1 /* 2 * Virtio MEM device 3 * 4 * Copyright (C) 2020 Red Hat, Inc. 5 * 6 * Authors: 7 * David Hildenbrand <david@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/iov.h" 15 #include "qemu/cutils.h" 16 #include "qemu/error-report.h" 17 #include "qemu/units.h" 18 #include "sysemu/numa.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/reset.h" 21 #include "sysemu/runstate.h" 22 #include "hw/virtio/virtio.h" 23 #include "hw/virtio/virtio-bus.h" 24 #include "hw/virtio/virtio-mem.h" 25 #include "qapi/error.h" 26 #include "qapi/visitor.h" 27 #include "exec/ram_addr.h" 28 #include "migration/misc.h" 29 #include "hw/boards.h" 30 #include "hw/qdev-properties.h" 31 #include CONFIG_DEVICES 32 #include "trace.h" 33 34 static const VMStateDescription vmstate_virtio_mem_device_early; 35 36 /* 37 * We only had legacy x86 guests that did not support 38 * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests. 39 */ 40 #if defined(TARGET_X86_64) || defined(TARGET_I386) 41 #define VIRTIO_MEM_HAS_LEGACY_GUESTS 42 #endif 43 44 /* 45 * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking 46 * bitmap small. 47 */ 48 #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB)) 49 50 static uint32_t virtio_mem_default_thp_size(void) 51 { 52 uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; 53 54 #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__) 55 default_thp_size = 2 * MiB; 56 #elif defined(__aarch64__) 57 if (qemu_real_host_page_size() == 4 * KiB) { 58 default_thp_size = 2 * MiB; 59 } else if (qemu_real_host_page_size() == 16 * KiB) { 60 default_thp_size = 32 * MiB; 61 } else if (qemu_real_host_page_size() == 64 * KiB) { 62 default_thp_size = 512 * MiB; 63 } 64 #endif 65 66 return default_thp_size; 67 } 68 69 /* 70 * The minimum memslot size depends on this setting ("sane default"), the 71 * device block size, and the memory backend page size. The last (or single) 72 * memslot might be smaller than this constant. 73 */ 74 #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB) 75 76 /* 77 * We want to have a reasonable default block size such that 78 * 1. We avoid splitting THPs when unplugging memory, which degrades 79 * performance. 80 * 2. We avoid placing THPs for plugged blocks that also cover unplugged 81 * blocks. 82 * 83 * The actual THP size might differ between Linux kernels, so we try to probe 84 * it. In the future (if we ever run into issues regarding 2.), we might want 85 * to disable THP in case we fail to properly probe the THP size, or if the 86 * block size is configured smaller than the THP size. 87 */ 88 static uint32_t thp_size; 89 90 #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size" 91 static uint32_t virtio_mem_thp_size(void) 92 { 93 gchar *content = NULL; 94 const char *endptr; 95 uint64_t tmp; 96 97 if (thp_size) { 98 return thp_size; 99 } 100 101 /* 102 * Try to probe the actual THP size, fallback to (sane but eventually 103 * incorrect) default sizes. 104 */ 105 if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) && 106 !qemu_strtou64(content, &endptr, 0, &tmp) && 107 (!endptr || *endptr == '\n')) { 108 /* Sanity-check the value and fallback to something reasonable. */ 109 if (!tmp || !is_power_of_2(tmp)) { 110 warn_report("Read unsupported THP size: %" PRIx64, tmp); 111 } else { 112 thp_size = tmp; 113 } 114 } 115 116 if (!thp_size) { 117 thp_size = virtio_mem_default_thp_size(); 118 warn_report("Could not detect THP size, falling back to %" PRIx64 119 " MiB.", thp_size / MiB); 120 } 121 122 g_free(content); 123 return thp_size; 124 } 125 126 static uint64_t virtio_mem_default_block_size(RAMBlock *rb) 127 { 128 const uint64_t page_size = qemu_ram_pagesize(rb); 129 130 /* We can have hugetlbfs with a page size smaller than the THP size. */ 131 if (page_size == qemu_real_host_page_size()) { 132 return MAX(page_size, virtio_mem_thp_size()); 133 } 134 return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE); 135 } 136 137 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 138 static bool virtio_mem_has_shared_zeropage(RAMBlock *rb) 139 { 140 /* 141 * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE 142 * anonymous RAM. In any other case, reading unplugged *can* populate a 143 * fresh page, consuming actual memory. 144 */ 145 return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 && 146 qemu_ram_pagesize(rb) == qemu_real_host_page_size(); 147 } 148 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 149 150 /* 151 * Size the usable region bigger than the requested size if possible. Esp. 152 * Linux guests will only add (aligned) memory blocks in case they fully 153 * fit into the usable region, but plug+online only a subset of the pages. 154 * The memory block size corresponds mostly to the section size. 155 * 156 * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and 157 * a section size of 512MB on arm64 (as long as the start address is properly 158 * aligned, similar to ordinary DIMMs). 159 * 160 * We can change this at any time and maybe even make it configurable if 161 * necessary (as the section size can change). But it's more likely that the 162 * section size will rather get smaller and not bigger over time. 163 */ 164 #if defined(TARGET_X86_64) || defined(TARGET_I386) 165 #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB)) 166 #elif defined(TARGET_ARM) 167 #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB)) 168 #else 169 #error VIRTIO_MEM_USABLE_EXTENT not defined 170 #endif 171 172 static bool virtio_mem_is_busy(void) 173 { 174 /* 175 * Postcopy cannot handle concurrent discards and we don't want to migrate 176 * pages on-demand with stale content when plugging new blocks. 177 * 178 * For precopy, we don't want unplugged blocks in our migration stream, and 179 * when plugging new blocks, the page content might differ between source 180 * and destination (observable by the guest when not initializing pages 181 * after plugging them) until we're running on the destination (as we didn't 182 * migrate these blocks when they were unplugged). 183 */ 184 return migration_in_incoming_postcopy() || !migration_is_idle(); 185 } 186 187 typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg, 188 uint64_t offset, uint64_t size); 189 190 static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg, 191 virtio_mem_range_cb cb) 192 { 193 unsigned long first_zero_bit, last_zero_bit; 194 uint64_t offset, size; 195 int ret = 0; 196 197 first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size); 198 while (first_zero_bit < vmem->bitmap_size) { 199 offset = first_zero_bit * vmem->block_size; 200 last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 201 first_zero_bit + 1) - 1; 202 size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size; 203 204 ret = cb(vmem, arg, offset, size); 205 if (ret) { 206 break; 207 } 208 first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 209 last_zero_bit + 2); 210 } 211 return ret; 212 } 213 214 static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg, 215 virtio_mem_range_cb cb) 216 { 217 unsigned long first_bit, last_bit; 218 uint64_t offset, size; 219 int ret = 0; 220 221 first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size); 222 while (first_bit < vmem->bitmap_size) { 223 offset = first_bit * vmem->block_size; 224 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 225 first_bit + 1) - 1; 226 size = (last_bit - first_bit + 1) * vmem->block_size; 227 228 ret = cb(vmem, arg, offset, size); 229 if (ret) { 230 break; 231 } 232 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 233 last_bit + 2); 234 } 235 return ret; 236 } 237 238 /* 239 * Adjust the memory section to cover the intersection with the given range. 