xref: /openbmc/qemu/hw/watchdog/wdt_i6300esb.c (revision 41b8280a)
1 /*
2  * Virtual hardware watchdog.
3  *
4  * Copyright (C) 2009 Red Hat Inc.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * By Richard W.M. Jones (rjones@redhat.com).
20  */
21 
22 #include <inttypes.h>
23 
24 #include "qemu-common.h"
25 #include "qemu/timer.h"
26 #include "sysemu/watchdog.h"
27 #include "hw/hw.h"
28 #include "hw/pci/pci.h"
29 
30 /*#define I6300ESB_DEBUG 1*/
31 
32 #ifdef I6300ESB_DEBUG
33 #define i6300esb_debug(fs,...) \
34     fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
35 #else
36 #define i6300esb_debug(fs,...)
37 #endif
38 
39 /* PCI configuration registers */
40 #define ESB_CONFIG_REG  0x60            /* Config register                   */
41 #define ESB_LOCK_REG    0x68            /* WDT lock register                 */
42 
43 /* Memory mapped registers (offset from base address) */
44 #define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
45 #define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
46 #define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
47 #define ESB_RELOAD_REG  0x0c            /* Reload register                   */
48 
49 /* Lock register bits */
50 #define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
51 #define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
52 #define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
53 
54 /* Config register bits */
55 #define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
56 #define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
57 #define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
58 
59 /* Reload register bits */
60 #define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
61 
62 /* Magic constants */
63 #define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
64 #define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
65 
66 /* Device state. */
67 struct I6300State {
68     PCIDevice dev;
69     MemoryRegion io_mem;
70 
71     int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
72                                  * performed depends on the -watchdog-action
73                                  * param passed on QEMU command line.
74                                  */
75     int clock_scale;            /* Clock scale. */
76 #define CLOCK_SCALE_1KHZ 0
77 #define CLOCK_SCALE_1MHZ 1
78 
79     int int_type;               /* Interrupt type generated. */
80 #define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
81 #define INT_TYPE_SMI 2
82 #define INT_TYPE_DISABLED 3
83 
84     int free_run;               /* If true, reload timer on expiry. */
85     int locked;                 /* If true, enabled field cannot be changed. */
86     int enabled;                /* If true, watchdog is enabled. */
87 
88     QEMUTimer *timer;           /* The actual watchdog timer. */
89 
90     uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
91     uint32_t timer2_preload;
92     int stage;                  /* Stage (1 or 2). */
93 
94     int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
95                                  * registers, and we transition through
96                                  * states 0 -> 1 -> 2 when this happens.
97                                  */
98 
99     int previous_reboot_flag;   /* If the watchdog caused the previous
100                                  * reboot, this flag will be set.
101                                  */
102 };
103 
104 typedef struct I6300State I6300State;
105 
106 /* This function is called when the watchdog has either been enabled
107  * (hence it starts counting down) or has been keep-alived.
108  */
109 static void i6300esb_restart_timer(I6300State *d, int stage)
110 {
111     int64_t timeout;
112 
113     if (!d->enabled)
114         return;
115 
116     d->stage = stage;
117 
118     if (d->stage <= 1)
119         timeout = d->timer1_preload;
120     else
121         timeout = d->timer2_preload;
122 
123     if (d->clock_scale == CLOCK_SCALE_1KHZ)
124         timeout <<= 15;
125     else
126         timeout <<= 5;
127 
128     /* Get the timeout in units of ticks_per_sec. */
129     timeout = get_ticks_per_sec() * timeout / 33000000;
130 
131     i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
132 
133     qemu_mod_timer(d->timer, qemu_get_clock_ns(vm_clock) + timeout);
134 }
135 
136 /* This is called when the guest disables the watchdog. */
137 static void i6300esb_disable_timer(I6300State *d)
138 {
139     i6300esb_debug("timer disabled\n");
140 
141     qemu_del_timer(d->timer);
142 }
143 
144 static void i6300esb_reset(DeviceState *dev)
145 {
146     PCIDevice *pdev = PCI_DEVICE(dev);
147     I6300State *d = DO_UPCAST(I6300State, dev, pdev);
148 
149     i6300esb_debug("I6300State = %p\n", d);
150 
151     i6300esb_disable_timer(d);
152 
153     /* NB: Don't change d->previous_reboot_flag in this function. */
154 
155     d->reboot_enabled = 1;
156     d->clock_scale = CLOCK_SCALE_1KHZ;
157     d->int_type = INT_TYPE_IRQ;
158     d->free_run = 0;
159     d->locked = 0;
160     d->enabled = 0;
161     d->timer1_preload = 0xfffff;
162     d->timer2_preload = 0xfffff;
163     d->stage = 1;
164     d->unlock_state = 0;
165 }
166 
167 /* This function is called when the watchdog expires.  Note that
168  * the hardware has two timers, and so expiry happens in two stages.
