1 /* 2 * Virtio MEM device 3 * 4 * Copyright (C) 2020 Red Hat, Inc. 5 * 6 * Authors: 7 * David Hildenbrand <david@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/iov.h" 15 #include "qemu/cutils.h" 16 #include "qemu/error-report.h" 17 #include "qemu/units.h" 18 #include "sysemu/numa.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/reset.h" 21 #include "sysemu/runstate.h" 22 #include "hw/virtio/virtio.h" 23 #include "hw/virtio/virtio-bus.h" 24 #include "hw/virtio/virtio-mem.h" 25 #include "qapi/error.h" 26 #include "qapi/visitor.h" 27 #include "exec/ram_addr.h" 28 #include "migration/misc.h" 29 #include "hw/boards.h" 30 #include "hw/qdev-properties.h" 31 #include CONFIG_DEVICES 32 #include "trace.h" 33 34 static const VMStateDescription vmstate_virtio_mem_device_early; 35 36 /* 37 * We only had legacy x86 guests that did not support 38 * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests. 39 */ 40 #if defined(TARGET_X86_64) || defined(TARGET_I386) 41 #define VIRTIO_MEM_HAS_LEGACY_GUESTS 42 #endif 43 44 /* 45 * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking 46 * bitmap small. 47 */ 48 #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB)) 49 50 static uint32_t virtio_mem_default_thp_size(void) 51 { 52 uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; 53 54 #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__) 55 default_thp_size = 2 * MiB; 56 #elif defined(__aarch64__) 57 if (qemu_real_host_page_size() == 4 * KiB) { 58 default_thp_size = 2 * MiB; 59 } else if (qemu_real_host_page_size() == 16 * KiB) { 60 default_thp_size = 32 * MiB; 61 } else if (qemu_real_host_page_size() == 64 * KiB) { 62 default_thp_size = 512 * MiB; 63 } 64 #endif 65 66 return default_thp_size; 67 } 68 69 /* 70 * The minimum memslot size depends on this setting ("sane default"), the 71 * device block size, and the memory backend page size. The last (or single) 72 * memslot might be smaller than this constant. 73 */ 74 #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB) 75 76 /* 77 * We want to have a reasonable default block size such that 78 * 1. We avoid splitting THPs when unplugging memory, which degrades 79 * performance. 80 * 2. We avoid placing THPs for plugged blocks that also cover unplugged 81 * blocks. 82 * 83 * The actual THP size might differ between Linux kernels, so we try to probe 84 * it. In the future (if we ever run into issues regarding 2.), we might want 85 * to disable THP in case we fail to properly probe the THP size, or if the 86 * block size is configured smaller than the THP size. 87 */ 88 static uint32_t thp_size; 89 90 #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size" 91 static uint32_t virtio_mem_thp_size(void) 92 { 93 gchar *content = NULL; 94 const char *endptr; 95 uint64_t tmp; 96 97 if (thp_size) { 98 return thp_size; 99 } 100 101 /* 102 * Try to probe the actual THP size, fallback to (sane but eventually 103 * incorrect) default sizes. 104 */ 105 if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) && 106 !qemu_strtou64(content, &endptr, 0, &tmp) && 107 (!endptr || *endptr == '\n')) { 108 /* Sanity-check the value and fallback to something reasonable. */ 109 if (!tmp || !is_power_of_2(tmp)) { 110 warn_report("Read unsupported THP size: %" PRIx64, tmp); 111 } else { 112 thp_size = tmp; 113 } 114 } 115 116 if (!thp_size) { 117 thp_size = virtio_mem_default_thp_size(); 118 warn_report("Could not detect THP size, falling back to %" PRIx64 119 " MiB.", thp_size / MiB); 120 } 121 122 g_free(content); 123 return thp_size; 124 } 125 126 static uint64_t virtio_mem_default_block_size(RAMBlock *rb) 127 { 128 const uint64_t page_size = qemu_ram_pagesize(rb); 129 130 /* We can have hugetlbfs with a page size smaller than the THP size. */ 131 if (page_size == qemu_real_host_page_size()) { 132 return MAX(page_size, virtio_mem_thp_size()); 133 } 134 return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE); 135 } 136 137 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 138 static bool virtio_mem_has_shared_zeropage(RAMBlock *rb) 139 { 140 /* 141 * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE 142 * anonymous RAM. In any other case, reading unplugged *can* populate a 143 * fresh page, consuming actual memory. 144 */ 145 return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 && 146 qemu_ram_pagesize(rb) == qemu_real_host_page_size(); 147 } 148 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 149 150 /* 151 * Size the usable region bigger than the requested size if possible. Esp. 152 * Linux guests will only add (aligned) memory blocks in case they fully 153 * fit into the usable region, but plug+online only a subset of the pages. 154 * The memory block size corresponds mostly to the section size. 155 * 156 * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and 157 * a section size of 512MB on arm64 (as long as the start address is properly 158 * aligned, similar to ordinary DIMMs). 159 * 160 * We can change this at any time and maybe even make it configurable if 161 * necessary (as the section size can change). But it's more likely that the 162 * section size will rather get smaller and not bigger over time. 163 */ 164 #if defined(TARGET_X86_64) || defined(TARGET_I386) 165 #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB)) 166 #elif defined(TARGET_ARM) 167 #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB)) 168 #else 169 #error VIRTIO_MEM_USABLE_EXTENT not defined 170 #endif 171 172 static bool virtio_mem_is_busy(void) 173 { 174 /* 175 * Postcopy cannot handle concurrent discards and we don't want to migrate 176 * pages on-demand with stale content when plugging new blocks. 177 * 178 * For precopy, we don't want unplugged blocks in our migration stream, and 179 * when plugging new blocks, the page content might differ between source 180 * and destination (observable by the guest when not initializing pages 181 * after plugging them) until we're running on the destination (as we didn't 182 * migrate these blocks when they were unplugged). 183 */ 184 return migration_in_incoming_postcopy() || !migration_is_idle(); 185 } 186 187 typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg, 188 uint64_t offset, uint64_t size); 189 190 static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg, 191 virtio_mem_range_cb cb) 192 { 193 unsigned long first_zero_bit, last_zero_bit; 194 uint64_t offset, size; 195 int ret = 0; 196 197 first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size); 198 while (first_zero_bit < vmem->bitmap_size) { 199 offset = first_zero_bit * vmem->block_size; 200 last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 201 first_zero_bit + 1) - 1; 202 size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size; 203 204 ret = cb(vmem, arg, offset, size); 205 if (ret) { 206 break; 207 } 208 first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 209 last_zero_bit + 2); 210 } 211 return ret; 212 } 213 214 static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg, 215 virtio_mem_range_cb cb) 216 { 217 unsigned long first_bit, last_bit; 218 uint64_t offset, size; 219 int ret = 0; 220 221 first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size); 222 while (first_bit < vmem->bitmap_size) { 223 offset = first_bit * vmem->block_size; 224 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 225 first_bit + 1) - 1; 226 size = (last_bit - first_bit + 1) * vmem->block_size; 227 228 ret = cb(vmem, arg, offset, size); 229 if (ret) { 230 break; 231 } 232 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 233 last_bit + 2); 234 } 235 return ret; 236 } 237 238 /* 239 * Adjust the memory section to cover the intersection with the given range. 