 470