169  * If d->stage == 1 then we perform the first stage action (usually,
170  * sending an interrupt) and then restart the timer again for the
171  * second stage.  If the second stage expires then the watchdog
172  * really has run out.
173  */
174 static void i6300esb_timer_expired(void *vp)
175 {
176     I6300State *d = vp;
177 
178     i6300esb_debug("stage %d\n", d->stage);
179 
180     if (d->stage == 1) {
181         /* What to do at the end of stage 1? */
182         switch (d->int_type) {
183         case INT_TYPE_IRQ:
184             fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
185             break;
186         case INT_TYPE_SMI:
187             fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
188             break;
189         }
190 
191         /* Start the second stage. */
192         i6300esb_restart_timer(d, 2);
193     } else {
194         /* Second stage expired, reboot for real. */
195         if (d->reboot_enabled) {
196             d->previous_reboot_flag = 1;
197             watchdog_perform_action(); /* This reboots, exits, etc */
198             i6300esb_reset(&d->dev.qdev);
199         }
200 
201         /* In "free running mode" we start stage 1 again. */
202         if (d->free_run)
203             i6300esb_restart_timer(d, 1);
204     }
205 }
206 
207 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
208                                   uint32_t data, int len)
209 {
210     I6300State *d = DO_UPCAST(I6300State, dev, dev);
211     int old;
212 
213     i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
214 
215     if (addr == ESB_CONFIG_REG && len == 2) {
216         d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
217         d->clock_scale =
218             (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
219         d->int_type = (data & ESB_WDT_INTTYPE);
220     } else if (addr == ESB_LOCK_REG && len == 1) {
221         if (!d->locked) {
222             d->locked = (data & ESB_WDT_LOCK) != 0;
223             d->free_run = (data & ESB_WDT_FUNC) != 0;
224             old = d->enabled;
225             d->enabled = (data & ESB_WDT_ENABLE) != 0;
226             if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
227                 i6300esb_restart_timer(d, 1);
228             else if (!d->enabled)
229                 i6300esb_disable_timer(d);
230         }
231     } else {
232         pci_default_write_config(dev, addr, data, len);
233     }
234 }
235 
236 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
237 {
238     I6300State *d = DO_UPCAST(I6300State, dev, dev);
239     uint32_t data;
240 
241     i6300esb_debug ("addr = %x, len = %d\n", addr, len);
242 
243     if (addr == ESB_CONFIG_REG && len == 2) {
244         data =
245             (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
246             (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
247             d->int_type;
248         return data;
249     } else if (addr == ESB_LOCK_REG && len == 1) {
250         data =
251             (d->free_run ? ESB_WDT_FUNC : 0) |
252             (d->locked ? ESB_WDT_LOCK : 0) |
253             (d->enabled ? ESB_WDT_ENABLE : 0);
254         return data;
255     } else {
256         return pci_default_read_config(dev, addr, len);
257     }
258 }
259 
260 static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
261 {
262     i6300esb_debug ("addr = %x\n", (int) addr);
263 
264     return 0;
265 }
266 
267 static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
268 {
269     uint32_t data = 0;
270     I6300State *d = vp;
271 
272     i6300esb_debug("addr = %x\n", (int) addr);
273 
274     if (addr == 0xc) {
275         /* The previous reboot flag is really bit 9, but there is
276          * a bug in the Linux driver where it thinks it's bit 12.
277          * Set both.
278          */
279         data = d->previous_reboot_flag ? 0x1200 : 0;
280     }
281 
282     return data;
283 }
284 
285 static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
286 {
287     i6300esb_debug("addr = %x\n", (int) addr);
288 
289     return 0;
290 }
291 
292 static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
293 {
294     I6300State *d = vp;
295 
296     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
297 
298     if (addr == 0xc && val == 0x80)
299         d->unlock_state = 1;
300     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
301         d->unlock_state = 2;
302 }
303 
304 static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
305 {
306     I6300State *d = vp;
307 
308     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
309 
310     if (addr == 0xc && val == 0x80)
311         d->unlock_state = 1;
312     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
313         d->unlock_state = 2;
314     else {
315         if (d->unlock_state == 2) {
316             if (addr == 0xc) {
317                 if ((val & 0x100) != 0)
318                     /* This is the "ping" from the userspace watchdog in
319                      * the guest ...
320                      */
321                     i6300esb_restart_timer(d, 1);
322 
323                 /* Setting bit 9 resets the previous reboot flag.
324                  * There's a bug in the Linux driver where it sets
325                  * bit 12 instead.