240 * 241 * Returns false if the intersection is empty, otherwise returns true. 242 */ 243 static bool virtio_mem_intersect_memory_section(MemoryRegionSection *s, 244 uint64_t offset, uint64_t size) 245 { 246 uint64_t start = MAX(s->offset_within_region, offset); 247 uint64_t end = MIN(s->offset_within_region + int128_get64(s->size), 248 offset + size); 249 250 if (end <= start) { 251 return false; 252 } 253 254 s->offset_within_address_space += start - s->offset_within_region; 255 s->offset_within_region = start; 256 s->size = int128_make64(end - start); 257 return true; 258 } 259 260 typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg); 261 262 static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem, 263 MemoryRegionSection *s, 264 void *arg, 265 virtio_mem_section_cb cb) 266 { 267 unsigned long first_bit, last_bit; 268 uint64_t offset, size; 269 int ret = 0; 270 271 first_bit = s->offset_within_region / vmem->block_size; 272 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 273 while (first_bit < vmem->bitmap_size) { 274 MemoryRegionSection tmp = *s; 275 276 offset = first_bit * vmem->block_size; 277 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 278 first_bit + 1) - 1; 279 size = (last_bit - first_bit + 1) * vmem->block_size; 280 281 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 282 break; 283 } 284 ret = cb(&tmp, arg); 285 if (ret) { 286 break; 287 } 288 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 289 last_bit + 2); 290 } 291 return ret; 292 } 293 294 static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem, 295 MemoryRegionSection *s, 296 void *arg, 297 virtio_mem_section_cb cb) 298 { 299 unsigned long first_bit, last_bit; 300 uint64_t offset, size; 301 int ret = 0; 302 303 first_bit = s->offset_within_region / vmem->block_size; 304 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 305 while (first_bit < vmem->bitmap_size) { 306 MemoryRegionSection tmp = *s; 307 308 offset = first_bit * vmem->block_size; 309 last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 310 first_bit + 1) - 1; 311 size = (last_bit - first_bit + 1) * vmem->block_size; 312 313 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 314 break; 315 } 316 ret = cb(&tmp, arg); 317 if (ret) { 318 break; 319 } 320 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 321 last_bit + 2); 322 } 323 return ret; 324 } 325 326 static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg) 327 { 328 RamDiscardListener *rdl = arg; 329 330 return rdl->notify_populate(rdl, s); 331 } 332 333 static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg) 334 { 335 RamDiscardListener *rdl = arg; 336 337 rdl->notify_discard(rdl, s); 338 return 0; 339 } 340 341 static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset, 342 uint64_t size) 343 { 344 RamDiscardListener *rdl; 345 346 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 347 MemoryRegionSection tmp = *rdl->section; 348 349 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 350 continue; 351 } 352 rdl->notify_discard(rdl, &tmp); 353 } 354 } 355 356 static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset, 357 uint64_t size) 358 { 359 RamDiscardListener *rdl, *rdl2; 360 int ret = 0; 361 362 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 363 MemoryRegionSection tmp = *rdl->section; 364 365 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 366 continue; 367 } 368 ret = rdl->notify_populate(rdl, &tmp); 369 if (ret) { 370 break; 371 } 372 } 373 374 if (ret) { 375 /* Notify all already-notified listeners. */ 376 QLIST_FOREACH(rdl2, &vmem->rdl_list, next) { 377 MemoryRegionSection tmp = *rdl2->section; 378 379 if (rdl2 == rdl) { 380 break; 381 } 382 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 383 continue; 384 } 385 rdl2->notify_discard(rdl2, &tmp); 386 } 387 } 388 return ret; 389 } 390 391 static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem) 392 { 393 RamDiscardListener *rdl; 394 395 if (!vmem->size) { 396 return; 397 } 398 399 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 400 if (rdl->double_discard_supported) { 401 rdl->notify_discard(rdl, rdl->section); 402 } else { 403 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 404 virtio_mem_notify_discard_cb); 405 } 406 } 407 } 408 409 static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem, 410 uint64_t start_gpa, uint64_t size) 411 { 412 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 413 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 414 unsigned long found_bit; 415 416 /* We fake a shorter bitmap to avoid searching too far. */ 417 found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit); 418 return found_bit > last_bit; 419 } 420 421 static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem, 422 uint64_t start_gpa, uint64_t size) 423 { 424 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 425 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 426 unsigned long found_bit; 427 428 /* We fake a shorter bitmap to avoid searching too far. */ 429 found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit); 430 return found_bit > last_bit; 431 } 432 433 static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa, 434 uint64_t size) 435 { 436 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 437 const unsigned long nbits = size / vmem->block_size; 438 439 bitmap_set(vmem->bitmap, bit, nbits); 440 } 441 442 static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa, 443 uint64_t size) 444 { 445 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 446 const unsigned long nbits = size / vmem->block_size; 447 448 bitmap_clear(vmem->bitmap, bit, nbits); 449 } 450 451 static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem, 452 struct virtio_mem_resp *resp) 453 { 454 VirtIODevice *vdev = VIRTIO_DEVICE(vmem); 455 VirtQueue *vq = vmem->vq; 456 457 trace_virtio_mem_send_response(le16_to_cpu(resp->type)); 458 iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp)); 459 460 virtqueue_push(vq, elem, sizeof(*resp)); 461 virtio_notify(vdev, vq); 462 } 463 464 static void virtio_mem_send_response_simple(VirtIOMEM *vmem, 465 VirtQueueElement *elem, 466 uint16_t type) 467 { 468 struct virtio_mem_resp resp = { 469 .type = cpu_to_le16(type), 470 }; 471 472 virtio_mem_send_response(vmem, elem, &resp); 473 } 474 475 static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa, 476 uint64_t size) 477 { 478 if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) { 479 return false; 480 } 481 if (gpa + size < gpa || !size) { 482 return false; 483 } 484 if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) { 485 return false; 486 } 487 if (gpa + size > vmem->addr + vmem->usable_region_size) { 488 return false; 489 } 490 return true; 491 } 492 493 static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx) 494 { 495 const uint64_t memslot_offset = idx * vmem->memslot_size; 496 497 assert(vmem->memslots); 498 499 /* 500 * Instead of enabling/disabling memslots, we add/remove them. This should 501 * make address space updates faster, because we don't have to loop over 502 * many disabled subregions. 