240 * 241 * Returns false if the intersection is empty, otherwise returns true. 242 */ 243 static bool virtio_mem_intersect_memory_section(MemoryRegionSection *s, 244 uint64_t offset, uint64_t size) 245 { 246 uint64_t start = MAX(s->offset_within_region, offset); 247 uint64_t end = MIN(s->offset_within_region + int128_get64(s->size), 248 offset + size); 249 250 if (end <= start) { 251 return false; 252 } 253 254 s->offset_within_address_space += start - s->offset_within_region; 255 s->offset_within_region = start; 256 s->size = int128_make64(end - start); 257 return true; 258 } 259 260 typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg); 261 262 static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem, 263 MemoryRegionSection *s, 264 void *arg, 265 virtio_mem_section_cb cb) 266 { 267 unsigned long first_bit, last_bit; 268 uint64_t offset, size; 269 int ret = 0; 270 271 first_bit = s->offset_within_region / vmem->block_size; 272 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 273 while (first_bit < vmem->bitmap_size) { 274 MemoryRegionSection tmp = *s; 275 276 offset = first_bit * vmem->block_size; 277 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 278 first_bit + 1) - 1; 279 size = (last_bit - first_bit + 1) * vmem->block_size; 280 281 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 282 break; 283 } 284 ret = cb(&tmp, arg); 285 if (ret) { 286 break; 287 } 288 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 289 last_bit + 2); 290 } 291 return ret; 292 } 293 294 static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem, 295 MemoryRegionSection *s, 296 void *arg, 297 virtio_mem_section_cb cb) 298 { 299 unsigned long first_bit, last_bit; 300 uint64_t offset, size; 301 int ret = 0; 302 303 first_bit = s->offset_within_region / vmem->block_size; 304 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 305 while (first_bit < vmem->bitmap_size) { 306 MemoryRegionSection tmp = *s; 307 308 offset = first_bit * vmem->block_size; 309 last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 310 first_bit + 1) - 1; 311 size = (last_bit - first_bit + 1) * vmem->block_size; 312 313 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 314 break; 315 } 316 ret = cb(&tmp, arg); 317 if (ret) { 318 break; 319 } 320 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 321 last_bit + 2); 322 } 323 return ret; 324 } 325 326 static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg) 327 { 328 RamDiscardListener *rdl = arg; 329 330 return rdl->notify_populate(rdl, s); 331 } 332 333 static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg) 334 { 335 RamDiscardListener *rdl = arg; 336 337 rdl->notify_discard(rdl, s); 338 return 0; 339 } 340 341 static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset, 342 uint64_t size) 343 { 344 RamDiscardListener *rdl; 345 346 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 347 MemoryRegionSection tmp = *rdl->section; 348 349 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 350 continue; 351 } 352 rdl->notify_discard(rdl, &tmp); 353 } 354 } 355 356 static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset, 357 uint64_t size) 358 { 359 RamDiscardListener *rdl, *rdl2; 360 int ret = 0; 361 362 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 363 MemoryRegionSection tmp = *rdl->section; 364 365 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 366 continue; 367 } 368 ret = rdl->notify_populate(rdl, &tmp); 369 if (ret) { 370 break; 371 } 372 } 373 374 if (ret) { 375 /* Notify all already-notified listeners. */ 376 QLIST_FOREACH(rdl2, &vmem->rdl_list, next) { 377 MemoryRegionSection tmp = *rdl2->section; 378 379 if (rdl2 == rdl) { 380 break; 381 } 382 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 383 continue; 384 } 385 rdl2->notify_discard(rdl2, &tmp); 386 } 387 } 388 return ret; 389 } 390 391 static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem) 392 { 393 RamDiscardListener *rdl; 394 395 if (!vmem->size) { 396 return; 397 } 398 399 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 400 if (rdl->double_discard_supported) { 401 rdl->notify_discard(rdl, rdl->section); 402 } else { 403 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 404 virtio_mem_notify_discard_cb); 405 } 406 } 407 } 408 409 static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem, 410 uint64_t start_gpa, uint64_t size) 411 { 412 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 413 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 414 unsigned long found_bit; 415 416 /* We fake a shorter bitmap to avoid searching too far. */ 417 found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit); 418 return found_bit > last_bit; 419 } 420 421 static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem, 422 uint64_t start_gpa, uint64_t size) 423 { 424 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 425 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 426 unsigned long found_bit; 427 428 /* We fake a shorter bitmap to avoid searching too far. */ 429 found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit); 430 return found_bit > last_bit; 431 } 432 433 static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa, 434 uint64_t size) 435 { 436 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 437 const unsigned long nbits = size / vmem->block_size; 438 439 bitmap_set(vmem->bitmap, bit, nbits); 440 } 441 442 static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa, 443 uint64_t size) 444 { 445 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 446 const unsigned long nbits = size / vmem->block_size; 447 448 bitmap_clear(vmem->bitmap, bit, nbits); 449 } 450 451 static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem, 452 struct virtio_mem_resp *resp) 453 { 454 VirtIODevice *vdev = VIRTIO_DEVICE(vmem); 455 VirtQueue *vq = vmem->vq; 456 457 trace_virtio_mem_send_response(le16_to_cpu(resp->type)); 458 iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp)); 459 460 virtqueue_push(vq, elem, sizeof(*resp)); 461 virtio_notify(vdev, vq); 462 } 463 464 static void virtio_mem_send_response_simple(VirtIOMEM *vmem, 465 VirtQueueElement *elem, 466 uint16_t type) 467 { 468 struct virtio_mem_resp resp = { 469 .type = cpu_to_le16(type), 470 }; 471 472 virtio_mem_send_response(vmem, elem, &resp); 473 } 474 475 static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa, 476 uint64_t size) 477 { 478 if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) { 479 return false; 480 } 481 if (gpa + size < gpa || !size) { 482 return false; 483 } 484 if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) { 485 return false; 486 } 487 if (gpa + size > vmem->addr + vmem->usable_region_size) { 488 return false; 489 } 490 return true; 491 } 492 493 static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx) 494 { 495 const uint64_t memslot_offset = idx * vmem->memslot_size; 496 497 assert(vmem->memslots); 498 499 /* 500 * Instead of enabling/disabling memslots, we add/remove them. This should 501 * make address space updates faster, because we don't have to loop over 502 * many disabled subregions. 