1 /* 2 * Virtual hardware watchdog. 3 * 4 * Copyright (C) 2009 Red Hat Inc. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 * 19 * By Richard W.M. Jones (rjones@redhat.com). 20 */ 21 22 #include <inttypes.h> 23 24 #include "qemu-common.h" 25 #include "qemu/timer.h" 26 #include "sysemu/watchdog.h" 27 #include "hw/hw.h" 28 #include "hw/pci/pci.h" 29 30 /*#define I6300ESB_DEBUG 1*/ 31 32 #ifdef I6300ESB_DEBUG 33 #define i6300esb_debug(fs,...) \ 34 fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__) 35 #else 36 #define i6300esb_debug(fs,...) 37 #endif 38 39 /* PCI configuration registers */ 40 #define ESB_CONFIG_REG 0x60 /* Config register */ 41 #define ESB_LOCK_REG 0x68 /* WDT lock register */ 42 43 /* Memory mapped registers (offset from base address) */ 44 #define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */ 45 #define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */ 46 #define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */ 47 #define ESB_RELOAD_REG 0x0c /* Reload register */ 48 49 /* Lock register bits */ 50 #define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */ 51 #define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */ 52 #define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */ 53 54 /* Config register bits */ 55 #define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */ 56 #define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */ 57 #define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */ 58 59 /* Reload register bits */ 60 #define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */ 61 62 /* Magic constants */ 63 #define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */ 64 #define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */ 65 66 /* Device state. */ 67 struct I6300State { 68 PCIDevice dev; 69 MemoryRegion io_mem; 70 71 int reboot_enabled; /* "Reboot" on timer expiry. The real action 72 * performed depends on the -watchdog-action 73 * param passed on QEMU command line. 74 */ 75 int clock_scale; /* Clock scale. */ 76 #define CLOCK_SCALE_1KHZ 0 77 #define CLOCK_SCALE_1MHZ 1 78 79 int int_type; /* Interrupt type generated. */ 80 #define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */ 81 #define INT_TYPE_SMI 2 82 #define INT_TYPE_DISABLED 3 83 84 int free_run; /* If true, reload timer on expiry. */ 85 int locked; /* If true, enabled field cannot be changed. */ 86 int enabled; /* If true, watchdog is enabled. */ 87 88 QEMUTimer *timer; /* The actual watchdog timer. */ 89 90 uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */ 91 uint32_t timer2_preload; 92 int stage; /* Stage (1 or 2). */ 93 94 int unlock_state; /* Guest writes 0x80, 0x86 to unlock the 95 * registers, and we transition through 96 * states 0 -> 1 -> 2 when this happens. 97 */ 98 99 int previous_reboot_flag; /* If the watchdog caused the previous 100 * reboot, this flag will be set. 101 */ 102 }; 103 104 typedef struct I6300State I6300State; 105 106 /* This function is called when the watchdog has either been enabled 107 * (hence it starts counting down) or has been keep-alived. 108 */ 109 static void i6300esb_restart_timer(I6300State *d, int stage) 110 { 111 int64_t timeout; 112 113 if (!d->enabled) 114 return; 115 116 d->stage = stage; 117 118 if (d->stage <= 1) 119 timeout = d->timer1_preload; 120 else 121 timeout = d->timer2_preload; 122 123 if (d->clock_scale == CLOCK_SCALE_1KHZ) 124 timeout <<= 15; 125 else 126 timeout <<= 5; 127 128 /* Get the timeout in units of ticks_per_sec. 129 * 130 * ticks_per_sec is typically 10^9 == 0x3B9ACA00 (30 bits), with 131 * 20 bits of user supplied preload, and 15 bits of scale, the 132 * multiply here can exceed 64-bits, before we divide by 33MHz, so 133 * we use a higher-precision intermediate result. 134 */ 135 timeout = muldiv64(get_ticks_per_sec(), timeout, 33000000); 136 137 i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout); 138 139 timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout); 140 } 141 142 /* This is called when the guest disables the watchdog. */ 143 static void i6300esb_disable_timer(I6300State *d) 144 { 145 i6300esb_debug("timer disabled\n"); 146 147 timer_del(d->timer); 148 } 149 150 static void i6300esb_reset(DeviceState *dev) 151 { 152 PCIDevice *pdev = PCI_DEVICE(dev); 153 I6300State *d = DO_UPCAST(I6300State, dev, pdev); 154 155 i6300esb_debug("I6300State = %p\n", d); 156 157 i6300esb_disable_timer(d); 158 159 /* NB: Don't change d->previous_reboot_flag in this function. */ 160 161 d->reboot_enabled = 1; 162 d->clock_scale = CLOCK_SCALE_1KHZ; 163 d->int_type = INT_TYPE_IRQ; 164 d->free_run = 0; 165 d->locked = 0; 166 d->enabled = 0; 167 d->timer1_preload = 0xfffff; 168 d->timer2_preload = 0xfffff; 169 d->stage = 1; 170 d->unlock_state = 0; 171 } 172 173 /* This function is called when the watchdog expires. Note that 174 * the hardware has two timers, and so expiry happens in two stages. 