1 /* 2 * Virtio MEM device 3 * 4 * Copyright (C) 2020 Red Hat, Inc. 5 * 6 * Authors: 7 * David Hildenbrand <david@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/iov.h" 15 #include "qemu/cutils.h" 16 #include "qemu/error-report.h" 17 #include "qemu/units.h" 18 #include "sysemu/numa.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/reset.h" 21 #include "sysemu/runstate.h" 22 #include "hw/virtio/virtio.h" 23 #include "hw/virtio/virtio-bus.h" 24 #include "hw/virtio/virtio-mem.h" 25 #include "qapi/error.h" 26 #include "qapi/visitor.h" 27 #include "exec/ram_addr.h" 28 #include "migration/misc.h" 29 #include "hw/boards.h" 30 #include "hw/qdev-properties.h" 31 #include CONFIG_DEVICES 32 #include "trace.h" 33 34 static const VMStateDescription vmstate_virtio_mem_device_early; 35 36 /* 37 * We only had legacy x86 guests that did not support 38 * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests. 39 */ 40 #if defined(TARGET_X86_64) || defined(TARGET_I386) 41 #define VIRTIO_MEM_HAS_LEGACY_GUESTS 42 #endif 43 44 /* 45 * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking 46 * bitmap small. 47 */ 48 #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB)) 49 50 static uint32_t virtio_mem_default_thp_size(void) 51 { 52 uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; 53 54 #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__) 55 default_thp_size = 2 * MiB; 56 #elif defined(__aarch64__) 57 if (qemu_real_host_page_size() == 4 * KiB) { 58 default_thp_size = 2 * MiB; 59 } else if (qemu_real_host_page_size() == 16 * KiB) { 60 default_thp_size = 32 * MiB; 61 } else if (qemu_real_host_page_size() == 64 * KiB) { 62 default_thp_size = 512 * MiB; 63 } 64 #endif 65 66 return default_thp_size; 67 } 68 69 /* 70 * The minimum memslot size depends on this setting ("sane default"), the 71 * device block size, and the memory backend page size. The last (or single) 72 * memslot might be smaller than this constant. 73 */ 74 #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB) 75 76 /* 77 * We want to have a reasonable default block size such that 78 * 1. We avoid splitting THPs when unplugging memory, which degrades 79 * performance. 80 * 2. We avoid placing THPs for plugged blocks that also cover unplugged 81 * blocks. 82 * 83 * The actual THP size might differ between Linux kernels, so we try to probe 84 * it. In the future (if we ever run into issues regarding 2.), we might want 85 * to disable THP in case we fail to properly probe the THP size, or if the 86 * block size is configured smaller than the THP size. 87 */ 88 static uint32_t thp_size; 89 90 #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size" 91 #define HPAGE_PATH "/sys/kernel/mm/transparent_hugepage/" 92 static uint32_t virtio_mem_thp_size(void) 93 { 94 gchar *content = NULL; 95 const char *endptr; 96 uint64_t tmp; 97 98 if (thp_size) { 99 return thp_size; 100 } 101 102 /* No THP -> no restrictions. */ 103 if (!g_file_test(HPAGE_PATH, G_FILE_TEST_EXISTS)) { 104 thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; 105 return thp_size; 106 } 107 108 /* 109 * Try to probe the actual THP size, fallback to (sane but eventually 110 * incorrect) default sizes. 111 */ 112 if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) && 113 !qemu_strtou64(content, &endptr, 0, &tmp) && 114 (!endptr || *endptr == '\n')) { 115 /* Sanity-check the value and fallback to something reasonable. */ 116 if (!tmp || !is_power_of_2(tmp)) { 117 warn_report("Read unsupported THP size: %" PRIx64, tmp); 118 } else { 119 thp_size = tmp; 120 } 121 } 122 123 if (!thp_size) { 124 thp_size = virtio_mem_default_thp_size(); 125 warn_report("Could not detect THP size, falling back to %" PRIx64 126 " MiB.", thp_size / MiB); 127 } 128 129 g_free(content); 130 return thp_size; 131 } 132 133 static uint64_t virtio_mem_default_block_size(RAMBlock *rb) 134 { 135 const uint64_t page_size = qemu_ram_pagesize(rb); 136 137 /* We can have hugetlbfs with a page size smaller than the THP size. */ 138 if (page_size == qemu_real_host_page_size()) { 139 return MAX(page_size, virtio_mem_thp_size()); 140 } 141 return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE); 142 } 143 144 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 145 static bool virtio_mem_has_shared_zeropage(RAMBlock *rb) 146 { 147 /* 148 * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE 149 * anonymous RAM. In any other case, reading unplugged *can* populate a 150 * fresh page, consuming actual memory. 151 */ 152 return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 && 153 qemu_ram_pagesize(rb) == qemu_real_host_page_size(); 154 } 155 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 156 157 /* 158 * Size the usable region bigger than the requested size if possible. Esp. 159 * Linux guests will only add (aligned) memory blocks in case they fully 160 * fit into the usable region, but plug+online only a subset of the pages. 161 * The memory block size corresponds mostly to the section size. 162 * 163 * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and 164 * a section size of 512MB on arm64 (as long as the start address is properly 165 * aligned, similar to ordinary DIMMs). 166 * 167 * We can change this at any time and maybe even make it configurable if 168 * necessary (as the section size can change). But it's more likely that the 169 * section size will rather get smaller and not bigger over time. 170 */ 171 #if defined(TARGET_X86_64) || defined(TARGET_I386) 172 #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB)) 173 #elif defined(TARGET_ARM) 174 #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB)) 175 #else 176 #error VIRTIO_MEM_USABLE_EXTENT not defined 177 #endif 178 179 static bool virtio_mem_is_busy(void) 180 { 181 /* 182 * Postcopy cannot handle concurrent discards and we don't want to migrate 183 * pages on-demand with stale content when plugging new blocks. 184 * 185 * For precopy, we don't want unplugged blocks in our migration stream, and 186 * when plugging new blocks, the page content might differ between source 187 * and destination (observable by the guest when not initializing pages 188 * after plugging them) until we're running on the destination (as we didn't 189 * migrate these blocks when they were unplugged). 190 */ 191 return migration_in_incoming_postcopy() || !migration_is_idle(); 192 } 193 194 typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg, 195 uint64_t offset, uint64_t size); 196 197 static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg, 198 virtio_mem_range_cb cb) 199 { 200 unsigned long first_zero_bit, last_zero_bit; 201 uint64_t offset, size; 202 int ret = 0; 203 204 first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size); 205 while (first_zero_bit < vmem->bitmap_size) { 206 offset = first_zero_bit * vmem->block_size; 207 last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 208 first_zero_bit + 1) - 1; 209 size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size; 210 211 ret = cb(vmem, arg, offset, size); 212 if (ret) { 213 break; 214 } 215 first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 216 last_zero_bit + 2); 217 } 218 return ret; 219 } 220 221 static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg, 222 virtio_mem_range_cb cb) 223 { 224 unsigned long first_bit, last_bit; 225 uint64_t offset, size; 226 int ret = 0; 227 228 first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size); 229 while (first_bit < vmem->bitmap_size) { 230 offset = first_bit * vmem->block_size; 231 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 232 first_bit + 1) - 1; 233 size = (last_bit - first_bit + 1) * vmem->block_size; 234 235 ret = cb(vmem, arg, offset, size); 236 if (ret) { 237 break; 238 } 239 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 240 last_bit + 2); 241 } 242 return ret; 243 } 244 245 /* 246 * Adjust the memory section to cover the intersection with the given range. 