503 */ 504 if (memory_region_is_mapped(&vmem->memslots[idx])) { 505 return; 506 } 507 memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]); 508 } 509 510 static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx) 511 { 512 assert(vmem->memslots); 513 514 if (!memory_region_is_mapped(&vmem->memslots[idx])) { 515 return; 516 } 517 memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]); 518 } 519 520 static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem, 521 uint64_t offset, uint64_t size) 522 { 523 const unsigned int start_idx = offset / vmem->memslot_size; 524 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 525 vmem->memslot_size; 526 unsigned int idx; 527 528 assert(vmem->dynamic_memslots); 529 530 /* Activate all involved memslots in a single transaction. */ 531 memory_region_transaction_begin(); 532 for (idx = start_idx; idx < end_idx; idx++) { 533 virtio_mem_activate_memslot(vmem, idx); 534 } 535 memory_region_transaction_commit(); 536 } 537 538 static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem, 539 uint64_t offset, 540 uint64_t size) 541 { 542 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 543 const unsigned int start_idx = offset / vmem->memslot_size; 544 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 545 vmem->memslot_size; 546 unsigned int idx; 547 548 assert(vmem->dynamic_memslots); 549 550 /* Deactivate all memslots with unplugged blocks in a single transaction. */ 551 memory_region_transaction_begin(); 552 for (idx = start_idx; idx < end_idx; idx++) { 553 const uint64_t memslot_offset = idx * vmem->memslot_size; 554 uint64_t memslot_size = vmem->memslot_size; 555 556 /* The size of the last memslot might be smaller. */ 557 if (idx == vmem->nb_memslots - 1) { 558 memslot_size = region_size - memslot_offset; 559 } 560 561 /* 562 * Partially covered memslots might still have some blocks plugged and 563 * have to remain active if that's the case. 564 */ 565 if (offset > memslot_offset || 566 offset + size < memslot_offset + memslot_size) { 567 const uint64_t gpa = vmem->addr + memslot_offset; 568 569 if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) { 570 continue; 571 } 572 } 573 574 virtio_mem_deactivate_memslot(vmem, idx); 575 } 576 memory_region_transaction_commit(); 577 } 578 579 static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa, 580 uint64_t size, bool plug) 581 { 582 const uint64_t offset = start_gpa - vmem->addr; 583 RAMBlock *rb = vmem->memdev->mr.ram_block; 584 int ret = 0; 585 586 if (virtio_mem_is_busy()) { 587 return -EBUSY; 588 } 589 590 if (!plug) { 591 if (ram_block_discard_range(rb, offset, size)) { 592 return -EBUSY; 593 } 594 virtio_mem_notify_unplug(vmem, offset, size); 595 virtio_mem_set_range_unplugged(vmem, start_gpa, size); 596 /* Deactivate completely unplugged memslots after updating the state. */ 597 if (vmem->dynamic_memslots) { 598 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 599 } 600 return 0; 601 } 602 603 if (vmem->prealloc) { 604 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 605 int fd = memory_region_get_fd(&vmem->memdev->mr); 606 Error *local_err = NULL; 607 608 qemu_prealloc_mem(fd, area, size, 1, NULL, &local_err); 609 if (local_err) { 610 static bool warned; 611 612 /* 613 * Warn only once, we don't want to fill the log with these 614 * warnings. 615 */ 616 if (!warned) { 617 warn_report_err(local_err); 618 warned = true; 619 } else { 620 error_free(local_err); 621 } 622 ret = -EBUSY; 623 } 624 } 625 626 if (!ret) { 627 /* 628 * Activate before notifying and rollback in case of any errors. 629 * 630 * When activating a yet inactive memslot, memory notifiers will get 631 * notified about the added memory region and can register with the 632 * RamDiscardManager; this will traverse all plugged blocks and skip the 633 * blocks we are plugging here. The following notification will inform 634 * registered listeners about the blocks we're plugging. 635 */ 636 if (vmem->dynamic_memslots) { 637 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 638 } 639 ret = virtio_mem_notify_plug(vmem, offset, size); 640 if (ret && vmem->dynamic_memslots) { 641 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 642 } 643 } 644 if (ret) { 645 /* Could be preallocation or a notifier populated memory. */ 646 ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size); 647 return -EBUSY; 648 } 649 650 virtio_mem_set_range_plugged(vmem, start_gpa, size); 651 return 0; 652 } 653 654 static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa, 655 uint16_t nb_blocks, bool plug) 656 { 657 const uint64_t size = nb_blocks * vmem->block_size; 658 int ret; 659 660 if (!virtio_mem_valid_range(vmem, gpa, size)) { 661 return VIRTIO_MEM_RESP_ERROR; 662 } 663 664 if (plug && (vmem->size + size > vmem->requested_size)) { 665 return VIRTIO_MEM_RESP_NACK; 666 } 667 668 /* test if really all blocks are in the opposite state */ 669 if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) || 670 (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) { 671 return VIRTIO_MEM_RESP_ERROR; 672 } 673 674 ret = virtio_mem_set_block_state(vmem, gpa, size, plug); 675 if (ret) { 676 return VIRTIO_MEM_RESP_BUSY; 677 } 678 if (plug) { 679 vmem->size += size; 680 } else { 681 vmem->size -= size; 682 } 683 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 684 return VIRTIO_MEM_RESP_ACK; 685 } 686 687 static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 688 struct virtio_mem_req *req) 689 { 690 const uint64_t gpa = le64_to_cpu(req->u.plug.addr); 691 const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks); 692 uint16_t type; 693 694 trace_virtio_mem_plug_request(gpa, nb_blocks); 695 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true); 696 virtio_mem_send_response_simple(vmem, elem, type); 697 } 698 699 static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 700 struct virtio_mem_req *req) 701 { 702 const uint64_t gpa = le64_to_cpu(req->u.unplug.addr); 703 const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks); 704 uint16_t type; 705 706 trace_virtio_mem_unplug_request(gpa, nb_blocks); 707 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false); 708 virtio_mem_send_response_simple(vmem, elem, type); 709 } 710 711 static void virtio_mem_resize_usable_region(VirtIOMEM *vmem, 712 uint64_t requested_size, 713 bool can_shrink) 714 { 715 uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr), 716 requested_size + VIRTIO_MEM_USABLE_EXTENT); 717 718 /* The usable region size always has to be multiples of the block size. */ 719 newsize = QEMU_ALIGN_UP(newsize, vmem->block_size); 720 721 if (!requested_size) { 722 newsize = 0; 723 } 724 725 if (newsize < vmem->usable_region_size && !can_shrink) { 726 return; 727 } 728 729 trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize); 730 vmem->usable_region_size = newsize; 731 } 732 733 static int virtio_mem_unplug_all(VirtIOMEM *vmem) 734 { 735 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 736 RAMBlock *rb = vmem->memdev->mr.ram_block; 737 738 if (vmem->size) { 739 if (virtio_mem_is_busy()) { 740 return -EBUSY; 741 } 742 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 743 return -EBUSY; 744 } 745 virtio_mem_notify_unplug_all(vmem); 746 747 bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size); 748 vmem->size = 0; 749 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 750 751 /* Deactivate all memslots after updating the state. */ 752 if (vmem->dynamic_memslots) { 753 virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size); 754 } 755 } 756 757 trace_virtio_mem_unplugged_all(); 758 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 759 return 0; 760 } 761 762 static void virtio_mem_unplug_all_request(VirtIOMEM *vmem, 763 VirtQueueElement *elem) 764 { 765 trace_virtio_mem_unplug_all_request(); 766 if (virtio_mem_unplug_all(vmem)) { 767 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY); 768 } else { 769 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK); 770 } 771 } 772 773 static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem, 774 struct virtio_mem_req *req) 775 { 776 const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks); 777 const uint64_t gpa = le64_to_cpu(req->u.state.addr); 778 const uint64_t size = nb_blocks * vmem->block_size; 779 struct virtio_mem_resp resp = { 780 .