1 /* 2 * vhost support 3 * 4 * Copyright Red Hat, Inc. 2010 5 * 6 * Authors: 7 * Michael S. Tsirkin <mst@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Contributions after 2012-01-13 are licensed under the terms of the 13 * GNU GPL, version 2 or (at your option) any later version. 14 */ 15 16 #include "qemu/osdep.h" 17 #include "qapi/error.h" 18 #include "hw/virtio/vhost.h" 19 #include "qemu/atomic.h" 20 #include "qemu/range.h" 21 #include "qemu/error-report.h" 22 #include "qemu/memfd.h" 23 #include "qemu/log.h" 24 #include "standard-headers/linux/vhost_types.h" 25 #include "hw/virtio/virtio-bus.h" 26 #include "hw/mem/memory-device.h" 27 #include "migration/blocker.h" 28 #include "migration/qemu-file-types.h" 29 #include "sysemu/dma.h" 30 #include "trace.h" 31 32 /* enabled until disconnected backend stabilizes */ 33 #define _VHOST_DEBUG 1 34 35 #ifdef _VHOST_DEBUG 36 #define VHOST_OPS_DEBUG(retval, fmt, ...) \ 37 do { \ 38 error_report(fmt ": %s (%d)", ## __VA_ARGS__, \ 39 strerror(-retval), -retval); \ 40 } while (0) 41 #else 42 #define VHOST_OPS_DEBUG(retval, fmt, ...) \ 43 do { } while (0) 44 #endif 45 46 static struct vhost_log *vhost_log[VHOST_BACKEND_TYPE_MAX]; 47 static struct vhost_log *vhost_log_shm[VHOST_BACKEND_TYPE_MAX]; 48 static QLIST_HEAD(, vhost_dev) vhost_log_devs[VHOST_BACKEND_TYPE_MAX]; 49 50 /* Memslots used by backends that support private memslots (without an fd). */ 51 static unsigned int used_memslots; 52 53 /* Memslots used by backends that only support shared memslots (with an fd). */ 54 static unsigned int used_shared_memslots; 55 56 static QLIST_HEAD(, vhost_dev) vhost_devices = 57 QLIST_HEAD_INITIALIZER(vhost_devices); 58 59 unsigned int vhost_get_max_memslots(void) 60 { 61 unsigned int max = UINT_MAX; 62 struct vhost_dev *hdev; 63 64 QLIST_FOREACH(hdev, &vhost_devices, entry) { 65 max = MIN(max, hdev->vhost_ops->vhost_backend_memslots_limit(hdev)); 66 } 67 return max; 68 } 69 70 unsigned int vhost_get_free_memslots(void) 71 { 72 unsigned int free = UINT_MAX; 73 struct vhost_dev *hdev; 74 75 QLIST_FOREACH(hdev, &vhost_devices, entry) { 76 unsigned int r = hdev->vhost_ops->vhost_backend_memslots_limit(hdev); 77 unsigned int cur_free; 78 79 if (hdev->vhost_ops->vhost_backend_no_private_memslots && 80 hdev->vhost_ops->vhost_backend_no_private_memslots(hdev)) { 81 cur_free = r - used_shared_memslots; 82 } else { 83 cur_free = r - used_memslots; 84 } 85 free = MIN(free, cur_free); 86 } 87 return free; 88 } 89 90 static void vhost_dev_sync_region(struct vhost_dev *dev, 91 MemoryRegionSection *section, 92 uint64_t mfirst, uint64_t mlast, 93 uint64_t rfirst, uint64_t rlast) 94 { 95 vhost_log_chunk_t *dev_log = dev->log->log; 96 97 uint64_t start = MAX(mfirst, rfirst); 98 uint64_t end = MIN(mlast, rlast); 99 vhost_log_chunk_t *from = dev_log + start / VHOST_LOG_CHUNK; 100 vhost_log_chunk_t *to = dev_log + end / VHOST_LOG_CHUNK + 1; 101 uint64_t addr = QEMU_ALIGN_DOWN(start, VHOST_LOG_CHUNK); 102 103 if (end < start) { 104 return; 105 } 106 assert(end / VHOST_LOG_CHUNK < dev->log_size); 107 assert(start / VHOST_LOG_CHUNK < dev->log_size); 108 109 for (;from < to; ++from) { 110 vhost_log_chunk_t log; 111 /* We first check with non-atomic: much cheaper, 112 * and we expect non-dirty to be the common case. */ 113 if (!