503 */ 504 if (memory_region_is_mapped(&vmem->memslots[idx])) { 505 return; 506 } 507 memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]); 508 } 509 510 static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx) 511 { 512 assert(vmem->memslots); 513 514 if (!memory_region_is_mapped(&vmem->memslots[idx])) { 515 return; 516 } 517 memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]); 518 } 519 520 static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem, 521 uint64_t offset, uint64_t size) 522 { 523 const unsigned int start_idx = offset / vmem->memslot_size; 524 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 525 vmem->memslot_size; 526 unsigned int idx; 527 528 assert(vmem->dynamic_memslots); 529 530 /* Activate all involved memslots in a single transaction. */ 531 memory_region_transaction_begin(); 532 for (idx = start_idx; idx < end_idx; idx++) { 533 virtio_mem_activate_memslot(vmem, idx); 534 } 535 memory_region_transaction_commit(); 536 } 537 538 static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem, 539 uint64_t offset, 540 uint64_t size) 541 { 542 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 543 const unsigned int start_idx = offset / vmem->memslot_size; 544 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 545 vmem->memslot_size; 546 unsigned int idx; 547 548 assert(vmem->dynamic_memslots); 549 550 /* Deactivate all memslots with unplugged blocks in a single transaction. */ 551 memory_region_transaction_begin(); 552 for (idx = start_idx; idx < end_idx; idx++) { 553 const uint64_t memslot_offset = idx * vmem->memslot_size; 554 uint64_t memslot_size = vmem->memslot_size; 555 556 /* The size of the last memslot might be smaller. */ 557 if (idx == vmem->nb_memslots - 1) { 558 memslot_size = region_size - memslot_offset; 559 } 560 561 /* 562 * Partially covered memslots might still have some blocks plugged and 563 * have to remain active if that's the case. 564 */ 565 if (offset > memslot_offset || 566 offset + size < memslot_offset + memslot_size) { 567 const uint64_t gpa = vmem->addr + memslot_offset; 568 569 if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) { 570 continue; 571 } 572 } 573 574 virtio_mem_deactivate_memslot(vmem, idx); 575 } 576 memory_region_transaction_commit(); 577 } 578 579 static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa, 580 uint64_t size, bool plug) 581 { 582 const uint64_t offset = start_gpa - vmem->addr; 583 RAMBlock *rb = vmem->memdev->mr.ram_block; 584 int ret = 0; 585 586 if (virtio_mem_is_busy()) { 587 return -EBUSY; 588 } 589 590 if (!plug) { 591 if (ram_block_discard_range(rb, offset, size)) { 592 return -EBUSY; 593 } 594 virtio_mem_notify_unplug(vmem, offset, size); 595 virtio_mem_set_range_unplugged(vmem, start_gpa, size); 596 /* Deactivate completely unplugged memslots after updating the state. */ 597 if (vmem->dynamic_memslots) { 598 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 599 } 600 return 0; 601 } 602 603 if (vmem->prealloc) { 604 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 605 int fd = memory_region_get_fd(&vmem->memdev->mr); 606 Error *local_err = NULL; 607 608 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { 609 static bool warned; 610 611 /* 612 * Warn only once, we don't want to fill the log with these 613 * warnings. 614 */ 615 if (!warned) { 616 warn_report_err(local_err); 617 warned = true; 618 } else { 619 error_free(local_err); 620 } 621 ret = -EBUSY; 622 } 623 } 624 625 if (!ret) { 626 /* 627 * Activate before notifying and rollback in case of any errors. 628 * 629 * When activating a yet inactive memslot, memory notifiers will get 630 * notified about the added memory region and can register with the 631 * RamDiscardManager; this will traverse all plugged blocks and skip the 632 * blocks we are plugging here. The following notification will inform 633 * registered listeners about the blocks we're plugging. 634 */ 635 if (vmem->dynamic_memslots) { 636 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 637 } 638 ret = virtio_mem_notify_plug(vmem, offset, size); 639 if (ret && vmem->dynamic_memslots) { 640 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 641 } 642 } 643 if (ret) { 644 /* Could be preallocation or a notifier populated memory. */ 645 ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size); 646 return -EBUSY; 647 } 648 649 virtio_mem_set_range_plugged(vmem, start_gpa, size); 650 return 0; 651 } 652 653 static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa, 654 uint16_t nb_blocks, bool plug) 655 { 656 const uint64_t size = nb_blocks * vmem->block_size; 657 int ret; 658 659 if (!virtio_mem_valid_range(vmem, gpa, size)) { 660 return VIRTIO_MEM_RESP_ERROR; 661 } 662 663 if (plug && (vmem->size + size > vmem->requested_size)) { 664 return VIRTIO_MEM_RESP_NACK; 665 } 666 667 /* test if really all blocks are in the opposite state */ 668 if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) || 669 (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) { 670 return VIRTIO_MEM_RESP_ERROR; 671 } 672 673 ret = virtio_mem_set_block_state(vmem, gpa, size, plug); 674 if (ret) { 675 return VIRTIO_MEM_RESP_BUSY; 676 } 677 if (plug) { 678 vmem->size += size; 679 } else { 680 vmem->size -= size; 681 } 682 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 683 return VIRTIO_MEM_RESP_ACK; 684 } 685 686 static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 687 struct virtio_mem_req *req) 688 { 689 const uint64_t gpa = le64_to_cpu(req->u.plug.addr); 690 const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks); 691 uint16_t type; 692 693 trace_virtio_mem_plug_request(gpa, nb_blocks); 694 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true); 695 virtio_mem_send_response_simple(vmem, elem, type); 696 } 697 698 static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 699 struct virtio_mem_req *req) 700 { 701 const uint64_t gpa = le64_to_cpu(req->u.unplug.addr); 702 const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks); 703 uint16_t type; 704 705 trace_virtio_mem_unplug_request(gpa, nb_blocks); 706 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false); 707 virtio_mem_send_response_simple(vmem, elem, type); 708 } 709 710 static void virtio_mem_resize_usable_region(VirtIOMEM *vmem, 711 uint64_t requested_size, 712 bool can_shrink) 713 { 714 uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr), 715 requested_size + VIRTIO_MEM_USABLE_EXTENT); 716 717 /* The usable region size always has to be multiples of the block size. */ 718 newsize = QEMU_ALIGN_UP(newsize, vmem->block_size); 719 720 if (!requested_size) { 721 newsize = 0; 722 } 723 724 if (newsize < vmem->usable_region_size && !can_shrink) { 725 return; 726 } 727 728 trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize); 729 vmem->usable_region_size = newsize; 730 } 731 732 static int virtio_mem_unplug_all(VirtIOMEM *vmem) 733 { 734 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 735 RAMBlock *rb = vmem->memdev->mr.ram_block; 736 737 if (vmem->size) { 738 if (virtio_mem_is_busy()) { 739 return -EBUSY; 740 } 741 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 742 return -EBUSY; 743 } 744 virtio_mem_notify_unplug_all(vmem); 745 746 bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size); 747 vmem->size = 0; 748 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 749 750 /* Deactivate all memslots after updating the state. */ 751 if (vmem->dynamic_memslots) { 752 virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size); 753 } 754 } 755 756 trace_virtio_mem_unplugged_all(); 757 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 758 return 0; 759 } 760 761 static void virtio_mem_unplug_all_request(VirtIOMEM *vmem, 762 VirtQueueElement *elem) 763 { 764 trace_virtio_mem_unplug_all_request(); 765 if (virtio_mem_unplug_all(vmem)) { 766 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY); 767 } else { 768 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK); 769 } 770 } 771 772 static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem, 773 struct virtio_mem_req *req) 774 { 775 const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks); 776 const uint64_t gpa = le64_to_cpu(req->u.state.addr); 777 const uint64_t size = nb_blocks * vmem->block_size; 778 struct virtio_mem_resp resp = { 779 .