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK), 781 }; 782 783 trace_virtio_mem_state_request(gpa, nb_blocks); 784 if (!virtio_mem_valid_range(vmem, gpa, size)) { 785 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR); 786 return; 787 } 788 789 if (virtio_mem_is_range_plugged(vmem, gpa, size)) { 790 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED); 791 } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) { 792 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED); 793 } else { 794 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED); 795 } 796 trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state)); 797 virtio_mem_send_response(vmem, elem, &resp); 798 } 799 800 static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq) 801 { 802 const int len = sizeof(struct virtio_mem_req); 803 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 804 VirtQueueElement *elem; 805 struct virtio_mem_req req; 806 uint16_t type; 807 808 while (true) { 809 elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); 810 if (!elem) { 811 return; 812 } 813 814 if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) { 815 virtio_error(vdev, "virtio-mem protocol violation: invalid request" 816 " size: %d", len); 817 virtqueue_detach_element(vq, elem, 0); 818 g_free(elem); 819 return; 820 } 821 822 if (iov_size(elem->in_sg, elem->in_num) < 823 sizeof(struct virtio_mem_resp)) { 824 virtio_error(vdev, "virtio-mem protocol violation: not enough space" 825 " for response: %zu", 826 iov_size(elem->in_sg, elem->in_num)); 827 virtqueue_detach_element(vq, elem, 0); 828 g_free(elem); 829 return; 830 } 831 832 type = le16_to_cpu(req.type); 833 switch (type) { 834 case VIRTIO_MEM_REQ_PLUG: 835 virtio_mem_plug_request(vmem, elem, &req); 836 break; 837 case VIRTIO_MEM_REQ_UNPLUG: 838 virtio_mem_unplug_request(vmem, elem, &req); 839 break; 840 case VIRTIO_MEM_REQ_UNPLUG_ALL: 841 virtio_mem_unplug_all_request(vmem, elem); 842 break; 843 case VIRTIO_MEM_REQ_STATE: 844 virtio_mem_state_request(vmem, elem, &req); 845 break; 846 default: 847 virtio_error(vdev, "virtio-mem protocol violation: unknown request" 848 " type: %d", type); 849 virtqueue_detach_element(vq, elem, 0); 850 g_free(elem); 851 return; 852 } 853 854 g_free(elem); 855 } 856 } 857 858 static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data) 859 { 860 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 861 struct virtio_mem_config *config = (void *) config_data; 862 863 config->block_size = cpu_to_le64(vmem->block_size); 864 config->node_id = cpu_to_le16(vmem->node); 865 config->requested_size = cpu_to_le64(vmem->requested_size); 866 config->plugged_size = cpu_to_le64(vmem->size); 867 config->addr = cpu_to_le64(vmem->addr); 868 config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr)); 869 config->usable_region_size = cpu_to_le64(vmem->usable_region_size); 870 } 871 872 static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features, 873 Error **errp) 874 { 875 MachineState *ms = MACHINE(qdev_get_machine()); 876 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 877 878 if (ms->numa_state) { 879 #if defined(CONFIG_ACPI) 880 virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM); 881 #endif 882 } 883 assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO); 884 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) { 885 virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE); 886 } 887 return features; 888 } 889 890 static int virtio_mem_validate_features(VirtIODevice *vdev) 891 { 892 if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) && 893 !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) { 894 return -EFAULT; 895 } 896 return 0; 897 } 898 899 static void virtio_mem_system_reset(void *opaque) 900 { 901 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 902 903 /* 904 * During usual resets, we will unplug all memory and shrink the usable 905 * region size. This is, however, not possible in all scenarios. Then, 906 * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL). 907 */ 908 virtio_mem_unplug_all(vmem); 909 } 910 911 static void virtio_mem_prepare_mr(VirtIOMEM *vmem) 912 { 913 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 914 915 assert(!vmem->mr && vmem->dynamic_memslots); 916 vmem->mr = g_new0(MemoryRegion, 1); 917 memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem", 918 region_size); 919 vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr); 920 } 921 922 static void virtio_mem_prepare_memslots(VirtIOMEM *vmem) 923 { 924 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 925 unsigned int idx; 926 927 g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots); 928 vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots); 929 930 /* Initialize our memslots, but don't map them yet. */ 931 for (idx = 0; idx < vmem->nb_memslots; idx++) { 932 const uint64_t memslot_offset = idx * vmem->memslot_size; 933 uint64_t memslot_size = vmem->memslot_size; 934 char name[20]; 935 936 /* The size of the last memslot might be smaller. */ 937 if (idx == vmem->nb_memslots - 1) { 938 memslot_size = region_size - memslot_offset; 939 } 940 941 snprintf(name, sizeof(name), "memslot-%u", idx); 942 memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name, 943 &vmem->memdev->mr, memslot_offset, 944 memslot_size); 945 /* 946 * We want to be able to atomically and efficiently activate/deactivate 947 * individual memslots without affecting adjacent memslots in memory 948 * notifiers. 949 */ 950 memory_region_set_unmergeable(&vmem->memslots[idx], true); 951 } 952 } 953 954 static void virtio_mem_device_realize(DeviceState *dev, Error **errp) 955 { 956 MachineState *ms = MACHINE(qdev_get_machine()); 957 int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0; 958 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 959 VirtIOMEM *vmem = VIRTIO_MEM(dev); 960 uint64_t page_size; 961 RAMBlock *rb; 962 int ret; 963 964 if (!vmem->memdev) { 965 error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP); 966 return; 967 } else if (host_memory_backend_is_mapped(vmem->memdev)) { 968 error_setg(errp, "'%s' property specifies a busy memdev: %s", 969 VIRTIO_MEM_MEMDEV_PROP, 970 object_get_canonical_path_component(OBJECT(vmem->memdev))); 971 return; 972 } else if (!memory_region_is_ram(&vmem->memdev->mr) || 973 memory_region_is_rom(&vmem->memdev->mr) || 974 !vmem->memdev->mr.ram_block) { 975 error_setg(errp, "'%s' property specifies an unsupported memdev", 976 VIRTIO_MEM_MEMDEV_PROP); 977 return; 978 } else if (vmem->memdev->prealloc) { 979 error_setg(errp, "'%s' property specifies a memdev with preallocation" 980 " enabled: %s. Instead, specify 'prealloc=on' for the" 981 " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP, 982 object_get_canonical_path_component(OBJECT(vmem->memdev))); 983 return; 984 } 985 986 if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) || 987 (!nb_numa_nodes && vmem->node)) { 988 error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds" 989 "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP, 990 