*from) { 114 addr += VHOST_LOG_CHUNK; 115 continue; 116 } 117 /* Data must be read atomically. We don't really need barrier semantics 118 * but it's easier to use atomic_* than roll our own. */ 119 log = qatomic_xchg(from, 0); 120 while (log) { 121 int bit = ctzl(log); 122 hwaddr page_addr; 123 hwaddr section_offset; 124 hwaddr mr_offset; 125 page_addr = addr + bit * VHOST_LOG_PAGE; 126 section_offset = page_addr - section->offset_within_address_space; 127 mr_offset = section_offset + section->offset_within_region; 128 memory_region_set_dirty(section->mr, mr_offset, VHOST_LOG_PAGE); 129 log &= ~(0x1ull << bit); 130 } 131 addr += VHOST_LOG_CHUNK; 132 } 133 } 134 135 bool vhost_dev_has_iommu(struct vhost_dev *dev) 136 { 137 VirtIODevice *vdev = dev->vdev; 138 139 /* 140 * For vhost, VIRTIO_F_IOMMU_PLATFORM means the backend support 141 * incremental memory mapping API via IOTLB API. For platform that 142 * does not have IOMMU, there's no need to enable this feature 143 * which may cause unnecessary IOTLB miss/update transactions. 144 */ 145 if (vdev) { 146 return virtio_bus_device_iommu_enabled(vdev) && 147 virtio_host_has_feature(vdev, VIRTIO_F_IOMMU_PLATFORM); 148 } else { 149 return false; 150 } 151 } 152 153 static inline bool vhost_dev_should_log(struct vhost_dev *dev) 154 { 155 assert(dev->vhost_ops); 156 assert(dev->vhost_ops->backend_type > VHOST_BACKEND_TYPE_NONE); 157 assert(dev->vhost_ops->backend_type < VHOST_BACKEND_TYPE_MAX); 158 159 return dev == QLIST_FIRST(&vhost_log_devs[dev->vhost_ops->backend_type]); 160 } 161 162 static inline void vhost_dev_elect_mem_logger(struct vhost_dev *hdev, bool add) 163 { 164 VhostBackendType backend_type; 165 166 assert(hdev->vhost_ops); 167 168 backend_type = hdev->vhost_ops->backend_type; 169 assert(backend_type > VHOST_BACKEND_TYPE_NONE); 170 assert(backend_type < VHOST_BACKEND_TYPE_MAX); 171 172 if (add && !QLIST_IS_INSERTED(hdev, logdev_entry)) { 173 if (QLIST_EMPTY(&vhost_log_devs[backend_type])) { 174 QLIST_INSERT_HEAD(&vhost_log_devs[backend_type], 175 hdev, logdev_entry); 176 } else { 177 /* 178 * The first vhost_device in the list is selected as the shared 179 * logger to scan memory sections. Put new entry next to the head 180 * to avoid inadvertent change to the underlying logger device. 181 * This is done in order to get better cache locality and to avoid 182 * performance churn on the hot path for log scanning. Even when 183 * new devices come and go quickly, it wouldn't end up changing 184 * the active leading logger device at all. 185 */ 186 QLIST_INSERT_AFTER(QLIST_FIRST(&vhost_log_devs[backend_type]), 187 hdev, logdev_entry); 188 } 189 } else if (!add && QLIST_IS_INSERTED(hdev, logdev_entry)) { 190 QLIST_REMOVE(hdev, logdev_entry); 191 } 192 } 193 194 static int vhost_sync_dirty_bitmap(struct vhost_dev *dev, 195 MemoryRegionSection *section, 196 hwaddr first, 197 hwaddr last) 198 { 199 int i; 200 hwaddr start_addr; 201 hwaddr end_addr; 202 203 if (!dev->log_enabled || !dev->started) { 204 return 0; 205 } 206 start_addr = section->offset_within_address_space; 207 end_addr = range_get_last(start_addr, int128_get64(section->size)); 208 start_addr = MAX(first, start_addr); 209 end_addr = MIN(last, end_addr); 210 211 if (vhost_dev_should_log(dev)) { 212 for (i = 0; i < dev->mem->nregions; ++i) { 213 struct vhost_memory_region *reg = dev->mem->regions + i; 214 vhost_dev_sync_region(dev, section, start_addr, end_addr, 215 reg->guest_phys_addr, 216 range_get_last(reg->guest_phys_addr, 217 reg->memory_size)); 218 } 219 } 220 for (i = 0; i < dev->nvqs; ++i) { 221 struct vhost_virtqueue *vq = dev->vqs + i; 222 223 if (!vq->used_phys && !vq->used_size) { 224 continue; 225 } 226 227 if (vhost_dev_has_iommu(dev)) { 228 IOMMUTLBEntry iotlb; 229 hwaddr used_phys = vq->used_phys, used_size = vq->used_size; 230 hwaddr phys, s, offset; 231 232 while (used_size) { 233 rcu_read_lock(); 234 iotlb = address_space_get_iotlb_entry(dev->vdev->dma_as, 235 used_phys, 236 true, 237 MEMTXATTRS_UNSPECIFIED); 238 rcu_read_unlock(); 239 240 if (!iotlb.target_as) { 241 qemu_log_mask(LOG_GUEST_ERROR, "translation " 242 "failure for used_iova %"PRIx64"\n", 243 used_phys); 244 return -EINVAL; 245 } 246 247 offset = used_phys & iotlb.addr_mask; 248 phys = iotlb.translated_addr + offset; 249 250 /* 251 * Distance from start of used ring until last byte of 252 * IOMMU page. 253 */ 254 s = iotlb.addr_mask - offset; 255 /* 256 * Size of used ring, or of the part of it until end 257 * of IOMMU page. To avoid zero result, do the adding 258 * outside of MIN(). 259 */ 260 s = MIN(s, used_size - 1) + 1; 261 262 vhost_dev_sync_region(dev, section, start_addr, end_addr, phys, 263 range_get_last(phys, s)); 264 used_size -= s; 265 used_phys += s; 266 } 267 } else { 268 vhost_dev_sync_region(dev, section, start_addr, 269 end_addr, vq->used_phys, 270 range_get_last(vq->used_phys, vq->used_size)); 271 } 272 } 273 return 0; 274 } 275 276 static void vhost_log_sync(MemoryListener *listener, 277 MemoryRegionSection *section) 278 { 279 struct vhost_dev *dev = container_of(listener, struct vhost_dev, 280 memory_listener); 281 vhost_sync_dirty_bitmap(dev, section, 0x0, ~0x0ULL); 282 } 283 284 static void vhost_log_sync_range(struct vhost_dev *dev, 285 hwaddr first, hwaddr last) 286 { 287 int i; 288 /* FIXME: this is N^2 in number of sections */ 289 for (i = 0; i < dev->n_mem_sections; ++i) { 290 MemoryRegionSection *section = &dev->mem_sections[i]; 291 vhost_sync_dirty_bitmap(dev, section, first, last); 292 } 293 } 294 295 static uint64_t vhost_get_log_size(struct vhost_dev *dev) 296 { 297 uint64_t log_size = 0; 298 int i; 299 for (i = 0; i < dev->mem->nregions; ++i) { 300 struct vhost_memory_region *reg = dev->mem->regions + i; 301 uint64_t last = range_get_last(reg->guest_phys_addr, 302 reg->memory_size); 303 log_size = MAX(log_size, last / VHOST_LOG_CHUNK + 1); 304 } 305 return log_size; 306 } 307 308 static int vhost_set_backend_type(struct vhost_dev *dev, 309 VhostBackendType backend_type) 310 { 311 int r = 0; 312 313 switch (backend_type) { 314 #ifdef CONFIG_VHOST_KERNEL 315 case VHOST_BACKEND_TYPE_KERNEL: 316 dev->vhost_ops = &kernel_ops; 317 break; 318 #endif 319 #ifdef CONFIG_VHOST_USER 320 case VHOST_BACKEND_TYPE_USER: 321 dev->vhost_ops = &user_ops; 322 break; 323 #endif 324 #ifdef