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK), 780 }; 781 782 trace_virtio_mem_state_request(gpa, nb_blocks); 783 if (!virtio_mem_valid_range(vmem, gpa, size)) { 784 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR); 785 return; 786 } 787 788 if (virtio_mem_is_range_plugged(vmem, gpa, size)) { 789 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED); 790 } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) { 791 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED); 792 } else { 793 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED); 794 } 795 trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state)); 796 virtio_mem_send_response(vmem, elem, &resp); 797 } 798 799 static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq) 800 { 801 const int len = sizeof(struct virtio_mem_req); 802 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 803 VirtQueueElement *elem; 804 struct virtio_mem_req req; 805 uint16_t type; 806 807 while (true) { 808 elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); 809 if (!elem) { 810 return; 811 } 812 813 if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) { 814 virtio_error(vdev, "virtio-mem protocol violation: invalid request" 815 " size: %d", len); 816 virtqueue_detach_element(vq, elem, 0); 817 g_free(elem); 818 return; 819 } 820 821 if (iov_size(elem->in_sg, elem->in_num) < 822 sizeof(struct virtio_mem_resp)) { 823 virtio_error(vdev, "virtio-mem protocol violation: not enough space" 824 " for response: %zu", 825 iov_size(elem->in_sg, elem->in_num)); 826 virtqueue_detach_element(vq, elem, 0); 827 g_free(elem); 828 return; 829 } 830 831 type = le16_to_cpu(req.type); 832 switch (type) { 833 case VIRTIO_MEM_REQ_PLUG: 834 virtio_mem_plug_request(vmem, elem, &req); 835 break; 836 case VIRTIO_MEM_REQ_UNPLUG: 837 virtio_mem_unplug_request(vmem, elem, &req); 838 break; 839 case VIRTIO_MEM_REQ_UNPLUG_ALL: 840 virtio_mem_unplug_all_request(vmem, elem); 841 break; 842 case VIRTIO_MEM_REQ_STATE: 843 virtio_mem_state_request(vmem, elem, &req); 844 break; 845 default: 846 virtio_error(vdev, "virtio-mem protocol violation: unknown request" 847 " type: %d", type); 848 virtqueue_detach_element(vq, elem, 0); 849 g_free(elem); 850 return; 851 } 852 853 g_free(elem); 854 } 855 } 856 857 static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data) 858 { 859 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 860 struct virtio_mem_config *config = (void *) config_data; 861 862 config->block_size = cpu_to_le64(vmem->block_size); 863 config->node_id = cpu_to_le16(vmem->node); 864 config->requested_size = cpu_to_le64(vmem->requested_size); 865 config->plugged_size = cpu_to_le64(vmem->size); 866 config->addr = cpu_to_le64(vmem->addr); 867 config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr)); 868 config->usable_region_size = cpu_to_le64(vmem->usable_region_size); 869 } 870 871 static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features, 872 Error **errp) 873 { 874 MachineState *ms = MACHINE(qdev_get_machine()); 875 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 876 877 if (ms->numa_state) { 878 #if defined(CONFIG_ACPI) 879 virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM); 880 #endif 881 } 882 assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO); 883 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) { 884 virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE); 885 } 886 return features; 887 } 888 889 static int virtio_mem_validate_features(VirtIODevice *vdev) 890 { 891 if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) && 892 !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) { 893 return -EFAULT; 894 } 895 return 0; 896 } 897 898 static void virtio_mem_system_reset(void *opaque) 899 { 900 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 901 902 /* 903 * During usual resets, we will unplug all memory and shrink the usable 904 * region size. This is, however, not possible in all scenarios. Then, 905 * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL). 906 */ 907 virtio_mem_unplug_all(vmem); 908 } 909 910 static void virtio_mem_prepare_mr(VirtIOMEM *vmem) 911 { 912 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 913 914 assert(!vmem->mr && vmem->dynamic_memslots); 915 vmem->mr = g_new0(MemoryRegion, 1); 916 memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem", 917 region_size); 918 vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr); 919 } 920 921 static void virtio_mem_prepare_memslots(VirtIOMEM *vmem) 922 { 923 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 924 unsigned int idx; 925 926 g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots); 927 vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots); 928 929 /* Initialize our memslots, but don't map them yet. */ 930 for (idx = 0; idx < vmem->nb_memslots; idx++) { 931 const uint64_t memslot_offset = idx * vmem->memslot_size; 932 uint64_t memslot_size = vmem->memslot_size; 933 char name[20]; 934 935 /* The size of the last memslot might be smaller. */ 936 if (idx == vmem->nb_memslots - 1) { 937 memslot_size = region_size - memslot_offset; 938 } 939 940 snprintf(name, sizeof(name), "memslot-%u", idx); 941 memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name, 942 &vmem->memdev->mr, memslot_offset, 943 memslot_size); 944 /* 945 * We want to be able to atomically and efficiently activate/deactivate 946 * individual memslots without affecting adjacent memslots in memory 947 * notifiers. 948 */ 949 memory_region_set_unmergeable(&vmem->memslots[idx], true); 950 } 951 } 952 953 static void virtio_mem_device_realize(DeviceState *dev, Error **errp) 954 { 955 MachineState *ms = MACHINE(qdev_get_machine()); 956 int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0; 957 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 958 VirtIOMEM *vmem = VIRTIO_MEM(dev); 959 uint64_t page_size; 960 RAMBlock *rb; 961 int ret; 962 963 if (!vmem->memdev) { 964 error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP); 965 return; 966 } else if (host_memory_backend_is_mapped(vmem->memdev)) { 967 error_setg(errp, "'%s' property specifies a busy memdev: %s", 968 VIRTIO_MEM_MEMDEV_PROP, 969 object_get_canonical_path_component(OBJECT(vmem->memdev))); 970 return; 971 } else if (!memory_region_is_ram(&vmem->memdev->mr) || 972 memory_region_is_rom(&vmem->memdev->mr) || 973 !vmem->memdev->mr.ram_block) { 974 error_setg(errp, "'%s' property specifies an unsupported memdev", 975 VIRTIO_MEM_MEMDEV_PROP); 976 return; 977 } else if (vmem->memdev->prealloc) { 978 error_setg(errp, "'%s' property specifies a memdev with preallocation" 979 " enabled: %s. Instead, specify 'prealloc=on' for the" 980 " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP, 981 object_get_canonical_path_component(OBJECT(vmem->memdev))); 982 return; 983 } 984 985 if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) || 986 (!nb_numa_nodes && vmem->node)) { 987 error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds" 988 "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP, 989 