vmem->node, nb_numa_nodes ? nb_numa_nodes : 1); 991 return; 992 } 993 994 if (enable_mlock) { 995 error_setg(errp, "Incompatible with mlock"); 996 return; 997 } 998 999 rb = vmem->memdev->mr.ram_block; 1000 page_size = qemu_ram_pagesize(rb); 1001 1002 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1003 switch (vmem->unplugged_inaccessible) { 1004 case ON_OFF_AUTO_AUTO: 1005 if (virtio_mem_has_shared_zeropage(rb)) { 1006 vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF; 1007 } else { 1008 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1009 } 1010 break; 1011 case ON_OFF_AUTO_OFF: 1012 if (!virtio_mem_has_shared_zeropage(rb)) { 1013 warn_report("'%s' property set to 'off' with a memdev that does" 1014 " not support the shared zeropage.", 1015 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1016 } 1017 break; 1018 default: 1019 break; 1020 } 1021 #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1022 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1023 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1024 1025 if (vmem->dynamic_memslots && 1026 vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) { 1027 error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'", 1028 VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, 1029 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1030 return; 1031 } 1032 1033 /* 1034 * If the block size wasn't configured by the user, use a sane default. This 1035 * allows using hugetlbfs backends of any page size without manual 1036 * intervention. 1037 */ 1038 if (!vmem->block_size) { 1039 vmem->block_size = virtio_mem_default_block_size(rb); 1040 } 1041 1042 if (vmem->block_size < page_size) { 1043 error_setg(errp, "'%s' property has to be at least the page size (0x%" 1044 PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size); 1045 return; 1046 } else if (vmem->block_size < virtio_mem_default_block_size(rb)) { 1047 warn_report("'%s' property is smaller than the default block size (%" 1048 PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP, 1049 virtio_mem_default_block_size(rb) / MiB); 1050 } 1051 if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) { 1052 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1053 ")", VIRTIO_MEM_REQUESTED_SIZE_PROP, 1054 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1055 return; 1056 } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) { 1057 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1058 ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP, 1059 vmem->block_size); 1060 return; 1061 } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr), 1062 vmem->block_size)) { 1063 error_setg(errp, "'%s' property memdev size has to be multiples of" 1064 "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP, 1065 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1066 return; 1067 } 1068 1069 if (ram_block_coordinated_discard_require(true)) { 1070 error_setg(errp, "Discarding RAM is disabled"); 1071 return; 1072 } 1073 1074 /* 1075 * We don't know at this point whether shared RAM is migrated using 1076 * QEMU or migrated using the file content. "x-ignore-shared" will be 1077 * configured after realizing the device. So in case we have an 1078 * incoming migration, simply always skip the discard step. 1079 * 1080 * Otherwise, make sure that we start with a clean slate: either the 1081 * memory backend might get reused or the shared file might still have 1082 * memory allocated. 1083 */ 1084 if (!runstate_check(RUN_STATE_INMIGRATE)) { 1085 ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb)); 1086 if (ret) { 1087 error_setg_errno(errp, -ret, "Unexpected error discarding RAM"); 1088 ram_block_coordinated_discard_require(false); 1089 return; 1090 } 1091 } 1092 1093 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 1094 1095 vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) / 1096 vmem->block_size; 1097 vmem->bitmap = bitmap_new(vmem->bitmap_size); 1098 1099 virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config)); 1100 vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request); 1101 1102 /* 1103 * With "dynamic-memslots=off" (old behavior) we always map the whole 1104 * RAM memory region directly. 1105 */ 1106 if (vmem->dynamic_memslots) { 1107 if (!vmem->mr) { 1108 virtio_mem_prepare_mr(vmem); 1109 } 1110 if (vmem->nb_memslots <= 1) { 1111 vmem->nb_memslots = 1; 1112 vmem->memslot_size = memory_region_size(&vmem->memdev->mr); 1113 } 1114 if (!vmem->memslots) { 1115 virtio_mem_prepare_memslots(vmem); 1116 } 1117 } else { 1118 assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots); 1119 } 1120 1121 host_memory_backend_set_mapped(vmem->memdev, true); 1122 vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem)); 1123 if (vmem->early_migration) { 1124 vmstate_register_any(VMSTATE_IF(vmem), 1125 &vmstate_virtio_mem_device_early, vmem); 1126 } 1127 qemu_register_reset(virtio_mem_system_reset, vmem); 1128 1129 /* 1130 * Set ourselves as RamDiscardManager before the plug handler maps the 1131 * memory region and exposes it via an address space. 1132 */ 1133 memory_region_set_ram_discard_manager(&vmem->memdev->mr, 1134 RAM_DISCARD_MANAGER(vmem)); 1135 } 1136 1137 static void virtio_mem_device_unrealize(DeviceState *dev) 1138 { 1139 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 1140 VirtIOMEM *vmem = VIRTIO_MEM(dev); 1141 1142 /* 1143 * The unplug handler unmapped the memory region, it cannot be 1144 * found via an address space anymore. Unset ourselves. 1145 */ 1146 memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL); 1147 qemu_unregister_reset(virtio_mem_system_reset, vmem); 1148 if (vmem->early_migration) { 1149 vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early, 1150 vmem); 1151 } 1152 vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem)); 1153 host_memory_backend_set_mapped(vmem->memdev, false); 1154 virtio_del_queue(vdev, 0); 1155 virtio_cleanup(vdev); 1156 g_free(vmem->bitmap); 1157 ram_block_coordinated_discard_require(false); 1158 } 1159 1160 static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg, 1161 uint64_t offset, uint64_t size) 1162 { 1163 RAMBlock *rb = vmem->memdev->mr.ram_block; 1164 1165 return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0; 1166 } 1167 1168 static int virtio_mem_restore_unplugged(VirtIOMEM *vmem) 1169 { 1170 /* Make sure all memory is really discarded after migration. */ 1171 return virtio_mem_for_each_unplugged_range(vmem, NULL, 1172 virtio_mem_discard_range_cb); 1173 } 1174 1175 static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg, 1176 uint64_t offset, uint64_t size) 1177 { 1178 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 1179 return 0; 1180 } 1181 1182 static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem) 1183 { 1184 RamDiscardListener *rdl; 1185 int ret; 1186 1187 /* 1188 * We restored the bitmap and updated the requested size; activate all 1189 * memslots (so listeners register) before notifying about plugged blocks. 1190 */ 1191 if (vmem->dynamic_memslots) { 1192 /* 1193 * We don't expect any active memslots at this point to deactivate: no 1194 * memory was plugged on the migration destination. 1195 */ 1196 virtio_mem_for_each_plugged_range(vmem, NULL, 1197 virtio_mem_activate_memslot_range_cb); 1198 } 1199 1200 /* 1201 * We started out with all memory discarded and our memory region is mapped 1202 * into an address space. Replay, now that we updated the bitmap. 