247 * 248 * Returns false if the intersection is empty, otherwise returns true. 249 */ 250 static bool virtio_mem_intersect_memory_section(MemoryRegionSection *s, 251 uint64_t offset, uint64_t size) 252 { 253 uint64_t start = MAX(s->offset_within_region, offset); 254 uint64_t end = MIN(s->offset_within_region + int128_get64(s->size), 255 offset + size); 256 257 if (end <= start) { 258 return false; 259 } 260 261 s->offset_within_address_space += start - s->offset_within_region; 262 s->offset_within_region = start; 263 s->size = int128_make64(end - start); 264 return true; 265 } 266 267 typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg); 268 269 static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem, 270 MemoryRegionSection *s, 271 void *arg, 272 virtio_mem_section_cb cb) 273 { 274 unsigned long first_bit, last_bit; 275 uint64_t offset, size; 276 int ret = 0; 277 278 first_bit = s->offset_within_region / vmem->block_size; 279 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 280 while (first_bit < vmem->bitmap_size) { 281 MemoryRegionSection tmp = *s; 282 283 offset = first_bit * vmem->block_size; 284 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 285 first_bit + 1) - 1; 286 size = (last_bit - first_bit + 1) * vmem->block_size; 287 288 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 289 break; 290 } 291 ret = cb(&tmp, arg); 292 if (ret) { 293 break; 294 } 295 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 296 last_bit + 2); 297 } 298 return ret; 299 } 300 301 static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem, 302 MemoryRegionSection *s, 303 void *arg, 304 virtio_mem_section_cb cb) 305 { 306 unsigned long first_bit, last_bit; 307 uint64_t offset, size; 308 int ret = 0; 309 310 first_bit = s->offset_within_region / vmem->block_size; 311 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit); 312 while (first_bit < vmem->bitmap_size) { 313 MemoryRegionSection tmp = *s; 314 315 offset = first_bit * vmem->block_size; 316 last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, 317 first_bit + 1) - 1; 318 size = (last_bit - first_bit + 1) * vmem->block_size; 319 320 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 321 break; 322 } 323 ret = cb(&tmp, arg); 324 if (ret) { 325 break; 326 } 327 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, 328 last_bit + 2); 329 } 330 return ret; 331 } 332 333 static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg) 334 { 335 RamDiscardListener *rdl = arg; 336 337 return rdl->notify_populate(rdl, s); 338 } 339 340 static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg) 341 { 342 RamDiscardListener *rdl = arg; 343 344 rdl->notify_discard(rdl, s); 345 return 0; 346 } 347 348 static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset, 349 uint64_t size) 350 { 351 RamDiscardListener *rdl; 352 353 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 354 MemoryRegionSection tmp = *rdl->section; 355 356 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 357 continue; 358 } 359 rdl->notify_discard(rdl, &tmp); 360 } 361 } 362 363 static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset, 364 uint64_t size) 365 { 366 RamDiscardListener *rdl, *rdl2; 367 int ret = 0; 368 369 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 370 MemoryRegionSection tmp = *rdl->section; 371 372 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 373 continue; 374 } 375 ret = rdl->notify_populate(rdl, &tmp); 376 if (ret) { 377 break; 378 } 379 } 380 381 if (ret) { 382 /* Notify all already-notified listeners. */ 383 QLIST_FOREACH(rdl2, &vmem->rdl_list, next) { 384 MemoryRegionSection tmp = *rdl2->section; 385 386 if (rdl2 == rdl) { 387 break; 388 } 389 if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { 390 continue; 391 } 392 rdl2->notify_discard(rdl2, &tmp); 393 } 394 } 395 return ret; 396 } 397 398 static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem) 399 { 400 RamDiscardListener *rdl; 401 402 if (!vmem->size) { 403 return; 404 } 405 406 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 407 if (rdl->double_discard_supported) { 408 rdl->notify_discard(rdl, rdl->section); 409 } else { 410 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 411 virtio_mem_notify_discard_cb); 412 } 413 } 414 } 415 416 static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem, 417 uint64_t start_gpa, uint64_t size) 418 { 419 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 420 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 421 unsigned long found_bit; 422 423 /* We fake a shorter bitmap to avoid searching too far. */ 424 found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit); 425 return found_bit > last_bit; 426 } 427 428 static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem, 429 uint64_t start_gpa, uint64_t size) 430 { 431 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; 432 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; 433 unsigned long found_bit; 434 435 /* We fake a shorter bitmap to avoid searching too far. */ 436 found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit); 437 return found_bit > last_bit; 438 } 439 440 static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa, 441 uint64_t size) 442 { 443 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 444 const unsigned long nbits = size / vmem->block_size; 445 446 bitmap_set(vmem->bitmap, bit, nbits); 447 } 448 449 static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa, 450 uint64_t size) 451 { 452 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; 453 const unsigned long nbits = size / vmem->block_size; 454 455 bitmap_clear(vmem->bitmap, bit, nbits); 456 } 457 458 static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem, 459 struct virtio_mem_resp *resp) 460 { 461 VirtIODevice *vdev = VIRTIO_DEVICE(vmem); 462 VirtQueue *vq = vmem->vq; 463 464 trace_virtio_mem_send_response(le16_to_cpu(resp->type)); 465 iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp)); 466 467 virtqueue_push(vq, elem, sizeof(*resp)); 468 virtio_notify(vdev, vq); 469 } 470 471 static void virtio_mem_send_response_simple(VirtIOMEM *vmem, 472 VirtQueueElement *elem, 473 uint16_t type) 474 { 475 struct virtio_mem_resp resp = { 476 .type = cpu_to_le16(type), 477 }; 478 479 virtio_mem_send_response(vmem, elem, &resp); 480 } 481 482 static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa, 483 uint64_t size) 484 { 485 if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) { 486 return false; 487 } 488 if (gpa + size < gpa || !size) { 489 return false; 490 } 491 if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) { 492 return false; 493 } 494 if (gpa + size > vmem->addr + vmem->usable_region_size) { 495 return false; 496 } 497 return true; 498 } 499 500 static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx) 501 { 502 const uint64_t memslot_offset = idx * vmem->memslot_size; 503 504 assert(vmem->memslots); 505 506 /* 507 * Instead of enabling/disabling memslots, we add/remove them. This should 508 * make address space updates faster, because we don't have to loop over 509 * many disabled subregions. 