vmem->node, nb_numa_nodes ? nb_numa_nodes : 1); 990 return; 991 } 992 993 if (enable_mlock) { 994 error_setg(errp, "Incompatible with mlock"); 995 return; 996 } 997 998 rb = vmem->memdev->mr.ram_block; 999 page_size = qemu_ram_pagesize(rb); 1000 1001 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1002 switch (vmem->unplugged_inaccessible) { 1003 case ON_OFF_AUTO_AUTO: 1004 if (virtio_mem_has_shared_zeropage(rb)) { 1005 vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF; 1006 } else { 1007 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1008 } 1009 break; 1010 case ON_OFF_AUTO_OFF: 1011 if (!virtio_mem_has_shared_zeropage(rb)) { 1012 warn_report("'%s' property set to 'off' with a memdev that does" 1013 " not support the shared zeropage.", 1014 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1015 } 1016 break; 1017 default: 1018 break; 1019 } 1020 #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1021 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1022 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1023 1024 if (vmem->dynamic_memslots && 1025 vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) { 1026 error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'", 1027 VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, 1028 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1029 return; 1030 } 1031 1032 /* 1033 * If the block size wasn't configured by the user, use a sane default. This 1034 * allows using hugetlbfs backends of any page size without manual 1035 * intervention. 1036 */ 1037 if (!vmem->block_size) { 1038 vmem->block_size = virtio_mem_default_block_size(rb); 1039 } 1040 1041 if (vmem->block_size < page_size) { 1042 error_setg(errp, "'%s' property has to be at least the page size (0x%" 1043 PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size); 1044 return; 1045 } else if (vmem->block_size < virtio_mem_default_block_size(rb)) { 1046 warn_report("'%s' property is smaller than the default block size (%" 1047 PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP, 1048 virtio_mem_default_block_size(rb) / MiB); 1049 } 1050 if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) { 1051 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1052 ")", VIRTIO_MEM_REQUESTED_SIZE_PROP, 1053 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1054 return; 1055 } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) { 1056 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1057 ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP, 1058 vmem->block_size); 1059 return; 1060 } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr), 1061 vmem->block_size)) { 1062 error_setg(errp, "'%s' property memdev size has to be multiples of" 1063 "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP, 1064 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1065 return; 1066 } 1067 1068 if (ram_block_coordinated_discard_require(true)) { 1069 error_setg(errp, "Discarding RAM is disabled"); 1070 return; 1071 } 1072 1073 /* 1074 * We don't know at this point whether shared RAM is migrated using 1075 * QEMU or migrated using the file content. "x-ignore-shared" will be 1076 * configured after realizing the device. So in case we have an 1077 * incoming migration, simply always skip the discard step. 1078 * 1079 * Otherwise, make sure that we start with a clean slate: either the 1080 * memory backend might get reused or the shared file might still have 1081 * memory allocated. 1082 */ 1083 if (!runstate_check(RUN_STATE_INMIGRATE)) { 1084 ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb)); 1085 if (ret) { 1086 error_setg_errno(errp, -ret, "Unexpected error discarding RAM"); 1087 ram_block_coordinated_discard_require(false); 1088 return; 1089 } 1090 } 1091 1092 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 1093 1094 vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) / 1095 vmem->block_size; 1096 vmem->bitmap = bitmap_new(vmem->bitmap_size); 1097 1098 virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config)); 1099 vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request); 1100 1101 /* 1102 * With "dynamic-memslots=off" (old behavior) we always map the whole 1103 * RAM memory region directly. 1104 */ 1105 if (vmem->dynamic_memslots) { 1106 if (!vmem->mr) { 1107 virtio_mem_prepare_mr(vmem); 1108 } 1109 if (vmem->nb_memslots <= 1) { 1110 vmem->nb_memslots = 1; 1111 vmem->memslot_size = memory_region_size(&vmem->memdev->mr); 1112 } 1113 if (!vmem->memslots) { 1114 virtio_mem_prepare_memslots(vmem); 1115 } 1116 } else { 1117 assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots); 1118 } 1119 1120 host_memory_backend_set_mapped(vmem->memdev, true); 1121 vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem)); 1122 if (vmem->early_migration) { 1123 vmstate_register_any(VMSTATE_IF(vmem), 1124 &vmstate_virtio_mem_device_early, vmem); 1125 } 1126 qemu_register_reset(virtio_mem_system_reset, vmem); 1127 1128 /* 1129 * Set ourselves as RamDiscardManager before the plug handler maps the 1130 * memory region and exposes it via an address space. 1131 */ 1132 memory_region_set_ram_discard_manager(&vmem->memdev->mr, 1133 RAM_DISCARD_MANAGER(vmem)); 1134 } 1135 1136 static void virtio_mem_device_unrealize(DeviceState *dev) 1137 { 1138 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 1139 VirtIOMEM *vmem = VIRTIO_MEM(dev); 1140 1141 /* 1142 * The unplug handler unmapped the memory region, it cannot be 1143 * found via an address space anymore. Unset ourselves. 1144 */ 1145 memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL); 1146 qemu_unregister_reset(virtio_mem_system_reset, vmem); 1147 if (vmem->early_migration) { 1148 vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early, 1149 vmem); 1150 } 1151 vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem)); 1152 host_memory_backend_set_mapped(vmem->memdev, false); 1153 virtio_del_queue(vdev, 0); 1154 virtio_cleanup(vdev); 1155 g_free(vmem->bitmap); 1156 ram_block_coordinated_discard_require(false); 1157 } 1158 1159 static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg, 1160 uint64_t offset, uint64_t size) 1161 { 1162 RAMBlock *rb = vmem->memdev->mr.ram_block; 1163 1164 return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0; 1165 } 1166 1167 static int virtio_mem_restore_unplugged(VirtIOMEM *vmem) 1168 { 1169 /* Make sure all memory is really discarded after migration. */ 1170 return virtio_mem_for_each_unplugged_range(vmem, NULL, 1171 virtio_mem_discard_range_cb); 1172 } 1173 1174 static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg, 1175 uint64_t offset, uint64_t size) 1176 { 1177 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 1178 return 0; 1179 } 1180 1181 static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem) 1182 { 1183 RamDiscardListener *rdl; 1184 int ret; 1185 1186 /* 1187 * We restored the bitmap and updated the requested size; activate all 1188 * memslots (so listeners register) before notifying about plugged blocks. 1189 */ 1190 if (vmem->dynamic_memslots) { 1191 /* 1192 * We don't expect any active memslots at this point to deactivate: no 1193 * memory was plugged on the migration destination. 1194 */ 1195 virtio_mem_for_each_plugged_range(vmem, NULL, 1196 virtio_mem_activate_memslot_range_cb); 1197 } 1198 1199 /* 1200 * We started out with all memory discarded and our memory region is mapped 1201 * into an address space. Replay, now that we updated the bitmap. 