1203 */ 1204 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 1205 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1206 virtio_mem_notify_populate_cb); 1207 if (ret) { 1208 return ret; 1209 } 1210 } 1211 return 0; 1212 } 1213 1214 static int virtio_mem_post_load(void *opaque, int version_id) 1215 { 1216 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1217 int ret; 1218 1219 if (!vmem->early_migration) { 1220 ret = virtio_mem_post_load_bitmap(vmem); 1221 if (ret) { 1222 return ret; 1223 } 1224 } 1225 1226 /* 1227 * If shared RAM is migrated using the file content and not using QEMU, 1228 * don't mess with preallocation and postcopy. 1229 */ 1230 if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) { 1231 return 0; 1232 } 1233 1234 if (vmem->prealloc && !vmem->early_migration) { 1235 warn_report("Proper preallocation with migration requires a newer QEMU machine"); 1236 } 1237 1238 if (migration_in_incoming_postcopy()) { 1239 return 0; 1240 } 1241 1242 return virtio_mem_restore_unplugged(vmem); 1243 } 1244 1245 static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg, 1246 uint64_t offset, uint64_t size) 1247 { 1248 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 1249 int fd = memory_region_get_fd(&vmem->memdev->mr); 1250 Error *local_err = NULL; 1251 1252 qemu_prealloc_mem(fd, area, size, 1, NULL, &local_err); 1253 if (local_err) { 1254 error_report_err(local_err); 1255 return -ENOMEM; 1256 } 1257 return 0; 1258 } 1259 1260 static int virtio_mem_post_load_early(void *opaque, int version_id) 1261 { 1262 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1263 RAMBlock *rb = vmem->memdev->mr.ram_block; 1264 int ret; 1265 1266 if (!vmem->prealloc) { 1267 goto post_load_bitmap; 1268 } 1269 1270 /* 1271 * If shared RAM is migrated using the file content and not using QEMU, 1272 * don't mess with preallocation and postcopy. 1273 */ 1274 if (migrate_ram_is_ignored(rb)) { 1275 goto post_load_bitmap; 1276 } 1277 1278 /* 1279 * We restored the bitmap and verified that the basic properties 1280 * match on source and destination, so we can go ahead and preallocate 1281 * memory for all plugged memory blocks, before actual RAM migration starts 1282 * touching this memory. 1283 */ 1284 ret = virtio_mem_for_each_plugged_range(vmem, NULL, 1285 virtio_mem_prealloc_range_cb); 1286 if (ret) { 1287 return ret; 1288 } 1289 1290 /* 1291 * This is tricky: postcopy wants to start with a clean slate. On 1292 * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily 1293 * preallocated) RAM such that postcopy will work as expected later. 1294 * 1295 * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual 1296 * RAM migration. So let's discard all memory again. This looks like an 1297 * expensive NOP, but actually serves a purpose: we made sure that we 1298 * were able to allocate all required backend memory once. We cannot 1299 * guarantee that the backend memory we will free will remain free 1300 * until we need it during postcopy, but at least we can catch the 1301 * obvious setup issues this way. 1302 */ 1303 if (migration_incoming_postcopy_advised()) { 1304 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 1305 return -EBUSY; 1306 } 1307 } 1308 1309 post_load_bitmap: 1310 /* Finally, update any other state to be consistent with the new bitmap. */ 1311 return virtio_mem_post_load_bitmap(vmem); 1312 } 1313 1314 typedef struct VirtIOMEMMigSanityChecks { 1315 VirtIOMEM *parent; 1316 uint64_t addr; 1317 uint64_t region_size; 1318 uint64_t block_size; 1319 uint32_t node; 1320 } VirtIOMEMMigSanityChecks; 1321 1322 static int virtio_mem_mig_sanity_checks_pre_save(void *opaque) 1323 { 1324 VirtIOMEMMigSanityChecks *tmp = opaque; 1325 VirtIOMEM *vmem = tmp->parent; 1326 1327 tmp->addr = vmem->addr; 1328 tmp->region_size = memory_region_size(&vmem->memdev->mr); 1329 tmp->block_size = vmem->block_size; 1330 tmp->node = vmem->node; 1331 return 0; 1332 } 1333 1334 static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id) 1335 { 1336 VirtIOMEMMigSanityChecks *tmp = opaque; 1337 VirtIOMEM *vmem = tmp->parent; 1338 const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr); 1339 1340 if (tmp->addr != vmem->addr) { 1341 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1342 VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr); 1343 return -EINVAL; 1344 } 1345 /* 1346 * Note: Preparation for resizable memory regions. The maximum size 1347 * of the memory region must not change during migration. 1348 */ 1349 if (tmp->region_size != new_region_size) { 1350 error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%" 1351 PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size, 1352 new_region_size); 1353 return -EINVAL; 1354 } 1355 if (tmp->block_size != vmem->block_size) { 1356 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1357 VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size, 1358 vmem->block_size); 1359 return -EINVAL; 1360 } 1361 if (tmp->node != vmem->node) { 1362 error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32, 1363 VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node); 1364 return -EINVAL; 1365 } 1366 return 0; 1367 } 1368 1369 static const VMStateDescription vmstate_virtio_mem_sanity_checks = { 1370 .name = "virtio-mem-device/sanity-checks", 1371 .pre_save = virtio_mem_mig_sanity_checks_pre_save, 1372 .post_load = virtio_mem_mig_sanity_checks_post_load, 1373 .fields = (const VMStateField[]) { 1374 VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks), 1375 VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks), 1376 VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks), 1377 VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks), 1378 VMSTATE_END_OF_LIST(), 1379 }, 1380 }; 1381 1382 static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id) 1383 { 1384 const VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1385 1386 /* With early migration, these fields were already migrated. */ 1387 return !vmem->early_migration; 1388 } 1389 1390 static const VMStateDescription vmstate_virtio_mem_device = { 1391 .name = "virtio-mem-device", 1392 .minimum_version_id = 1, 1393 .version_id = 1, 1394 .priority = MIG_PRI_VIRTIO_MEM, 1395 .post_load = virtio_mem_post_load, 1396 .fields = (const VMStateField[]) { 1397 VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists, 1398 VirtIOMEMMigSanityChecks, 1399 vmstate_virtio_mem_sanity_checks), 1400 VMSTATE_UINT64(usable_region_size, VirtIOMEM), 1401 VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists), 1402 VMSTATE_UINT64(requested_size, VirtIOMEM), 1403 VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists, 1404 0, bitmap_size), 1405 VMSTATE_END_OF_LIST() 1406 }, 1407 }; 1408 1409 /* 1410 * Transfer properties that are immutable while migration is active early, 1411 * such that we have have this information around before migrating any RAM 1412 * content. 1413 * 1414 * Note that virtio_mem_is_busy() makes sure these properties can no longer 1415 * change on the migration source until migration completed. 1416 * 1417 * With QEMU compat machines, we transmit these properties later, via 1418 * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists(). 