CONFIG_VHOST_VDPA 325 case VHOST_BACKEND_TYPE_VDPA: 326 dev->vhost_ops = &vdpa_ops; 327 break; 328 #endif 329 default: 330 error_report("Unknown vhost backend type"); 331 r = -1; 332 } 333 334 if (r == 0) { 335 assert(dev->vhost_ops->backend_type == backend_type); 336 } 337 338 return r; 339 } 340 341 static struct vhost_log *vhost_log_alloc(uint64_t size, bool share) 342 { 343 Error *err = NULL; 344 struct vhost_log *log; 345 uint64_t logsize = size * sizeof(*(log->log)); 346 int fd = -1; 347 348 log = g_new0(struct vhost_log, 1); 349 if (share) { 350 log->log = qemu_memfd_alloc("vhost-log", logsize, 351 F_SEAL_GROW | F_SEAL_SHRINK | F_SEAL_SEAL, 352 &fd, &err); 353 if (err) { 354 error_report_err(err); 355 g_free(log); 356 return NULL; 357 } 358 memset(log->log, 0, logsize); 359 } else { 360 log->log = g_malloc0(logsize); 361 } 362 363 log->size = size; 364 log->refcnt = 1; 365 log->fd = fd; 366 367 return log; 368 } 369 370 static struct vhost_log *vhost_log_get(VhostBackendType backend_type, 371 uint64_t size, bool share) 372 { 373 struct vhost_log *log; 374 375 assert(backend_type > VHOST_BACKEND_TYPE_NONE); 376 assert(backend_type < VHOST_BACKEND_TYPE_MAX); 377 378 log = share ? vhost_log_shm[backend_type] : vhost_log[backend_type]; 379 380 if (!log || log->size != size) { 381 log = vhost_log_alloc(size, share); 382 if (share) { 383 vhost_log_shm[backend_type] = log; 384 } else { 385 vhost_log[backend_type] = log; 386 } 387 } else { 388 ++log->refcnt; 389 } 390 391 return log; 392 } 393 394 static void vhost_log_put(struct vhost_dev *dev, bool sync) 395 { 396 struct vhost_log *log = dev->log; 397 VhostBackendType backend_type; 398 399 if (!log) { 400 return; 401 } 402 403 assert(dev->vhost_ops); 404 backend_type = dev->vhost_ops->backend_type; 405 406 if (backend_type == VHOST_BACKEND_TYPE_NONE || 407 backend_type >= VHOST_BACKEND_TYPE_MAX) { 408 return; 409 } 410 411 --log->refcnt; 412 if (log->refcnt == 0) { 413 /* Sync only the range covered by the old log */ 414 if (dev->log_size && sync) { 415 vhost_log_sync_range(dev, 0, dev->log_size * VHOST_LOG_CHUNK - 1); 416 } 417 418 if (vhost_log[backend_type] == log) { 419 g_free(log->log); 420 vhost_log[backend_type] = NULL; 421 } else if (vhost_log_shm[backend_type] == log) { 422 qemu_memfd_free(log->log, log->size * sizeof(*(log->log)), 423 log->fd); 424 vhost_log_shm[backend_type] = NULL; 425 } 426 427 g_free(log); 428 } 429 430 vhost_dev_elect_mem_logger(dev, false); 431 dev->log = NULL; 432 dev->log_size = 0; 433 } 434 435 static bool vhost_dev_log_is_shared(struct vhost_dev *dev) 436 { 437 return dev->vhost_ops->vhost_requires_shm_log && 438 dev->vhost_ops->vhost_requires_shm_log(dev); 439 } 440 441 static inline void vhost_dev_log_resize(struct vhost_dev *dev, uint64_t size) 442 { 443 struct vhost_log *log = vhost_log_get(dev->vhost_ops->backend_type, 444 size, vhost_dev_log_is_shared(dev)); 445 uint64_t log_base = (uintptr_t)log->log; 446 int r; 447 448 /* inform backend of log switching, this must be done before 449 releasing the current log, to ensure no logging is lost */ 450 r = dev->vhost_ops->vhost_set_log_base(dev, log_base, log); 451 if (r < 0) { 452 VHOST_OPS_DEBUG(r, "vhost_set_log_base