510 */ 511 if (memory_region_is_mapped(&vmem->memslots[idx])) { 512 return; 513 } 514 memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]); 515 } 516 517 static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx) 518 { 519 assert(vmem->memslots); 520 521 if (!memory_region_is_mapped(&vmem->memslots[idx])) { 522 return; 523 } 524 memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]); 525 } 526 527 static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem, 528 uint64_t offset, uint64_t size) 529 { 530 const unsigned int start_idx = offset / vmem->memslot_size; 531 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 532 vmem->memslot_size; 533 unsigned int idx; 534 535 assert(vmem->dynamic_memslots); 536 537 /* Activate all involved memslots in a single transaction. */ 538 memory_region_transaction_begin(); 539 for (idx = start_idx; idx < end_idx; idx++) { 540 virtio_mem_activate_memslot(vmem, idx); 541 } 542 memory_region_transaction_commit(); 543 } 544 545 static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem, 546 uint64_t offset, 547 uint64_t size) 548 { 549 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 550 const unsigned int start_idx = offset / vmem->memslot_size; 551 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / 552 vmem->memslot_size; 553 unsigned int idx; 554 555 assert(vmem->dynamic_memslots); 556 557 /* Deactivate all memslots with unplugged blocks in a single transaction. */ 558 memory_region_transaction_begin(); 559 for (idx = start_idx; idx < end_idx; idx++) { 560 const uint64_t memslot_offset = idx * vmem->memslot_size; 561 uint64_t memslot_size = vmem->memslot_size; 562 563 /* The size of the last memslot might be smaller. */ 564 if (idx == vmem->nb_memslots - 1) { 565 memslot_size = region_size - memslot_offset; 566 } 567 568 /* 569 * Partially covered memslots might still have some blocks plugged and 570 * have to remain active if that's the case. 571 */ 572 if (offset > memslot_offset || 573 offset + size < memslot_offset + memslot_size) { 574 const uint64_t gpa = vmem->addr + memslot_offset; 575 576 if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) { 577 continue; 578 } 579 } 580 581 virtio_mem_deactivate_memslot(vmem, idx); 582 } 583 memory_region_transaction_commit(); 584 } 585 586 static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa, 587 uint64_t size, bool plug) 588 { 589 const uint64_t offset = start_gpa - vmem->addr; 590 RAMBlock *rb = vmem->memdev->mr.ram_block; 591 int ret = 0; 592 593 if (virtio_mem_is_busy()) { 594 return -EBUSY; 595 } 596 597 if (!plug) { 598 if (ram_block_discard_range(rb, offset, size)) { 599 return -EBUSY; 600 } 601 virtio_mem_notify_unplug(vmem, offset, size); 602 virtio_mem_set_range_unplugged(vmem, start_gpa, size); 603 /* Deactivate completely unplugged memslots after updating the state. */ 604 if (vmem->dynamic_memslots) { 605 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 606 } 607 return 0; 608 } 609 610 if (vmem->prealloc) { 611 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 612 int fd = memory_region_get_fd(&vmem->memdev->mr); 613 Error *local_err = NULL; 614 615 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { 616 static bool warned; 617 618 /* 619 * Warn only once, we don't want to fill the log with these 620 * warnings. 621 */ 622 if (!warned) { 623 warn_report_err(local_err); 624 warned = true; 625 } else { 626 error_free(local_err); 627 } 628 ret = -EBUSY; 629 } 630 } 631 632 if (!ret) { 633 /* 634 * Activate before notifying and rollback in case of any errors. 635 * 636 * When activating a yet inactive memslot, memory notifiers will get 637 * notified about the added memory region and can register with the 638 * RamDiscardManager; this will traverse all plugged blocks and skip the 639 * blocks we are plugging here. The following notification will inform 640 * registered listeners about the blocks we're plugging. 641 */ 642 if (vmem->dynamic_memslots) { 643 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 644 } 645 ret = virtio_mem_notify_plug(vmem, offset, size); 646 if (ret && vmem->dynamic_memslots) { 647 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); 648 } 649 } 650 if (ret) { 651 /* Could be preallocation or a notifier populated memory. */ 652 ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size); 653 return -EBUSY; 654 } 655 656 virtio_mem_set_range_plugged(vmem, start_gpa, size); 657 return 0; 658 } 659 660 static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa, 661 uint16_t nb_blocks, bool plug) 662 { 663 const uint64_t size = nb_blocks * vmem->block_size; 664 int ret; 665 666 if (!virtio_mem_valid_range(vmem, gpa, size)) { 667 return VIRTIO_MEM_RESP_ERROR; 668 } 669 670 if (plug && (vmem->size + size > vmem->requested_size)) { 671 return VIRTIO_MEM_RESP_NACK; 672 } 673 674 /* test if really all blocks are in the opposite state */ 675 if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) || 676 (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) { 677 return VIRTIO_MEM_RESP_ERROR; 678 } 679 680 ret = virtio_mem_set_block_state(vmem, gpa, size, plug); 681 if (ret) { 682 return VIRTIO_MEM_RESP_BUSY; 683 } 684 if (plug) { 685 vmem->size += size; 686 } else { 687 vmem->size -= size; 688 } 689 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 690 return VIRTIO_MEM_RESP_ACK; 691 } 692 693 static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 694 struct virtio_mem_req *req) 695 { 696 const uint64_t gpa = le64_to_cpu(req->u.plug.addr); 697 const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks); 698 uint16_t type; 699 700 trace_virtio_mem_plug_request(gpa, nb_blocks); 701 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true); 702 virtio_mem_send_response_simple(vmem, elem, type); 703 } 704 705 static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem, 706 struct virtio_mem_req *req) 707 { 708 const uint64_t gpa = le64_to_cpu(req->u.unplug.addr); 709 const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks); 710 uint16_t type; 711 712 trace_virtio_mem_unplug_request(gpa, nb_blocks); 713 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false); 714 virtio_mem_send_response_simple(vmem, elem, type); 715 } 716 717 static void virtio_mem_resize_usable_region(VirtIOMEM *vmem, 718 uint64_t requested_size, 719 bool can_shrink) 720 { 721 uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr), 722 requested_size + VIRTIO_MEM_USABLE_EXTENT); 723 724 /* The usable region size always has to be multiples of the block size. */ 725 newsize = QEMU_ALIGN_UP(newsize, vmem->block_size); 726 727 if (!requested_size) { 728 newsize = 0; 729 } 730 731 if (newsize < vmem->usable_region_size && !can_shrink) { 732 return; 733 } 734 735 trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize); 736 vmem->usable_region_size = newsize; 737 } 738 739 static int virtio_mem_unplug_all(VirtIOMEM *vmem) 740 { 741 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 742 RAMBlock *rb = vmem->memdev->mr.ram_block; 743 744 if (vmem->size) { 745 if (virtio_mem_is_busy()) { 746 return -EBUSY; 747 } 748 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 749 return -EBUSY; 750 } 751 virtio_mem_notify_unplug_all(vmem); 752 753 bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size); 754 vmem->size = 0; 755 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); 756 757 /* Deactivate all memslots after updating the state. */ 758 if (vmem->dynamic_memslots) { 759 virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size); 760 } 761 } 762 763 trace_virtio_mem_unplugged_all(); 764 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 765 return 0; 766 } 767 768 static void virtio_mem_unplug_all_request(VirtIOMEM *vmem, 769 VirtQueueElement *elem) 770 { 771 trace_virtio_mem_unplug_all_request(); 772 if (virtio_mem_unplug_all(vmem)) { 773 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY); 774 } else { 775 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK); 776 } 777 } 778 779 static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem, 780 struct virtio_mem_req *req) 781 { 782 const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks); 783 const uint64_t gpa = le64_to_cpu(req->u.state.addr); 784 const uint64_t size = nb_blocks * vmem->block_size; 785 struct virtio_mem_resp resp = { 786 .