175 * If d->stage == 1 then we perform the first stage action (usually, 176 * sending an interrupt) and then restart the timer again for the 177 * second stage. If the second stage expires then the watchdog 178 * really has run out. 179 */ 180 static void i6300esb_timer_expired(void *vp) 181 { 182 I6300State *d = vp; 183 184 i6300esb_debug("stage %d\n", d->stage); 185 186 if (d->stage == 1) { 187 /* What to do at the end of stage 1? */ 188 switch (d->int_type) { 189 case INT_TYPE_IRQ: 190 fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n"); 191 break; 192 case INT_TYPE_SMI: 193 fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n"); 194 break; 195 } 196 197 /* Start the second stage. */ 198 i6300esb_restart_timer(d, 2); 199 } else { 200 /* Second stage expired, reboot for real. */ 201 if (d->reboot_enabled) { 202 d->previous_reboot_flag = 1; 203 watchdog_perform_action(); /* This reboots, exits, etc */ 204 i6300esb_reset(&d->dev.qdev); 205 } 206 207 /* In "free running mode" we start stage 1 again. */ 208 if (d->free_run) 209 i6300esb_restart_timer(d, 1); 210 } 211 } 212 213 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr, 214 uint32_t data, int len) 215 { 216 I6300State *d = DO_UPCAST(I6300State, dev, dev); 217 int old; 218 219 i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len); 220 221 if (addr == ESB_CONFIG_REG && len == 2) { 222 d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0; 223 d->clock_scale = 224 (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ; 225 d->int_type = (data & ESB_WDT_INTTYPE); 226 } else if (addr == ESB_LOCK_REG && len == 1) { 227 if (!d->locked) { 228 d->locked = (data & ESB_WDT_LOCK) != 0; 229 d->free_run = (data & ESB_WDT_FUNC) != 0; 230 old = d->enabled; 231 d->enabled = (data & ESB_WDT_ENABLE) != 0; 232 if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */ 233 i6300esb_restart_timer(d, 1); 234 else if (!d->enabled) 235 i6300esb_disable_timer(d); 236 } 237 } else { 238 pci_default_write_config(dev, addr, data, len); 239 } 240 } 241 242 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len) 243 { 244 I6300State *d = DO_UPCAST(I6300State, dev, dev); 245 uint32_t data; 246 247 i6300esb_debug ("addr = %x, len = %d\n", addr, len); 248 249 if (addr == ESB_CONFIG_REG && len == 2) { 250 data = 251 (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) | 252 (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) | 253 d->int_type; 254 return data; 255 } else if (addr == ESB_LOCK_REG && len == 1) { 256 data = 257 (d->free_run ? ESB_WDT_FUNC : 0) | 258 (d->locked ? ESB_WDT_LOCK : 0) | 259 (d->enabled ? ESB_WDT_ENABLE : 0); 260 return data; 261 } else { 262 return pci_default_read_config(dev, addr, len); 263 } 264 } 265 266 static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr) 267 { 268 i6300esb_debug ("addr = %x\n", (int) addr); 269 270 return 0; 271 } 272 273 static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr) 274 { 275 uint32_t data = 0; 276 I6300State *d = vp; 277 278 i6300esb_debug("addr = %x\n", (int) addr); 279 280 if (addr == 0xc) { 281 /* The previous reboot flag is really bit 9, but there is 282 * a bug in the Linux driver where it thinks it's bit 12. 283 * Set both. 284 */ 285 data = d->previous_reboot_flag ? 0x1200 : 0; 286 } 287 288 return data; 289 } 290 291 static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr) 292 { 293 i6300esb_debug("addr = %x\n", (int) addr); 294 295 return 0; 296 } 297 298 static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val) 299 { 300 I6300State *d = vp; 301 302 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val); 303 304 if (addr == 0xc && val == 0x80) 305 d->unlock_state = 1; 306 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) 307 d->unlock_state = 2; 308 } 309 310 static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val) 311 { 312 I6300State *d = vp; 313 314 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val); 315 316 if (addr == 0xc && val == 0x80) 317 d->unlock_state = 1; 318 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) 319 d->unlock_state = 2; 320 else { 321 if (d->unlock_state == 2) { 322 if (addr == 0xc) { 323 if ((val & 0x100) != 0) 324 /* This is the "ping" from the userspace watchdog in 325 * the guest ... 