1202 */ 1203 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 1204 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1205 virtio_mem_notify_populate_cb); 1206 if (ret) { 1207 return ret; 1208 } 1209 } 1210 return 0; 1211 } 1212 1213 static int virtio_mem_post_load(void *opaque, int version_id) 1214 { 1215 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1216 int ret; 1217 1218 if (!vmem->early_migration) { 1219 ret = virtio_mem_post_load_bitmap(vmem); 1220 if (ret) { 1221 return ret; 1222 } 1223 } 1224 1225 /* 1226 * If shared RAM is migrated using the file content and not using QEMU, 1227 * don't mess with preallocation and postcopy. 1228 */ 1229 if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) { 1230 return 0; 1231 } 1232 1233 if (vmem->prealloc && !vmem->early_migration) { 1234 warn_report("Proper preallocation with migration requires a newer QEMU machine"); 1235 } 1236 1237 if (migration_in_incoming_postcopy()) { 1238 return 0; 1239 } 1240 1241 return virtio_mem_restore_unplugged(vmem); 1242 } 1243 1244 static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg, 1245 uint64_t offset, uint64_t size) 1246 { 1247 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 1248 int fd = memory_region_get_fd(&vmem->memdev->mr); 1249 Error *local_err = NULL; 1250 1251 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { 1252 error_report_err(local_err); 1253 return -ENOMEM; 1254 } 1255 return 0; 1256 } 1257 1258 static int virtio_mem_post_load_early(void *opaque, int version_id) 1259 { 1260 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1261 RAMBlock *rb = vmem->memdev->mr.ram_block; 1262 int ret; 1263 1264 if (!vmem->prealloc) { 1265 goto post_load_bitmap; 1266 } 1267 1268 /* 1269 * If shared RAM is migrated using the file content and not using QEMU, 1270 * don't mess with preallocation and postcopy. 1271 */ 1272 if (migrate_ram_is_ignored(rb)) { 1273 goto post_load_bitmap; 1274 } 1275 1276 /* 1277 * We restored the bitmap and verified that the basic properties 1278 * match on source and destination, so we can go ahead and preallocate 1279 * memory for all plugged memory blocks, before actual RAM migration starts 1280 * touching this memory. 1281 */ 1282 ret = virtio_mem_for_each_plugged_range(vmem, NULL, 1283 virtio_mem_prealloc_range_cb); 1284 if (ret) { 1285 return ret; 1286 } 1287 1288 /* 1289 * This is tricky: postcopy wants to start with a clean slate. On 1290 * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily 1291 * preallocated) RAM such that postcopy will work as expected later. 1292 * 1293 * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual 1294 * RAM migration. So let's discard all memory again. This looks like an 1295 * expensive NOP, but actually serves a purpose: we made sure that we 1296 * were able to allocate all required backend memory once. We cannot 1297 * guarantee that the backend memory we will free will remain free 1298 * until we need it during postcopy, but at least we can catch the 1299 * obvious setup issues this way. 1300 */ 1301 if (migration_incoming_postcopy_advised()) { 1302 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 1303 return -EBUSY; 1304 } 1305 } 1306 1307 post_load_bitmap: 1308 /* Finally, update any other state to be consistent with the new bitmap. */ 1309 return virtio_mem_post_load_bitmap(vmem); 1310 } 1311 1312 typedef struct VirtIOMEMMigSanityChecks { 1313 VirtIOMEM *parent; 1314 uint64_t addr; 1315 uint64_t region_size; 1316 uint64_t block_size; 1317 uint32_t node; 1318 } VirtIOMEMMigSanityChecks; 1319 1320 static int virtio_mem_mig_sanity_checks_pre_save(void *opaque) 1321 { 1322 VirtIOMEMMigSanityChecks *tmp = opaque; 1323 VirtIOMEM *vmem = tmp->parent; 1324 1325 tmp->addr = vmem->addr; 1326 tmp->region_size = memory_region_size(&vmem->memdev->mr); 1327 tmp->block_size = vmem->block_size; 1328 tmp->node = vmem->node; 1329 return 0; 1330 } 1331 1332 static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id) 1333 { 1334 VirtIOMEMMigSanityChecks *tmp = opaque; 1335 VirtIOMEM *vmem = tmp->parent; 1336 const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr); 1337 1338 if (tmp->addr != vmem->addr) { 1339 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1340 VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr); 1341 return -EINVAL; 1342 } 1343 /* 1344 * Note: Preparation for resizable memory regions. The maximum size 1345 * of the memory region must not change during migration. 1346 */ 1347 if (tmp->region_size != new_region_size) { 1348 error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%" 1349 PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size, 1350 new_region_size); 1351 return -EINVAL; 1352 } 1353 if (tmp->block_size != vmem->block_size) { 1354 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1355 VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size, 1356 vmem->block_size); 1357 return -EINVAL; 1358 } 1359 if (tmp->node != vmem->node) { 1360 error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32, 1361 VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node); 1362 return -EINVAL; 1363 } 1364 return 0; 1365 } 1366 1367 static const VMStateDescription vmstate_virtio_mem_sanity_checks = { 1368 .name = "virtio-mem-device/sanity-checks", 1369 .pre_save = virtio_mem_mig_sanity_checks_pre_save, 1370 .post_load = virtio_mem_mig_sanity_checks_post_load, 1371 .fields = (const VMStateField[]) { 1372 VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks), 1373 VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks), 1374 VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks), 1375 VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks), 1376 VMSTATE_END_OF_LIST(), 1377 }, 1378 }; 1379 1380 static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id) 1381 { 1382 const VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1383 1384 /* With early migration, these fields were already migrated. */ 1385 return !vmem->early_migration; 1386 } 1387 1388 static const VMStateDescription vmstate_virtio_mem_device = { 1389 .name = "virtio-mem-device", 1390 .minimum_version_id = 1, 1391 .version_id = 1, 1392 .priority = MIG_PRI_VIRTIO_MEM, 1393 .post_load = virtio_mem_post_load, 1394 .fields = (const VMStateField[]) { 1395 VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists, 1396 VirtIOMEMMigSanityChecks, 1397 vmstate_virtio_mem_sanity_checks), 1398 VMSTATE_UINT64(usable_region_size, VirtIOMEM), 1399 VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists), 1400 VMSTATE_UINT64(requested_size, VirtIOMEM), 1401 VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists, 1402 0, bitmap_size), 1403 VMSTATE_END_OF_LIST() 1404 }, 1405 }; 1406 1407 /* 1408 * Transfer properties that are immutable while migration is active early, 1409 * such that we have have this information around before migrating any RAM 1410 * content. 1411 * 1412 * Note that virtio_mem_is_busy() makes sure these properties can no longer 1413 * change on the migration source until migration completed. 1414 * 1415 * With QEMU compat machines, we transmit these properties later, via 1416 * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists(). 