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK), 787 }; 788 789 trace_virtio_mem_state_request(gpa, nb_blocks); 790 if (!virtio_mem_valid_range(vmem, gpa, size)) { 791 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR); 792 return; 793 } 794 795 if (virtio_mem_is_range_plugged(vmem, gpa, size)) { 796 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED); 797 } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) { 798 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED); 799 } else { 800 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED); 801 } 802 trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state)); 803 virtio_mem_send_response(vmem, elem, &resp); 804 } 805 806 static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq) 807 { 808 const int len = sizeof(struct virtio_mem_req); 809 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 810 VirtQueueElement *elem; 811 struct virtio_mem_req req; 812 uint16_t type; 813 814 while (true) { 815 elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); 816 if (!elem) { 817 return; 818 } 819 820 if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) { 821 virtio_error(vdev, "virtio-mem protocol violation: invalid request" 822 " size: %d", len); 823 virtqueue_detach_element(vq, elem, 0); 824 g_free(elem); 825 return; 826 } 827 828 if (iov_size(elem->in_sg, elem->in_num) < 829 sizeof(struct virtio_mem_resp)) { 830 virtio_error(vdev, "virtio-mem protocol violation: not enough space" 831 " for response: %zu", 832 iov_size(elem->in_sg, elem->in_num)); 833 virtqueue_detach_element(vq, elem, 0); 834 g_free(elem); 835 return; 836 } 837 838 type = le16_to_cpu(req.type); 839 switch (type) { 840 case VIRTIO_MEM_REQ_PLUG: 841 virtio_mem_plug_request(vmem, elem, &req); 842 break; 843 case VIRTIO_MEM_REQ_UNPLUG: 844 virtio_mem_unplug_request(vmem, elem, &req); 845 break; 846 case VIRTIO_MEM_REQ_UNPLUG_ALL: 847 virtio_mem_unplug_all_request(vmem, elem); 848 break; 849 case VIRTIO_MEM_REQ_STATE: 850 virtio_mem_state_request(vmem, elem, &req); 851 break; 852 default: 853 virtio_error(vdev, "virtio-mem protocol violation: unknown request" 854 " type: %d", type); 855 virtqueue_detach_element(vq, elem, 0); 856 g_free(elem); 857 return; 858 } 859 860 g_free(elem); 861 } 862 } 863 864 static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data) 865 { 866 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 867 struct virtio_mem_config *config = (void *) config_data; 868 869 config->block_size = cpu_to_le64(vmem->block_size); 870 config->node_id = cpu_to_le16(vmem->node); 871 config->requested_size = cpu_to_le64(vmem->requested_size); 872 config->plugged_size = cpu_to_le64(vmem->size); 873 config->addr = cpu_to_le64(vmem->addr); 874 config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr)); 875 config->usable_region_size = cpu_to_le64(vmem->usable_region_size); 876 } 877 878 static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features, 879 Error **errp) 880 { 881 MachineState *ms = MACHINE(qdev_get_machine()); 882 VirtIOMEM *vmem = VIRTIO_MEM(vdev); 883 884 if (ms->numa_state) { 885 #if defined(CONFIG_ACPI) 886 virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM); 887 #endif 888 } 889 assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO); 890 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) { 891 virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE); 892 } 893 return features; 894 } 895 896 static int virtio_mem_validate_features(VirtIODevice *vdev) 897 { 898 if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) && 899 !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) { 900 return -EFAULT; 901 } 902 return 0; 903 } 904 905 static void virtio_mem_system_reset(void *opaque) 906 { 907 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 908 909 /* 910 * During usual resets, we will unplug all memory and shrink the usable 911 * region size. This is, however, not possible in all scenarios. Then, 912 * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL). 913 */ 914 virtio_mem_unplug_all(vmem); 915 } 916 917 static void virtio_mem_prepare_mr(VirtIOMEM *vmem) 918 { 919 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 920 921 assert(!vmem->mr && vmem->dynamic_memslots); 922 vmem->mr = g_new0(MemoryRegion, 1); 923 memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem", 924 region_size); 925 vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr); 926 } 927 928 static void virtio_mem_prepare_memslots(VirtIOMEM *vmem) 929 { 930 const uint64_t region_size = memory_region_size(&vmem->memdev->mr); 931 unsigned int idx; 932 933 g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots); 934 vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots); 935 936 /* Initialize our memslots, but don't map them yet. */ 937 for (idx = 0; idx < vmem->nb_memslots; idx++) { 938 const uint64_t memslot_offset = idx * vmem->memslot_size; 939 uint64_t memslot_size = vmem->memslot_size; 940 char name[20]; 941 942 /* The size of the last memslot might be smaller. */ 943 if (idx == vmem->nb_memslots - 1) { 944 memslot_size = region_size - memslot_offset; 945 } 946 947 snprintf(name, sizeof(name), "memslot-%u", idx); 948 memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name, 949 &vmem->memdev->mr, memslot_offset, 950 memslot_size); 951 /* 952 * We want to be able to atomically and efficiently activate/deactivate 953 * individual memslots without affecting adjacent memslots in memory 954 * notifiers. 955 */ 956 memory_region_set_unmergeable(&vmem->memslots[idx], true); 957 } 958 } 959 960 static void virtio_mem_device_realize(DeviceState *dev, Error **errp) 961 { 962 MachineState *ms = MACHINE(qdev_get_machine()); 963 int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0; 964 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 965 VirtIOMEM *vmem = VIRTIO_MEM(dev); 966 uint64_t page_size; 967 RAMBlock *rb; 968 int ret; 969 970 if (!vmem->memdev) { 971 error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP); 972 return; 973 } else if (host_memory_backend_is_mapped(vmem->memdev)) { 974 error_setg(errp, "'%s' property specifies a busy memdev: %s", 975 VIRTIO_MEM_MEMDEV_PROP, 976 object_get_canonical_path_component(OBJECT(vmem->memdev))); 977 return; 978 } else if (!memory_region_is_ram(&vmem->memdev->mr) || 979 memory_region_is_rom(&vmem->memdev->mr) || 980 !vmem->memdev->mr.ram_block) { 981 error_setg(errp, "'%s' property specifies an unsupported memdev", 982 VIRTIO_MEM_MEMDEV_PROP); 983 return; 984 } else if (vmem->memdev->prealloc) { 985 error_setg(errp, "'%s' property specifies a memdev with preallocation" 986 " enabled: %s. Instead, specify 'prealloc=on' for the" 987 " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP, 988 object_get_canonical_path_component(OBJECT(vmem->memdev))); 989 return; 990 } 991 992 if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) || 993 (!nb_numa_nodes && vmem->node)) { 994 error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds" 995 "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP, 996 vmem->node, nb_numa_nodes ? nb_numa_nodes : 1); 997 return; 998 } 999 1000 if (enable_mlock) { 1001 error_setg(errp, "Incompatible with mlock"); 1002 return; 1003 } 1004 1005 rb = vmem->memdev->mr.ram_block; 1006 page_size = qemu_ram_pagesize(rb); 1007 1008 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1009 switch (vmem->unplugged_inaccessible) { 1010 case ON_OFF_AUTO_AUTO: 1011 if (virtio_mem_has_shared_zeropage(rb)) { 1012 vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF; 1013 } else { 1014 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1015 } 1016 break; 1017 case ON_OFF_AUTO_OFF: 1018 if (!virtio_mem_has_shared_zeropage(rb)) { 1019 warn_report("'%s' property set to 'off' with a memdev that does" 1020 " not support the shared zeropage.", 1021 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1022 } 1023 break; 1024 default: 1025 break; 1026 } 1027 #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1028 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; 1029 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ 1030 1031 if (vmem->dynamic_memslots && 1032 vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) { 1033 error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'", 1034 VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, 1035 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); 1036 return; 1037 } 1038 1039 /* 1040 * If the block size wasn't configured by the user, use a sane default. This 1041 * allows using hugetlbfs backends of any page size without manual 1042 * intervention. 1043 */ 1044 if (!vmem->block_size) { 1045 vmem->block_size = virtio_mem_default_block_size(rb); 1046 } 1047 1048 if (vmem->block_size < page_size) { 1049 error_setg(errp, "'%s' property has to be at least the page size (0x%" 1050 PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size); 1051 return; 1052 } else if (vmem->block_size < virtio_mem_default_block_size(rb)) { 1053 warn_report("'%s' property is smaller than the default block size (%" 1054 PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP, 1055 virtio_mem_default_block_size(rb) / MiB); 1056 } 1057 if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) { 1058 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1059 ")", VIRTIO_MEM_REQUESTED_SIZE_PROP, 1060 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1061 return; 1062 } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) { 1063 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 1064 ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP, 1065 vmem->block_size); 1066 return; 1067 } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr), 1068 vmem->block_size)) { 1069 error_setg(errp, "'%s' property memdev size has to be multiples of" 1070 "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP, 1071 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); 1072 return; 1073 } 1074 1075 if (ram_block_coordinated_discard_require(true)) { 1076 error_setg(errp, "Discarding RAM is disabled"); 1077 return; 1078 } 1079 1080 /* 1081 * We don't know at this point whether shared RAM is migrated using 1082 * QEMU or migrated using the file content. "x-ignore-shared" will be 1083 * configured after realizing the device. So in case we have an 1084 * incoming migration, simply always skip the discard step. 1085 * 1086 * Otherwise, make sure that we start with a clean slate: either the 1087 * memory backend might get reused or the shared file might still have 1088 * memory allocated. 1089 */ 1090 if (!runstate_check(RUN_STATE_INMIGRATE)) { 1091 ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb)); 1092 if (ret) { 1093 error_setg_errno(errp, -ret, "Unexpected error discarding RAM"); 1094 ram_block_coordinated_discard_require(false); 1095 return; 1096 } 1097 } 1098 1099 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); 1100 1101 vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) / 1102 vmem->block_size; 1103 vmem->bitmap = bitmap_new(vmem->bitmap_size); 1104 1105 virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config)); 1106 vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request); 1107 1108 /* 1109 * With "dynamic-memslots=off" (old behavior) we always map the whole 1110 * RAM memory region directly. 1111 */ 1112 if (vmem->dynamic_memslots) { 1113 if (!vmem->mr) { 1114 virtio_mem_prepare_mr(vmem); 1115 } 1116 if (vmem->nb_memslots <= 1) { 1117 vmem->nb_memslots = 1; 1118 vmem->memslot_size = memory_region_size(&vmem->memdev->mr); 1119 } 1120 if (!vmem->memslots) { 1121 virtio_mem_prepare_memslots(vmem); 1122 } 1123 } else { 1124 assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots); 1125 } 1126 1127 host_memory_backend_set_mapped(vmem->memdev, true); 1128 vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem)); 1129 if (vmem->early_migration) { 1130 vmstate_register_any(VMSTATE_IF(vmem), 1131 &vmstate_virtio_mem_device_early, vmem); 1132 } 1133 qemu_register_reset(virtio_mem_system_reset, vmem); 1134 1135 /* 1136 * Set ourselves as RamDiscardManager before the plug handler maps the 1137 * memory region and exposes it via an address space. 1138 */ 1139 memory_region_set_ram_discard_manager(&vmem->memdev->mr, 1140 RAM_DISCARD_MANAGER(vmem)); 1141 } 1142 1143 static void virtio_mem_device_unrealize(DeviceState *dev) 1144 { 1145 VirtIODevice *vdev = VIRTIO_DEVICE(dev); 1146 VirtIOMEM *vmem = VIRTIO_MEM(dev); 1147 1148 /* 1149 * The unplug handler unmapped the memory region, it cannot be 1150 * found via an address space anymore. Unset ourselves. 1151 */ 1152 memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL); 1153 qemu_unregister_reset(virtio_mem_system_reset, vmem); 1154 if (vmem->early_migration) { 1155 vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early, 1156 vmem); 1157 } 1158 vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem)); 1159 host_memory_backend_set_mapped(vmem->memdev, false); 1160 virtio_del_queue(vdev, 0); 1161 virtio_cleanup(vdev); 1162 g_free(vmem->bitmap); 1163 ram_block_coordinated_discard_require(false); 1164 } 1165 1166 static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg, 1167 uint64_t offset, uint64_t size) 1168 { 1169 RAMBlock *rb = vmem->memdev->mr.ram_block; 1170 1171 return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0; 1172 } 1173 1174 static int virtio_mem_restore_unplugged(VirtIOMEM *vmem) 1175 { 1176 /* Make sure all memory is really discarded after migration. */ 1177 return virtio_mem_for_each_unplugged_range(vmem, NULL, 1178 virtio_mem_discard_range_cb); 1179 } 1180 1181 static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg, 1182 uint64_t offset, uint64_t size) 1183 { 1184 virtio_mem_activate_memslots_to_plug(vmem, offset, size); 1185 return 0; 1186 } 1187 1188 static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem) 1189 { 1190 RamDiscardListener *rdl; 1191 int ret; 1192 1193 /* 1194 * We restored the bitmap and updated the requested size; activate all 1195 * memslots (so listeners register) before notifying about plugged blocks. 1196 */ 1197 if (vmem->dynamic_memslots) { 1198 /* 1199 * We don't expect any active memslots at this point to deactivate: no 1200 * memory was plugged on the migration destination. 1201 */ 1202 virtio_mem_for_each_plugged_range(vmem, NULL, 1203 virtio_mem_activate_memslot_range_cb); 1204 } 1205 1206 /* 1207 * We started out with all memory discarded and our memory region is mapped 1208 * into an address space. Replay, now that we updated the bitmap. 