1419 */ 1420 static const VMStateDescription vmstate_virtio_mem_device_early = { 1421 .name = "virtio-mem-device-early", 1422 .minimum_version_id = 1, 1423 .version_id = 1, 1424 .early_setup = true, 1425 .post_load = virtio_mem_post_load_early, 1426 .fields = (const VMStateField[]) { 1427 VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks, 1428 vmstate_virtio_mem_sanity_checks), 1429 VMSTATE_UINT64(size, VirtIOMEM), 1430 VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size), 1431 VMSTATE_END_OF_LIST() 1432 }, 1433 }; 1434 1435 static const VMStateDescription vmstate_virtio_mem = { 1436 .name = "virtio-mem", 1437 .minimum_version_id = 1, 1438 .version_id = 1, 1439 .fields = (const VMStateField[]) { 1440 VMSTATE_VIRTIO_DEVICE, 1441 VMSTATE_END_OF_LIST() 1442 }, 1443 }; 1444 1445 static void virtio_mem_fill_device_info(const VirtIOMEM *vmem, 1446 VirtioMEMDeviceInfo *vi) 1447 { 1448 vi->memaddr = vmem->addr; 1449 vi->node = vmem->node; 1450 vi->requested_size = vmem->requested_size; 1451 vi->size = vmem->size; 1452 vi->max_size = memory_region_size(&vmem->memdev->mr); 1453 vi->block_size = vmem->block_size; 1454 vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev)); 1455 } 1456 1457 static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp) 1458 { 1459 if (!vmem->memdev) { 1460 error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP); 1461 return NULL; 1462 } else if (vmem->dynamic_memslots) { 1463 if (!vmem->mr) { 1464 virtio_mem_prepare_mr(vmem); 1465 } 1466 return vmem->mr; 1467 } 1468 1469 return &vmem->memdev->mr; 1470 } 1471 1472 static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit) 1473 { 1474 uint64_t region_size, memslot_size, min_memslot_size; 1475 unsigned int memslots; 1476 RAMBlock *rb; 1477 1478 if (!vmem->dynamic_memslots) { 1479 return; 1480 } 1481 1482 /* We're called exactly once, before realizing the device. */ 1483 assert(!vmem->nb_memslots); 1484 1485 /* If realizing the device will fail, just assume a single memslot. */ 1486 if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) { 1487 vmem->nb_memslots = 1; 1488 return; 1489 } 1490 1491 rb = vmem->memdev->mr.ram_block; 1492 region_size = memory_region_size(&vmem->memdev->mr); 1493 1494 /* 1495 * Determine the default block size now, to determine the minimum memslot 1496 * size. We want the minimum slot size to be at least the device block size. 1497 */ 1498 if (!vmem->block_size) { 1499 vmem->block_size = virtio_mem_default_block_size(rb); 1500 } 1501 /* If realizing the device will fail, just assume a single memslot. */ 1502 if (vmem->block_size < qemu_ram_pagesize(rb) || 1503 !QEMU_IS_ALIGNED(region_size, vmem->block_size)) { 1504 vmem->nb_memslots = 1; 1505 return; 1506 } 1507 1508 /* 1509 * All memslots except the last one have a reasonable minimum size, and 1510 * and all memslot sizes are aligned to the device block size. 1511 */ 1512 memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size); 1513 min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE); 1514 memslot_size = MAX(memslot_size, min_memslot_size); 1515 1516 memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size; 1517 if (memslots != 1) { 1518 vmem->memslot_size = memslot_size; 1519 } 1520 vmem->nb_memslots = memslots; 1521 } 1522 1523 static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem) 1524 { 1525 if (!vmem->dynamic_memslots) { 1526 /* Exactly one static RAM memory region. */ 1527 return 1; 1528 } 1529 1530 /* We're called after instructed to make a decision. */ 1531 g_assert(vmem->nb_memslots); 1532 return vmem->nb_memslots; 1533 } 1534 1535 static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem, 1536 Notifier *notifier) 1537 { 1538 notifier_list_add(&vmem->size_change_notifiers, notifier); 1539 } 1540 1541 static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem, 1542 Notifier *notifier) 1543 { 1544 notifier_remove(notifier); 1545 } 1546 1547 static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name, 1548 void *opaque, Error **errp) 1549 { 1550 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1551 uint64_t value = vmem->size; 1552 1553 visit_type_size(v, name, &value, errp); 1554 } 1555 1556 static void virtio_mem_get_requested_size(Object *obj, Visitor *v, 1557 const char *name, void *opaque, 1558 Error **errp) 1559 { 1560 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1561 uint64_t value = vmem->requested_size; 1562 1563 visit_type_size(v, name, &value, errp); 1564 } 1565 1566 static void virtio_mem_set_requested_size(Object *obj, Visitor *v, 1567 const char *name, void *opaque, 1568 Error **errp) 1569 { 1570 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1571 uint64_t value; 1572 1573 if (!visit_type_size(v, name, &value, errp)) { 1574 return; 1575 } 1576 1577 /* 1578 * The block size and memory backend are not fixed until the device was 1579 * realized. realize() will verify these properties then. 1580 */ 1581 if (DEVICE(obj)->realized) { 1582 if (!QEMU_IS_ALIGNED(value, vmem->block_size)) { 1583 error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64 1584 ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP, 1585 vmem->block_size); 1586 return; 1587 } else if (value > memory_region_size(&vmem->memdev->mr)) { 1588 error_setg(errp, "'%s' cannot exceed the memory backend size" 1589 "(0x%" PRIx64 ")", name, 1590 memory_region_size(&vmem->memdev->mr)); 1591 return; 1592 } 1593 1594 if (value != vmem->requested_size) { 1595 virtio_mem_resize_usable_region(vmem, value, false); 1596 vmem->requested_size = value; 1597 } 1598 /* 1599 * Trigger a config update so the guest gets notified. We trigger 1600 * even if the size didn't change (especially helpful for debugging). 1601 */ 1602 virtio_notify_config(VIRTIO_DEVICE(vmem)); 1603 } else { 1604 vmem->requested_size = value; 1605 } 1606 } 1607 1608 static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name, 1609 void *opaque, Error **errp) 1610 { 1611 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1612 uint64_t value = vmem->block_size; 1613 1614 /* 1615 * If not configured by the user (and we're not realized yet), use the 1616 * default block size we would use with the current memory backend. 1617 */ 1618 if (!value) { 1619 if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) { 1620 value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block); 1621 } else { 1622 value = virtio_mem_thp_size(); 1623 } 1624 } 1625 1626 visit_type_size(v, name, &value, errp); 1627 } 1628 1629 static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name, 1630 void *opaque, Error **errp) 1631 { 1632 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1633 uint64_t value; 1634 1635 if (DEVICE(obj)->realized) { 1636 error_setg(errp, "'%s' cannot be changed", name); 1637 return; 1638 } 1639 1640 if (!visit_type_size(v, name, &value, errp)) { 1641 return; 1642 } 1643 1644 if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) { 1645 error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name, 1646 VIRTIO_MEM_MIN_BLOCK_SIZE); 1647 return; 1648 } else if (!is_power_of_2(value)) { 1649 error_setg(errp, "'%s' property has to be a power of two", name); 1650 return; 1651 } 1652 vmem->block_size = value; 1653 } 1654 1655 static void virtio_mem_instance_init(Object *obj) 1656 { 1657 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1658 1659 notifier_list_init(&vmem->size_change_notifiers); 1660 QLIST_INIT(&vmem->rdl_list); 1661 1662 object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size, 1663 NULL, NULL, NULL); 1664 object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size", 1665 virtio_mem_get_requested_size, 1666 virtio_mem_set_requested_size, NULL, NULL); 1667 object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size", 1668 virtio_mem_get_block_size, virtio_mem_set_block_size, 1669 NULL, NULL); 1670 } 1671 1672 static void virtio_mem_instance_finalize(Object *obj) 1673 { 1674 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1675 1676 /* 1677 * Note: the core already dropped the references on all memory regions 1678 * (it's passed as the owner to memory_region_init_*()) and finalized 1679 * these objects. We can simply free the memory. 