326 */ 327 i6300esb_restart_timer(d, 1); 328 329 /* Setting bit 9 resets the previous reboot flag. 330 * There's a bug in the Linux driver where it sets 331 * bit 12 instead. 332 */ 333 if ((val & 0x200) != 0 || (val & 0x1000) != 0) { 334 d->previous_reboot_flag = 0; 335 } 336 } 337 338 d->unlock_state = 0; 339 } 340 } 341 } 342 343 static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val) 344 { 345 I6300State *d = vp; 346 347 i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val); 348 349 if (addr == 0xc && val == 0x80) 350 d->unlock_state = 1; 351 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) 352 d->unlock_state = 2; 353 else { 354 if (d->unlock_state == 2) { 355 if (addr == 0) 356 d->timer1_preload = val & 0xfffff; 357 else if (addr == 4) 358 d->timer2_preload = val & 0xfffff; 359 360 d->unlock_state = 0; 361 } 362 } 363 } 364 365 static const MemoryRegionOps i6300esb_ops = { 366 .old_mmio = { 367 .read = { 368 i6300esb_mem_readb, 369 i6300esb_mem_readw, 370 i6300esb_mem_readl, 371 }, 372 .write = { 373 i6300esb_mem_writeb, 374 i6300esb_mem_writew, 375 i6300esb_mem_writel, 376 }, 377 }, 378 .endianness = DEVICE_LITTLE_ENDIAN, 379 }; 380 381 static const VMStateDescription vmstate_i6300esb = { 382 .name = "i6300esb_wdt", 383 /* With this VMSD's introduction, version_id/minimum_version_id were 384 * erroneously set to sizeof(I6300State), causing a somewhat random 385 * version_id to be set for every build. This eventually broke 386 * migration. 387 * 388 * To correct this without breaking old->new migration for older 389 * versions of QEMU, we've set version_id to a value high enough 390 * to exceed all past values of sizeof(I6300State) across various 391 * build environments, and have reset minimum_version_id to 1, 392 * since this VMSD has never changed and thus can accept all past 393 * versions. 394 * 395 * For future changes we can treat these values as we normally would. 396 */ 397 .version_id = 10000, 398 .minimum_version_id = 1, 399 .fields = (VMStateField[]) { 400 VMSTATE_PCI_DEVICE(dev, I6300State), 401 VMSTATE_INT32(reboot_enabled, I6300State), 402 VMSTATE_INT32(clock_scale, I6300State), 403 VMSTATE_INT32(int_type, I6300State), 404 VMSTATE_INT32(free_run, I6300State), 405 VMSTATE_INT32(locked, I6300State), 406 VMSTATE_INT32(enabled, I6300State), 407 VMSTATE_TIMER_PTR(timer, I6300State), 408 VMSTATE_UINT32(timer1_preload, I6300State), 409 VMSTATE_UINT32(timer2_preload, I6300State), 410 VMSTATE_INT32(stage, I6300State), 411 VMSTATE_INT32(unlock_state, I6300State), 412 VMSTATE_INT32(previous_reboot_flag, I6300State), 413 VMSTATE_END_OF_LIST() 414 } 415 }; 416 417 static void i6300esb_realize(PCIDevice *dev, Error **errp) 418 { 419 I6300State *d = DO_UPCAST(I6300State, dev, dev); 420 421 i6300esb_debug("I6300State = %p\n", d); 422 423 d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d); 424 d->previous_reboot_flag = 0; 425 426 memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d, 427 "i6300esb", 0x10); 428 pci_register_bar(&d->dev, 0, 0, &d->io_mem); 429 /* qemu_register_coalesced_mmio (addr, 0x10); ? */ 430 } 431 432 static WatchdogTimerModel model = { 433 .wdt_name = "i6300esb", 434 .wdt_description = "Intel 6300ESB", 435 }; 436 437 static void i6300esb_class_init(ObjectClass *klass, void *data) 438 { 439 DeviceClass *dc = DEVICE_CLASS(klass); 440 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 441 442 k->config_read = i6300esb_config_read; 443 k->config_write = i6300esb_config_write; 444 k->realize = i6300esb_realize; 445 k->vendor_id = PCI_VENDOR_ID_INTEL; 446 k->device_id = PCI_DEVICE_ID_INTEL_ESB_9; 447 k->class_id = PCI_CLASS_SYSTEM_OTHER; 448 dc->reset = i6300esb_reset; 449 dc->vmsd = &vmstate_i6300esb; 450 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 451 } 452 453 static const TypeInfo i6300esb_info = { 454 .name = "i6300esb", 455 .parent = TYPE_PCI_DEVICE, 456 .instance_size = sizeof(I6300State), 457 .class_init = i6300esb_class_init, 458 }; 459 460 static void i6300esb_register_types(void) 461 { 462 watchdog_add_model(&model); 463 type_register_static(&i6300esb_info); 464 } 465 466 type_init(i6300esb_register_types) 467