1209 */ 1210 QLIST_FOREACH(rdl, &vmem->rdl_list, next) { 1211 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1212 virtio_mem_notify_populate_cb); 1213 if (ret) { 1214 return ret; 1215 } 1216 } 1217 return 0; 1218 } 1219 1220 static int virtio_mem_post_load(void *opaque, int version_id) 1221 { 1222 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1223 int ret; 1224 1225 if (!vmem->early_migration) { 1226 ret = virtio_mem_post_load_bitmap(vmem); 1227 if (ret) { 1228 return ret; 1229 } 1230 } 1231 1232 /* 1233 * If shared RAM is migrated using the file content and not using QEMU, 1234 * don't mess with preallocation and postcopy. 1235 */ 1236 if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) { 1237 return 0; 1238 } 1239 1240 if (vmem->prealloc && !vmem->early_migration) { 1241 warn_report("Proper preallocation with migration requires a newer QEMU machine"); 1242 } 1243 1244 if (migration_in_incoming_postcopy()) { 1245 return 0; 1246 } 1247 1248 return virtio_mem_restore_unplugged(vmem); 1249 } 1250 1251 static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg, 1252 uint64_t offset, uint64_t size) 1253 { 1254 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; 1255 int fd = memory_region_get_fd(&vmem->memdev->mr); 1256 Error *local_err = NULL; 1257 1258 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { 1259 error_report_err(local_err); 1260 return -ENOMEM; 1261 } 1262 return 0; 1263 } 1264 1265 static int virtio_mem_post_load_early(void *opaque, int version_id) 1266 { 1267 VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1268 RAMBlock *rb = vmem->memdev->mr.ram_block; 1269 int ret; 1270 1271 if (!vmem->prealloc) { 1272 goto post_load_bitmap; 1273 } 1274 1275 /* 1276 * If shared RAM is migrated using the file content and not using QEMU, 1277 * don't mess with preallocation and postcopy. 1278 */ 1279 if (migrate_ram_is_ignored(rb)) { 1280 goto post_load_bitmap; 1281 } 1282 1283 /* 1284 * We restored the bitmap and verified that the basic properties 1285 * match on source and destination, so we can go ahead and preallocate 1286 * memory for all plugged memory blocks, before actual RAM migration starts 1287 * touching this memory. 1288 */ 1289 ret = virtio_mem_for_each_plugged_range(vmem, NULL, 1290 virtio_mem_prealloc_range_cb); 1291 if (ret) { 1292 return ret; 1293 } 1294 1295 /* 1296 * This is tricky: postcopy wants to start with a clean slate. On 1297 * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily 1298 * preallocated) RAM such that postcopy will work as expected later. 1299 * 1300 * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual 1301 * RAM migration. So let's discard all memory again. This looks like an 1302 * expensive NOP, but actually serves a purpose: we made sure that we 1303 * were able to allocate all required backend memory once. We cannot 1304 * guarantee that the backend memory we will free will remain free 1305 * until we need it during postcopy, but at least we can catch the 1306 * obvious setup issues this way. 1307 */ 1308 if (migration_incoming_postcopy_advised()) { 1309 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { 1310 return -EBUSY; 1311 } 1312 } 1313 1314 post_load_bitmap: 1315 /* Finally, update any other state to be consistent with the new bitmap. */ 1316 return virtio_mem_post_load_bitmap(vmem); 1317 } 1318 1319 typedef struct VirtIOMEMMigSanityChecks { 1320 VirtIOMEM *parent; 1321 uint64_t addr; 1322 uint64_t region_size; 1323 uint64_t block_size; 1324 uint32_t node; 1325 } VirtIOMEMMigSanityChecks; 1326 1327 static int virtio_mem_mig_sanity_checks_pre_save(void *opaque) 1328 { 1329 VirtIOMEMMigSanityChecks *tmp = opaque; 1330 VirtIOMEM *vmem = tmp->parent; 1331 1332 tmp->addr = vmem->addr; 1333 tmp->region_size = memory_region_size(&vmem->memdev->mr); 1334 tmp->block_size = vmem->block_size; 1335 tmp->node = vmem->node; 1336 return 0; 1337 } 1338 1339 static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id) 1340 { 1341 VirtIOMEMMigSanityChecks *tmp = opaque; 1342 VirtIOMEM *vmem = tmp->parent; 1343 const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr); 1344 1345 if (tmp->addr != vmem->addr) { 1346 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1347 VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr); 1348 return -EINVAL; 1349 } 1350 /* 1351 * Note: Preparation for resizable memory regions. The maximum size 1352 * of the memory region must not change during migration. 1353 */ 1354 if (tmp->region_size != new_region_size) { 1355 error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%" 1356 PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size, 1357 new_region_size); 1358 return -EINVAL; 1359 } 1360 if (tmp->block_size != vmem->block_size) { 1361 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, 1362 VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size, 1363 vmem->block_size); 1364 return -EINVAL; 1365 } 1366 if (tmp->node != vmem->node) { 1367 error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32, 1368 VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node); 1369 return -EINVAL; 1370 } 1371 return 0; 1372 } 1373 1374 static const VMStateDescription vmstate_virtio_mem_sanity_checks = { 1375 .name = "virtio-mem-device/sanity-checks", 1376 .pre_save = virtio_mem_mig_sanity_checks_pre_save, 1377 .post_load = virtio_mem_mig_sanity_checks_post_load, 1378 .fields = (const VMStateField[]) { 1379 VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks), 1380 VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks), 1381 VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks), 1382 VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks), 1383 VMSTATE_END_OF_LIST(), 1384 }, 1385 }; 1386 1387 static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id) 1388 { 1389 const VirtIOMEM *vmem = VIRTIO_MEM(opaque); 1390 1391 /* With early migration, these fields were already migrated. */ 1392 return !vmem->early_migration; 1393 } 1394 1395 static const VMStateDescription vmstate_virtio_mem_device = { 1396 .name = "virtio-mem-device", 1397 .minimum_version_id = 1, 1398 .version_id = 1, 1399 .priority = MIG_PRI_VIRTIO_MEM, 1400 .post_load = virtio_mem_post_load, 1401 .fields = (const VMStateField[]) { 1402 VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists, 1403 VirtIOMEMMigSanityChecks, 1404 vmstate_virtio_mem_sanity_checks), 1405 VMSTATE_UINT64(usable_region_size, VirtIOMEM), 1406 VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists), 1407 VMSTATE_UINT64(requested_size, VirtIOMEM), 1408 VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists, 1409 0, bitmap_size), 1410 VMSTATE_END_OF_LIST() 1411 }, 1412 }; 1413 1414 /* 1415 * Transfer properties that are immutable while migration is active early, 1416 * such that we have have this information around before migrating any RAM 1417 * content. 1418 * 1419 * Note that virtio_mem_is_busy() makes sure these properties can no longer 1420 * change on the migration source until migration completed. 1421 * 1422 * With QEMU compat machines, we transmit these properties later, via 1423 * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists(). 