1680 */ 1681 g_free(vmem->memslots); 1682 vmem->memslots = NULL; 1683 g_free(vmem->mr); 1684 vmem->mr = NULL; 1685 } 1686 1687 static Property virtio_mem_properties[] = { 1688 DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0), 1689 DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0), 1690 DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false), 1691 DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev, 1692 TYPE_MEMORY_BACKEND, HostMemoryBackend *), 1693 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1694 DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM, 1695 unplugged_inaccessible, ON_OFF_AUTO_ON), 1696 #endif 1697 DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM, 1698 early_migration, true), 1699 DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM, 1700 dynamic_memslots, false), 1701 DEFINE_PROP_END_OF_LIST(), 1702 }; 1703 1704 static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm, 1705 const MemoryRegion *mr) 1706 { 1707 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1708 1709 g_assert(mr == &vmem->memdev->mr); 1710 return vmem->block_size; 1711 } 1712 1713 static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm, 1714 const MemoryRegionSection *s) 1715 { 1716 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1717 uint64_t start_gpa = vmem->addr + s->offset_within_region; 1718 uint64_t end_gpa = start_gpa + int128_get64(s->size); 1719 1720 g_assert(s->mr == &vmem->memdev->mr); 1721 1722 start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size); 1723 end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size); 1724 1725 if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) { 1726 return false; 1727 } 1728 1729 return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa); 1730 } 1731 1732 struct VirtIOMEMReplayData { 1733 void *fn; 1734 void *opaque; 1735 }; 1736 1737 static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg) 1738 { 1739 struct VirtIOMEMReplayData *data = arg; 1740 1741 return ((ReplayRamPopulate)data->fn)(s, data->opaque); 1742 } 1743 1744 static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm, 1745 MemoryRegionSection *s, 1746 ReplayRamPopulate replay_fn, 1747 void *opaque) 1748 { 1749 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1750 struct VirtIOMEMReplayData data = { 1751 .fn = replay_fn, 1752 .opaque = opaque, 1753 }; 1754 1755 g_assert(s->mr == &vmem->memdev->mr); 1756 return virtio_mem_for_each_plugged_section(vmem, s, &data, 1757 virtio_mem_rdm_replay_populated_cb); 1758 } 1759 1760 static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s, 1761 void *arg) 1762 { 1763 struct VirtIOMEMReplayData *data = arg; 1764 1765 ((ReplayRamDiscard)data->fn)(s, data->opaque); 1766 return 0; 1767 } 1768 1769 static void virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm, 1770 MemoryRegionSection *s, 1771 ReplayRamDiscard replay_fn, 1772 void *opaque) 1773 { 1774 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1775 struct VirtIOMEMReplayData data = { 1776 .fn = replay_fn, 1777 .opaque = opaque, 1778 }; 1779 1780 g_assert(s->mr == &vmem->memdev->mr); 1781 virtio_mem_for_each_unplugged_section(vmem, s, &data, 1782 virtio_mem_rdm_replay_discarded_cb); 1783 } 1784 1785 static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm, 1786 RamDiscardListener *rdl, 1787 MemoryRegionSection *s) 1788 { 1789 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1790 int ret; 1791 1792 g_assert(s->mr == &vmem->memdev->mr); 1793 rdl->section = memory_region_section_new_copy(s); 1794 1795 QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next); 1796 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1797 virtio_mem_notify_populate_cb); 1798 if (ret) { 1799 error_report("%s: Replaying plugged ranges failed: %s", __func__, 1800 strerror(-ret)); 1801 } 1802 } 1803 1804 static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm, 1805 RamDiscardListener *rdl) 1806 { 1807 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1808 1809 g_assert(rdl->section->mr == &vmem->memdev->mr); 1810 if (vmem->size) { 1811 if (rdl->double_discard_supported) { 1812 rdl->notify_discard(rdl, rdl->section); 1813 } else { 1814 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1815 virtio_mem_notify_discard_cb); 1816 } 1817 } 1818 1819 memory_region_section_free_copy(rdl->section); 1820 rdl->section = NULL; 1821 QLIST_REMOVE(rdl, next); 1822 } 1823 1824 static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp) 1825 { 1826 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) { 1827 /* 1828 * We could allow it with a usable region size of 0, but let's just 1829 * not care about that legacy setting. 1830 */ 1831 error_setg(errp, "virtio-mem device cannot get unplugged while" 1832 " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'"); 1833 return; 1834 } 1835 1836 if (vmem->size) { 1837 error_setg(errp, "virtio-mem device cannot get unplugged while" 1838 " '" VIRTIO_MEM_SIZE_PROP "' != '0'"); 1839 return; 1840 } 1841 if (vmem->requested_size) { 1842 error_setg(errp, "virtio-mem device cannot get unplugged while" 1843 " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'"); 1844 return; 1845 } 1846 } 1847 1848 static void virtio_mem_class_init(ObjectClass *klass, void *data) 1849 { 1850 DeviceClass *dc = DEVICE_CLASS(klass); 1851 VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); 1852 VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass); 1853 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass); 1854 1855 device_class_set_props(dc, virtio_mem_properties); 1856 dc->vmsd = &vmstate_virtio_mem; 1857 1858 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 1859 vdc->realize = virtio_mem_device_realize; 1860 vdc->unrealize = virtio_mem_device_unrealize; 1861 vdc->get_config = virtio_mem_get_config; 1862 vdc->get_features = virtio_mem_get_features; 1863 vdc->validate_features = virtio_mem_validate_features; 1864 vdc->vmsd = &vmstate_virtio_mem_device; 1865 1866 vmc->fill_device_info = virtio_mem_fill_device_info; 1867 vmc->get_memory_region = virtio_mem_get_memory_region; 1868 vmc->decide_memslots = virtio_mem_decide_memslots; 1869 vmc->get_memslots = virtio_mem_get_memslots; 1870 vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier; 1871 vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier; 1872 vmc->unplug_request_check = virtio_mem_unplug_request_check; 1873 1874 rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity; 1875 rdmc->is_populated = virtio_mem_rdm_is_populated; 1876 rdmc->replay_populated = virtio_mem_rdm_replay_populated; 1877 rdmc->replay_discarded = virtio_mem_rdm_replay_discarded; 1878 rdmc->register_listener = virtio_mem_rdm_register_listener; 1879 rdmc->unregister_listener = virtio_mem_rdm_unregister_listener; 1880 } 1881 1882 static const TypeInfo virtio_mem_info = { 1883 .name = TYPE_VIRTIO_MEM, 1884 .parent = TYPE_VIRTIO_DEVICE, 1885 .instance_size = sizeof(VirtIOMEM), 1886 .instance_init = virtio_mem_instance_init, 1887 .instance_finalize = virtio_mem_instance_finalize, 1888 .class_init = virtio_mem_class_init, 1889 .class_size = sizeof(VirtIOMEMClass), 1890 .interfaces = (InterfaceInfo[]) { 1891 { TYPE_RAM_DISCARD_MANAGER }, 1892 { } 1893 }, 1894 }; 1895 1896 static void virtio_register_types(void) 1897 { 1898 type_register_static(&virtio_mem_info); 1899 } 1900 1901 type_init(virtio_register_types) 1902