1417 */ 1418 static const VMStateDescription vmstate_virtio_mem_device_early = { 1419 .name = "virtio-mem-device-early", 1420 .minimum_version_id = 1, 1421 .version_id = 1, 1422 .early_setup = true, 1423 .post_load = virtio_mem_post_load_early, 1424 .fields = (const VMStateField[]) { 1425 VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks, 1426 vmstate_virtio_mem_sanity_checks), 1427 VMSTATE_UINT64(size, VirtIOMEM), 1428 VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size), 1429 VMSTATE_END_OF_LIST() 1430 }, 1431 }; 1432 1433 static const VMStateDescription vmstate_virtio_mem = { 1434 .name = "virtio-mem", 1435 .minimum_version_id = 1, 1436 .version_id = 1, 1437 .fields = (const VMStateField[]) { 1438 VMSTATE_VIRTIO_DEVICE, 1439 VMSTATE_END_OF_LIST() 1440 }, 1441 }; 1442 1443 static void virtio_mem_fill_device_info(const VirtIOMEM *vmem, 1444 VirtioMEMDeviceInfo *vi) 1445 { 1446 vi->memaddr = vmem->addr; 1447 vi->node = vmem->node; 1448 vi->requested_size = vmem->requested_size; 1449 vi->size = vmem->size; 1450 vi->max_size = memory_region_size(&vmem->memdev->mr); 1451 vi->block_size = vmem->block_size; 1452 vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev)); 1453 } 1454 1455 static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp) 1456 { 1457 if (!vmem->memdev) { 1458 error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP); 1459 return NULL; 1460 } else if (vmem->dynamic_memslots) { 1461 if (!vmem->mr) { 1462 virtio_mem_prepare_mr(vmem); 1463 } 1464 return vmem->mr; 1465 } 1466 1467 return &vmem->memdev->mr; 1468 } 1469 1470 static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit) 1471 { 1472 uint64_t region_size, memslot_size, min_memslot_size; 1473 unsigned int memslots; 1474 RAMBlock *rb; 1475 1476 if (!vmem->dynamic_memslots) { 1477 return; 1478 } 1479 1480 /* We're called exactly once, before realizing the device. */ 1481 assert(!vmem->nb_memslots); 1482 1483 /* If realizing the device will fail, just assume a single memslot. */ 1484 if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) { 1485 vmem->nb_memslots = 1; 1486 return; 1487 } 1488 1489 rb = vmem->memdev->mr.ram_block; 1490 region_size = memory_region_size(&vmem->memdev->mr); 1491 1492 /* 1493 * Determine the default block size now, to determine the minimum memslot 1494 * size. We want the minimum slot size to be at least the device block size. 1495 */ 1496 if (!vmem->block_size) { 1497 vmem->block_size = virtio_mem_default_block_size(rb); 1498 } 1499 /* If realizing the device will fail, just assume a single memslot. */ 1500 if (vmem->block_size < qemu_ram_pagesize(rb) || 1501 !QEMU_IS_ALIGNED(region_size, vmem->block_size)) { 1502 vmem->nb_memslots = 1; 1503 return; 1504 } 1505 1506 /* 1507 * All memslots except the last one have a reasonable minimum size, and 1508 * and all memslot sizes are aligned to the device block size. 1509 */ 1510 memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size); 1511 min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE); 1512 memslot_size = MAX(memslot_size, min_memslot_size); 1513 1514 memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size; 1515 if (memslots != 1) { 1516 vmem->memslot_size = memslot_size; 1517 } 1518 vmem->nb_memslots = memslots; 1519 } 1520 1521 static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem) 1522 { 1523 if (!vmem->dynamic_memslots) { 1524 /* Exactly one static RAM memory region. */ 1525 return 1; 1526 } 1527 1528 /* We're called after instructed to make a decision. */ 1529 g_assert(vmem->nb_memslots); 1530 return vmem->nb_memslots; 1531 } 1532 1533 static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem, 1534 Notifier *notifier) 1535 { 1536 notifier_list_add(&vmem->size_change_notifiers, notifier); 1537 } 1538 1539 static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem, 1540 Notifier *notifier) 1541 { 1542 notifier_remove(notifier); 1543 } 1544 1545 static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name, 1546 void *opaque, Error **errp) 1547 { 1548 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1549 uint64_t value = vmem->size; 1550 1551 visit_type_size(v, name, &value, errp); 1552 } 1553 1554 static void virtio_mem_get_requested_size(Object *obj, Visitor *v, 1555 const char *name, void *opaque, 1556 Error **errp) 1557 { 1558 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1559 uint64_t value = vmem->requested_size; 1560 1561 visit_type_size(v, name, &value, errp); 1562 } 1563 1564 static void virtio_mem_set_requested_size(Object *obj, Visitor *v, 1565 const char *name, void *opaque, 1566 Error **errp) 1567 { 1568 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1569 uint64_t value; 1570 1571 if (!visit_type_size(v, name, &value, errp)) { 1572 return; 1573 } 1574 1575 /* 1576 * The block size and memory backend are not fixed until the device was 1577 * realized. realize() will verify these properties then. 1578 */ 1579 if (DEVICE(obj)->realized) { 1580 if (!QEMU_IS_ALIGNED(value, vmem->block_size)) { 1581 error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64 1582 ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP, 1583 vmem->block_size); 1584 return; 1585 } else if (value > memory_region_size(&vmem->memdev->mr)) { 1586 error_setg(errp, "'%s' cannot exceed the memory backend size" 1587 "(0x%" PRIx64 ")", name, 1588 memory_region_size(&vmem->memdev->mr)); 1589 return; 1590 } 1591 1592 if (value != vmem->requested_size) { 1593 virtio_mem_resize_usable_region(vmem, value, false); 1594 vmem->requested_size = value; 1595 } 1596 /* 1597 * Trigger a config update so the guest gets notified. We trigger 1598 * even if the size didn't change (especially helpful for debugging). 1599 */ 1600 virtio_notify_config(VIRTIO_DEVICE(vmem)); 1601 } else { 1602 vmem->requested_size = value; 1603 } 1604 } 1605 1606 static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name, 1607 void *opaque, Error **errp) 1608 { 1609 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1610 uint64_t value = vmem->block_size; 1611 1612 /* 1613 * If not configured by the user (and we're not realized yet), use the 1614 * default block size we would use with the current memory backend. 1615 */ 1616 if (!value) { 1617 if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) { 1618 value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block); 1619 } else { 1620 value = virtio_mem_thp_size(); 1621 } 1622 } 1623 1624 visit_type_size(v, name, &value, errp); 1625 } 1626 1627 static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name, 1628 void *opaque, Error **errp) 1629 { 1630 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1631 uint64_t value; 1632 1633 if (DEVICE(obj)->realized) { 1634 error_setg(errp, "'%s' cannot be changed", name); 1635 return; 1636 } 1637 1638 if (!visit_type_size(v, name, &value, errp)) { 1639 return; 1640 } 1641 1642 if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) { 1643 error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name, 1644 VIRTIO_MEM_MIN_BLOCK_SIZE); 1645 return; 1646 } else if (!is_power_of_2(value)) { 1647 error_setg(errp, "'%s' property has to be a power of two", name); 1648 return; 1649 } 1650 vmem->block_size = value; 1651 } 1652 1653 static void virtio_mem_instance_init(Object *obj) 1654 { 1655 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1656 1657 notifier_list_init(&vmem->size_change_notifiers); 1658 QLIST_INIT(&vmem->rdl_list); 1659 1660 object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size, 1661 NULL, NULL, NULL); 1662 object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size", 1663 virtio_mem_get_requested_size, 1664 virtio_mem_set_requested_size, NULL, NULL); 1665 object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size", 1666 virtio_mem_get_block_size, virtio_mem_set_block_size, 1667 NULL, NULL); 1668 } 1669 1670 static void virtio_mem_instance_finalize(Object *obj) 1671 { 1672 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1673 1674 /* 1675 * Note: the core already dropped the references on all memory regions 1676 * (it's passed as the owner to memory_region_init_*()) and finalized 1677 * these objects. We can simply free the memory. 