1424 */ 1425 static const VMStateDescription vmstate_virtio_mem_device_early = { 1426 .name = "virtio-mem-device-early", 1427 .minimum_version_id = 1, 1428 .version_id = 1, 1429 .early_setup = true, 1430 .post_load = virtio_mem_post_load_early, 1431 .fields = (const VMStateField[]) { 1432 VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks, 1433 vmstate_virtio_mem_sanity_checks), 1434 VMSTATE_UINT64(size, VirtIOMEM), 1435 VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size), 1436 VMSTATE_END_OF_LIST() 1437 }, 1438 }; 1439 1440 static const VMStateDescription vmstate_virtio_mem = { 1441 .name = "virtio-mem", 1442 .minimum_version_id = 1, 1443 .version_id = 1, 1444 .fields = (const VMStateField[]) { 1445 VMSTATE_VIRTIO_DEVICE, 1446 VMSTATE_END_OF_LIST() 1447 }, 1448 }; 1449 1450 static void virtio_mem_fill_device_info(const VirtIOMEM *vmem, 1451 VirtioMEMDeviceInfo *vi) 1452 { 1453 vi->memaddr = vmem->addr; 1454 vi->node = vmem->node; 1455 vi->requested_size = vmem->requested_size; 1456 vi->size = vmem->size; 1457 vi->max_size = memory_region_size(&vmem->memdev->mr); 1458 vi->block_size = vmem->block_size; 1459 vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev)); 1460 } 1461 1462 static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp) 1463 { 1464 if (!vmem->memdev) { 1465 error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP); 1466 return NULL; 1467 } else if (vmem->dynamic_memslots) { 1468 if (!vmem->mr) { 1469 virtio_mem_prepare_mr(vmem); 1470 } 1471 return vmem->mr; 1472 } 1473 1474 return &vmem->memdev->mr; 1475 } 1476 1477 static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit) 1478 { 1479 uint64_t region_size, memslot_size, min_memslot_size; 1480 unsigned int memslots; 1481 RAMBlock *rb; 1482 1483 if (!vmem->dynamic_memslots) { 1484 return; 1485 } 1486 1487 /* We're called exactly once, before realizing the device. */ 1488 assert(!vmem->nb_memslots); 1489 1490 /* If realizing the device will fail, just assume a single memslot. */ 1491 if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) { 1492 vmem->nb_memslots = 1; 1493 return; 1494 } 1495 1496 rb = vmem->memdev->mr.ram_block; 1497 region_size = memory_region_size(&vmem->memdev->mr); 1498 1499 /* 1500 * Determine the default block size now, to determine the minimum memslot 1501 * size. We want the minimum slot size to be at least the device block size. 1502 */ 1503 if (!vmem->block_size) { 1504 vmem->block_size = virtio_mem_default_block_size(rb); 1505 } 1506 /* If realizing the device will fail, just assume a single memslot. */ 1507 if (vmem->block_size < qemu_ram_pagesize(rb) || 1508 !QEMU_IS_ALIGNED(region_size, vmem->block_size)) { 1509 vmem->nb_memslots = 1; 1510 return; 1511 } 1512 1513 /* 1514 * All memslots except the last one have a reasonable minimum size, and 1515 * and all memslot sizes are aligned to the device block size. 1516 */ 1517 memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size); 1518 min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE); 1519 memslot_size = MAX(memslot_size, min_memslot_size); 1520 1521 memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size; 1522 if (memslots != 1) { 1523 vmem->memslot_size = memslot_size; 1524 } 1525 vmem->nb_memslots = memslots; 1526 } 1527 1528 static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem) 1529 { 1530 if (!vmem->dynamic_memslots) { 1531 /* Exactly one static RAM memory region. */ 1532 return 1; 1533 } 1534 1535 /* We're called after instructed to make a decision. */ 1536 g_assert(vmem->nb_memslots); 1537 return vmem->nb_memslots; 1538 } 1539 1540 static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem, 1541 Notifier *notifier) 1542 { 1543 notifier_list_add(&vmem->size_change_notifiers, notifier); 1544 } 1545 1546 static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem, 1547 Notifier *notifier) 1548 { 1549 notifier_remove(notifier); 1550 } 1551 1552 static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name, 1553 void *opaque, Error **errp) 1554 { 1555 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1556 uint64_t value = vmem->size; 1557 1558 visit_type_size(v, name, &value, errp); 1559 } 1560 1561 static void virtio_mem_get_requested_size(Object *obj, Visitor *v, 1562 const char *name, void *opaque, 1563 Error **errp) 1564 { 1565 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1566 uint64_t value = vmem->requested_size; 1567 1568 visit_type_size(v, name, &value, errp); 1569 } 1570 1571 static void virtio_mem_set_requested_size(Object *obj, Visitor *v, 1572 const char *name, void *opaque, 1573 Error **errp) 1574 { 1575 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1576 uint64_t value; 1577 1578 if (!visit_type_size(v, name, &value, errp)) { 1579 return; 1580 } 1581 1582 /* 1583 * The block size and memory backend are not fixed until the device was 1584 * realized. realize() will verify these properties then. 1585 */ 1586 if (DEVICE(obj)->realized) { 1587 if (!QEMU_IS_ALIGNED(value, vmem->block_size)) { 1588 error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64 1589 ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP, 1590 vmem->block_size); 1591 return; 1592 } else if (value > memory_region_size(&vmem->memdev->mr)) { 1593 error_setg(errp, "'%s' cannot exceed the memory backend size" 1594 "(0x%" PRIx64 ")", name, 1595 memory_region_size(&vmem->memdev->mr)); 1596 return; 1597 } 1598 1599 if (value != vmem->requested_size) { 1600 virtio_mem_resize_usable_region(vmem, value, false); 1601 vmem->requested_size = value; 1602 } 1603 /* 1604 * Trigger a config update so the guest gets notified. We trigger 1605 * even if the size didn't change (especially helpful for debugging). 1606 */ 1607 virtio_notify_config(VIRTIO_DEVICE(vmem)); 1608 } else { 1609 vmem->requested_size = value; 1610 } 1611 } 1612 1613 static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name, 1614 void *opaque, Error **errp) 1615 { 1616 const VirtIOMEM *vmem = VIRTIO_MEM(obj); 1617 uint64_t value = vmem->block_size; 1618 1619 /* 1620 * If not configured by the user (and we're not realized yet), use the 1621 * default block size we would use with the current memory backend. 1622 */ 1623 if (!value) { 1624 if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) { 1625 value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block); 1626 } else { 1627 value = virtio_mem_thp_size(); 1628 } 1629 } 1630 1631 visit_type_size(v, name, &value, errp); 1632 } 1633 1634 static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name, 1635 void *opaque, Error **errp) 1636 { 1637 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1638 uint64_t value; 1639 1640 if (DEVICE(obj)->realized) { 1641 error_setg(errp, "'%s' cannot be changed", name); 1642 return; 1643 } 1644 1645 if (!visit_type_size(v, name, &value, errp)) { 1646 return; 1647 } 1648 1649 if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) { 1650 error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name, 1651 VIRTIO_MEM_MIN_BLOCK_SIZE); 1652 return; 1653 } else if (!is_power_of_2(value)) { 1654 error_setg(errp, "'%s' property has to be a power of two", name); 1655 return; 1656 } 1657 vmem->block_size = value; 1658 } 1659 1660 static void virtio_mem_instance_init(Object *obj) 1661 { 1662 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1663 1664 notifier_list_init(&vmem->size_change_notifiers); 1665 QLIST_INIT(&vmem->rdl_list); 1666 1667 object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size, 1668 NULL, NULL, NULL); 1669 object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size", 1670 virtio_mem_get_requested_size, 1671 virtio_mem_set_requested_size, NULL, NULL); 1672 object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size", 1673 virtio_mem_get_block_size, virtio_mem_set_block_size, 1674 NULL, NULL); 1675 } 1676 1677 static void virtio_mem_instance_finalize(Object *obj) 1678 { 1679 VirtIOMEM *vmem = VIRTIO_MEM(obj); 1680 1681 /* 1682 * Note: the core already dropped the references on all memory regions 1683 * (it's passed as the owner to memory_region_init_*()) and finalized 1684 * these objects. We can simply free the memory. 