326                  */
327                 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
328                     d->previous_reboot_flag = 0;
329                 }
330             }
331 
332             d->unlock_state = 0;
333         }
334     }
335 }
336 
337 static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
338 {
339     I6300State *d = vp;
340 
341     i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
342 
343     if (addr == 0xc && val == 0x80)
344         d->unlock_state = 1;
345     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
346         d->unlock_state = 2;
347     else {
348         if (d->unlock_state == 2) {
349             if (addr == 0)
350                 d->timer1_preload = val & 0xfffff;
351             else if (addr == 4)
352                 d->timer2_preload = val & 0xfffff;
353 
354             d->unlock_state = 0;
355         }
356     }
357 }
358 
359 static const MemoryRegionOps i6300esb_ops = {
360     .old_mmio = {
361         .read = {
362             i6300esb_mem_readb,
363             i6300esb_mem_readw,
364             i6300esb_mem_readl,
365         },
366         .write = {
367             i6300esb_mem_writeb,
368             i6300esb_mem_writew,
369             i6300esb_mem_writel,
370         },
371     },
372     .endianness = DEVICE_NATIVE_ENDIAN,
373 };
374 
375 static const VMStateDescription vmstate_i6300esb = {
376     .name = "i6300esb_wdt",
377     /* With this VMSD's introduction, version_id/minimum_version_id were
378      * erroneously set to sizeof(I6300State), causing a somewhat random
379      * version_id to be set for every build. This eventually broke
380      * migration.
381      *
382      * To correct this without breaking old->new migration for older versions
383      * of QEMU, we've set version_id to a value high enough to exceed all past
384      * values of sizeof(I6300State) across various build environments, and have
385      * reset minimum_version_id_old/minimum_version_id to 1, since this VMSD
386      * has never changed and thus can accept all past versions.
387      *
388      * For future changes we can treat these values as we normally would.
389      */
390     .version_id = 10000,
391     .minimum_version_id = 1,
392     .minimum_version_id_old = 1,
393     .fields      = (VMStateField []) {
394         VMSTATE_PCI_DEVICE(dev, I6300State),
395         VMSTATE_INT32(reboot_enabled, I6300State),
396         VMSTATE_INT32(clock_scale, I6300State),
397         VMSTATE_INT32(int_type, I6300State),
398         VMSTATE_INT32(free_run, I6300State),
399         VMSTATE_INT32(locked, I6300State),
400         VMSTATE_INT32(enabled, I6300State),
401         VMSTATE_TIMER(timer, I6300State),
402         VMSTATE_UINT32(timer1_preload, I6300State),
403         VMSTATE_UINT32(timer2_preload, I6300State),
404         VMSTATE_INT32(stage, I6300State),
405         VMSTATE_INT32(unlock_state, I6300State),
406         VMSTATE_INT32(previous_reboot_flag, I6300State),
407         VMSTATE_END_OF_LIST()
408     }
409 };
410 
411 static int i6300esb_init(PCIDevice *dev)
412 {
413     I6300State *d = DO_UPCAST(I6300State, dev, dev);
414 
415     i6300esb_debug("I6300State = %p\n", d);
416 
417     d->timer = qemu_new_timer_ns(vm_clock, i6300esb_timer_expired, d);
418     d->previous_reboot_flag = 0;
419 
420     memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
421                           "i6300esb", 0x10);
422     pci_register_bar(&d->dev, 0, 0, &d->io_mem);
423     /* qemu_register_coalesced_mmio (addr, 0x10); ? */
424 
425     return 0;
426 }
427 
428 static void i6300esb_exit(PCIDevice *dev)
429 {
430     I6300State *d = DO_UPCAST(I6300State, dev, dev);
431 
432     memory_region_destroy(&d->io_mem);
433 }
434 
435 static WatchdogTimerModel model = {
436     .wdt_name = "i6300esb",
437     .wdt_description = "Intel 6300ESB",
438 };
439 
440 static void i6300esb_class_init(ObjectClass *klass, void *data)
441 {
442     DeviceClass *dc = DEVICE_CLASS(klass);
443     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
444 
445     k->config_read = i6300esb_config_read;
446     k->config_write = i6300esb_config_write;
447     k->init = i6300esb_init;
448     k->exit = i6300esb_exit;
449     k->vendor_id = PCI_VENDOR_ID_INTEL;
450     k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
451     k->class_id = PCI_CLASS_SYSTEM_OTHER;
452     dc->reset = i6300esb_reset;
453     dc->vmsd = &vmstate_i6300esb;
454 }
455 
456 static const TypeInfo i6300esb_info = {
457     .name          = "i6300esb",
458     .parent        = TYPE_PCI_DEVICE,
459     .instance_size = sizeof(I6300State),
460     .class_init    = i6300esb_class_init,
461 };
462 
463 static void i6300esb_register_types(void)
464 {
465     watchdog_add_model(&model);
466     type_register_static(&i6300esb_info);
467 }
468 
469 type_init(i6300esb_register_types)
470