1678 */ 1679 g_free(vmem->memslots); 1680 vmem->memslots = NULL; 1681 g_free(vmem->mr); 1682 vmem->mr = NULL; 1683 } 1684 1685 static Property virtio_mem_properties[] = { 1686 DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0), 1687 DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0), 1688 DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false), 1689 DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev, 1690 TYPE_MEMORY_BACKEND, HostMemoryBackend *), 1691 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1692 DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM, 1693 unplugged_inaccessible, ON_OFF_AUTO_ON), 1694 #endif 1695 DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM, 1696 early_migration, true), 1697 DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM, 1698 dynamic_memslots, false), 1699 DEFINE_PROP_END_OF_LIST(), 1700 }; 1701 1702 static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm, 1703 const MemoryRegion *mr) 1704 { 1705 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1706 1707 g_assert(mr == &vmem->memdev->mr); 1708 return vmem->block_size; 1709 } 1710 1711 static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm, 1712 const MemoryRegionSection *s) 1713 { 1714 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1715 uint64_t start_gpa = vmem->addr + s->offset_within_region; 1716 uint64_t end_gpa = start_gpa + int128_get64(s->size); 1717 1718 g_assert(s->mr == &vmem->memdev->mr); 1719 1720 start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size); 1721 end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size); 1722 1723 if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) { 1724 return false; 1725 } 1726 1727 return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa); 1728 } 1729 1730 struct VirtIOMEMReplayData { 1731 void *fn; 1732 void *opaque; 1733 }; 1734 1735 static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg) 1736 { 1737 struct VirtIOMEMReplayData *data = arg; 1738 1739 return ((ReplayRamPopulate)data->fn)(s, data->opaque); 1740 } 1741 1742 static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm, 1743 MemoryRegionSection *s, 1744 ReplayRamPopulate replay_fn, 1745 void *opaque) 1746 { 1747 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1748 struct VirtIOMEMReplayData data = { 1749 .fn = replay_fn, 1750 .opaque = opaque, 1751 }; 1752 1753 g_assert(s->mr == &vmem->memdev->mr); 1754 return virtio_mem_for_each_plugged_section(vmem, s, &data, 1755 virtio_mem_rdm_replay_populated_cb); 1756 } 1757 1758 static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s, 1759 void *arg) 1760 { 1761 struct VirtIOMEMReplayData *data = arg; 1762 1763 ((ReplayRamDiscard)data->fn)(s, data->opaque); 1764 return 0; 1765 } 1766 1767 static void virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm, 1768 MemoryRegionSection *s, 1769 ReplayRamDiscard replay_fn, 1770 void *opaque) 1771 { 1772 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1773 struct VirtIOMEMReplayData data = { 1774 .fn = replay_fn, 1775 .opaque = opaque, 1776 }; 1777 1778 g_assert(s->mr == &vmem->memdev->mr); 1779 virtio_mem_for_each_unplugged_section(vmem, s, &data, 1780 virtio_mem_rdm_replay_discarded_cb); 1781 } 1782 1783 static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm, 1784 RamDiscardListener *rdl, 1785 MemoryRegionSection *s) 1786 { 1787 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1788 int ret; 1789 1790 g_assert(s->mr == &vmem->memdev->mr); 1791 rdl->section = memory_region_section_new_copy(s); 1792 1793 QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next); 1794 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1795 virtio_mem_notify_populate_cb); 1796 if (ret) { 1797 error_report("%s: Replaying plugged ranges failed: %s", __func__, 1798 strerror(-ret)); 1799 } 1800 } 1801 1802 static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm, 1803 RamDiscardListener *rdl) 1804 { 1805 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1806 1807 g_assert(rdl->section->mr == &vmem->memdev->mr); 1808 if (vmem->size) { 1809 if (rdl->double_discard_supported) { 1810 rdl->notify_discard(rdl, rdl->section); 1811 } else { 1812 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1813 virtio_mem_notify_discard_cb); 1814 } 1815 } 1816 1817 memory_region_section_free_copy(rdl->section); 1818 rdl->section = NULL; 1819 QLIST_REMOVE(rdl, next); 1820 } 1821 1822 static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp) 1823 { 1824 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) { 1825 /* 1826 * We could allow it with a usable region size of 0, but let's just 1827 * not care about that legacy setting. 1828 */ 1829 error_setg(errp, "virtio-mem device cannot get unplugged while" 1830 " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'"); 1831 return; 1832 } 1833 1834 if (vmem->size) { 1835 error_setg(errp, "virtio-mem device cannot get unplugged while" 1836 " '" VIRTIO_MEM_SIZE_PROP "' != '0'"); 1837 return; 1838 } 1839 if (vmem->requested_size) { 1840 error_setg(errp, "virtio-mem device cannot get unplugged while" 1841 " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'"); 1842 return; 1843 } 1844 } 1845 1846 static void virtio_mem_class_init(ObjectClass *klass, void *data) 1847 { 1848 DeviceClass *dc = DEVICE_CLASS(klass); 1849 VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); 1850 VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass); 1851 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass); 1852 1853 device_class_set_props(dc, virtio_mem_properties); 1854 dc->vmsd = &vmstate_virtio_mem; 1855 1856 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 1857 vdc->realize = virtio_mem_device_realize; 1858 vdc->unrealize = virtio_mem_device_unrealize; 1859 vdc->get_config = virtio_mem_get_config; 1860 vdc->get_features = virtio_mem_get_features; 1861 vdc->validate_features = virtio_mem_validate_features; 1862 vdc->vmsd = &vmstate_virtio_mem_device; 1863 1864 vmc->fill_device_info = virtio_mem_fill_device_info; 1865 vmc->get_memory_region = virtio_mem_get_memory_region; 1866 vmc->decide_memslots = virtio_mem_decide_memslots; 1867 vmc->get_memslots = virtio_mem_get_memslots; 1868 vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier; 1869 vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier; 1870 vmc->unplug_request_check = virtio_mem_unplug_request_check; 1871 1872 rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity; 1873 rdmc->is_populated = virtio_mem_rdm_is_populated; 1874 rdmc->replay_populated = virtio_mem_rdm_replay_populated; 1875 rdmc->replay_discarded = virtio_mem_rdm_replay_discarded; 1876 rdmc->register_listener = virtio_mem_rdm_register_listener; 1877 rdmc->unregister_listener = virtio_mem_rdm_unregister_listener; 1878 } 1879 1880 static const TypeInfo virtio_mem_info = { 1881 .name = TYPE_VIRTIO_MEM, 1882 .parent = TYPE_VIRTIO_DEVICE, 1883 .instance_size = sizeof(VirtIOMEM), 1884 .instance_init = virtio_mem_instance_init, 1885 .instance_finalize = virtio_mem_instance_finalize, 1886 .class_init = virtio_mem_class_init, 1887 .class_size = sizeof(VirtIOMEMClass), 1888 .interfaces = (InterfaceInfo[]) { 1889 { TYPE_RAM_DISCARD_MANAGER }, 1890 { } 1891 }, 1892 }; 1893 1894 static void virtio_register_types(void) 1895 { 1896 type_register_static(&virtio_mem_info); 1897 } 1898 1899 type_init(virtio_register_types) 1900