1685 */ 1686 g_free(vmem->memslots); 1687 vmem->memslots = NULL; 1688 g_free(vmem->mr); 1689 vmem->mr = NULL; 1690 } 1691 1692 static Property virtio_mem_properties[] = { 1693 DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0), 1694 DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0), 1695 DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false), 1696 DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev, 1697 TYPE_MEMORY_BACKEND, HostMemoryBackend *), 1698 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) 1699 DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM, 1700 unplugged_inaccessible, ON_OFF_AUTO_ON), 1701 #endif 1702 DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM, 1703 early_migration, true), 1704 DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM, 1705 dynamic_memslots, false), 1706 DEFINE_PROP_END_OF_LIST(), 1707 }; 1708 1709 static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm, 1710 const MemoryRegion *mr) 1711 { 1712 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1713 1714 g_assert(mr == &vmem->memdev->mr); 1715 return vmem->block_size; 1716 } 1717 1718 static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm, 1719 const MemoryRegionSection *s) 1720 { 1721 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1722 uint64_t start_gpa = vmem->addr + s->offset_within_region; 1723 uint64_t end_gpa = start_gpa + int128_get64(s->size); 1724 1725 g_assert(s->mr == &vmem->memdev->mr); 1726 1727 start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size); 1728 end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size); 1729 1730 if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) { 1731 return false; 1732 } 1733 1734 return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa); 1735 } 1736 1737 struct VirtIOMEMReplayData { 1738 void *fn; 1739 void *opaque; 1740 }; 1741 1742 static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg) 1743 { 1744 struct VirtIOMEMReplayData *data = arg; 1745 1746 return ((ReplayRamPopulate)data->fn)(s, data->opaque); 1747 } 1748 1749 static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm, 1750 MemoryRegionSection *s, 1751 ReplayRamPopulate replay_fn, 1752 void *opaque) 1753 { 1754 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1755 struct VirtIOMEMReplayData data = { 1756 .fn = replay_fn, 1757 .opaque = opaque, 1758 }; 1759 1760 g_assert(s->mr == &vmem->memdev->mr); 1761 return virtio_mem_for_each_plugged_section(vmem, s, &data, 1762 virtio_mem_rdm_replay_populated_cb); 1763 } 1764 1765 static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s, 1766 void *arg) 1767 { 1768 struct VirtIOMEMReplayData *data = arg; 1769 1770 ((ReplayRamDiscard)data->fn)(s, data->opaque); 1771 return 0; 1772 } 1773 1774 static void virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm, 1775 MemoryRegionSection *s, 1776 ReplayRamDiscard replay_fn, 1777 void *opaque) 1778 { 1779 const VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1780 struct VirtIOMEMReplayData data = { 1781 .fn = replay_fn, 1782 .opaque = opaque, 1783 }; 1784 1785 g_assert(s->mr == &vmem->memdev->mr); 1786 virtio_mem_for_each_unplugged_section(vmem, s, &data, 1787 virtio_mem_rdm_replay_discarded_cb); 1788 } 1789 1790 static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm, 1791 RamDiscardListener *rdl, 1792 MemoryRegionSection *s) 1793 { 1794 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1795 int ret; 1796 1797 g_assert(s->mr == &vmem->memdev->mr); 1798 rdl->section = memory_region_section_new_copy(s); 1799 1800 QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next); 1801 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1802 virtio_mem_notify_populate_cb); 1803 if (ret) { 1804 error_report("%s: Replaying plugged ranges failed: %s", __func__, 1805 strerror(-ret)); 1806 } 1807 } 1808 1809 static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm, 1810 RamDiscardListener *rdl) 1811 { 1812 VirtIOMEM *vmem = VIRTIO_MEM(rdm); 1813 1814 g_assert(rdl->section->mr == &vmem->memdev->mr); 1815 if (vmem->size) { 1816 if (rdl->double_discard_supported) { 1817 rdl->notify_discard(rdl, rdl->section); 1818 } else { 1819 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, 1820 virtio_mem_notify_discard_cb); 1821 } 1822 } 1823 1824 memory_region_section_free_copy(rdl->section); 1825 rdl->section = NULL; 1826 QLIST_REMOVE(rdl, next); 1827 } 1828 1829 static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp) 1830 { 1831 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) { 1832 /* 1833 * We could allow it with a usable region size of 0, but let's just 1834 * not care about that legacy setting. 1835 */ 1836 error_setg(errp, "virtio-mem device cannot get unplugged while" 1837 " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'"); 1838 return; 1839 } 1840 1841 if (vmem->size) { 1842 error_setg(errp, "virtio-mem device cannot get unplugged while some" 1843 " of its memory is still plugged"); 1844 return; 1845 } 1846 if (vmem->requested_size) { 1847 error_setg(errp, "virtio-mem device cannot get unplugged while" 1848 " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'"); 1849 return; 1850 } 1851 } 1852 1853 static void virtio_mem_class_init(ObjectClass *klass, void *data) 1854 { 1855 DeviceClass *dc = DEVICE_CLASS(klass); 1856 VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); 1857 VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass); 1858 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass); 1859 1860 device_class_set_props(dc, virtio_mem_properties); 1861 dc->vmsd = &vmstate_virtio_mem; 1862 1863 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 1864 vdc->realize = virtio_mem_device_realize; 1865 vdc->unrealize = virtio_mem_device_unrealize; 1866 vdc->get_config = virtio_mem_get_config; 1867 vdc->get_features = virtio_mem_get_features; 1868 vdc->validate_features = virtio_mem_validate_features; 1869 vdc->vmsd = &vmstate_virtio_mem_device; 1870 1871 vmc->fill_device_info = virtio_mem_fill_device_info; 1872 vmc->get_memory_region = virtio_mem_get_memory_region; 1873 vmc->decide_memslots = virtio_mem_decide_memslots; 1874 vmc->get_memslots = virtio_mem_get_memslots; 1875 vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier; 1876 vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier; 1877 vmc->unplug_request_check = virtio_mem_unplug_request_check; 1878 1879 rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity; 1880 rdmc->is_populated = virtio_mem_rdm_is_populated; 1881 rdmc->replay_populated = virtio_mem_rdm_replay_populated; 1882 rdmc->replay_discarded = virtio_mem_rdm_replay_discarded; 1883 rdmc->register_listener = virtio_mem_rdm_register_listener; 1884 rdmc->unregister_listener = virtio_mem_rdm_unregister_listener; 1885 } 1886 1887 static const TypeInfo virtio_mem_info = { 1888 .name = TYPE_VIRTIO_MEM, 1889 .parent = TYPE_VIRTIO_DEVICE, 1890 .instance_size = sizeof(VirtIOMEM), 1891 .instance_init = virtio_mem_instance_init, 1892 .instance_finalize = virtio_mem_instance_finalize, 1893 .class_init = virtio_mem_class_init, 1894 .class_size = sizeof(VirtIOMEMClass), 1895 .interfaces = (InterfaceInfo[]) { 1896 { TYPE_RAM_DISCARD_MANAGER }, 1897 { } 1898 }, 1899 }; 1900 1901 static void virtio_register_types(void) 1902 { 1903 type_register_static(&virtio_mem_info); 1904 } 1905 1906 type_init(virtio_register_types) 1907