failed"); 453 } 454 455 vhost_log_put(dev, true); 456 dev->log = log; 457 dev->log_size = size; 458 } 459 460 static void *vhost_memory_map(struct vhost_dev *dev, hwaddr addr, 461 hwaddr *plen, bool is_write) 462 { 463 if (!vhost_dev_has_iommu(dev)) { 464 return cpu_physical_memory_map(addr, plen, is_write); 465 } else { 466 return (void *)(uintptr_t)addr; 467 } 468 } 469 470 static void vhost_memory_unmap(struct vhost_dev *dev, void *buffer, 471 hwaddr len, int is_write, 472 hwaddr access_len) 473 { 474 if (!vhost_dev_has_iommu(dev)) { 475 cpu_physical_memory_unmap(buffer, len, is_write, access_len); 476 } 477 } 478 479 static int vhost_verify_ring_part_mapping(void *ring_hva, 480 uint64_t ring_gpa, 481 uint64_t ring_size, 482 void *reg_hva, 483 uint64_t reg_gpa, 484 uint64_t reg_size) 485 { 486 uint64_t hva_ring_offset; 487 uint64_t ring_last = range_get_last(ring_gpa, ring_size); 488 uint64_t reg_last = range_get_last(reg_gpa, reg_size); 489 490 if (ring_last < reg_gpa || ring_gpa > reg_last) { 491 return 0; 492 } 493 /* check that whole ring's is mapped */ 494 if (ring_last > reg_last) { 495 return -ENOMEM; 496 } 497 /* check that ring's MemoryRegion wasn't replaced */ 498 hva_ring_offset = ring_gpa - reg_gpa; 499 if (ring_hva != reg_hva + hva_ring_offset) { 500 return -EBUSY; 501 } 502 503 return 0; 504 } 505 506 static int vhost_verify_ring_mappings(struct vhost_dev *dev, 507 void *reg_hva, 508 uint64_t reg_gpa, 509 uint64_t reg_size) 510 { 511 int i, j; 512 int r = 0; 513 const char *part_name[] = { 514 "descriptor table", 515 "available ring", 516 "used ring" 517 }; 518 519 if (vhost_dev_has_iommu(dev)) { 520 return 0; 521 } 522 523 for (i = 0; i < dev->nvqs; ++i) { 524 struct vhost_virtqueue *vq = dev->vqs + i; 525 526 if (vq->desc_phys == 0) { 527 continue; 528 } 529 530 j = 0; 531 r = vhost_verify_ring_part_mapping( 532 vq->desc, vq->desc_phys, vq->desc_size, 533 reg_hva, reg_gpa, reg_size); 534 if (r) { 535 break; 536 } 537 538 j++; 539 r = vhost_verify_ring_part_mapping( 540 vq->avail, vq->avail_phys, vq->avail_size, 541 reg_hva, reg_gpa, reg_size); 542 if (r) { 543 break; 544 } 545 546 j++; 547 r = vhost_verify_ring_part_mapping( 548 vq->used, vq->used_phys, vq->used_size, 549 reg_hva, reg_gpa, reg_size); 550 if (r) { 551 break; 552 } 553 } 554 555 if (r == -ENOMEM) { 556 error_report("Unable to map %s for ring %d", part_name[j], i); 557 } else if (r == -EBUSY) { 558 error_report("%s relocated for ring %d", part_name[j], i); 559 } 560 return r; 561 } 562 563 /* 564 * vhost_section: identify sections needed for vhost access 565 * 566 * We only care about RAM sections here (where virtqueue and guest 567 * internals accessed by virtio might live). 568 */ 569 static bool vhost_section(struct vhost_dev *dev, MemoryRegionSection *section) 570 { 571 MemoryRegion *mr = section->mr; 572 573 if (memory_region_is_ram(mr) && !memory_region_is_rom(mr)) { 574 uint8_t dirty_mask = memory_region_get_dirty_log_mask(mr); 575 uint8_t handled_dirty; 576 577 /* 578 * Kernel based vhost doesn't handle any block which is doing 579 * dirty-tracking other than migration for which it has 580 * specific logging support. However for TCG the kernel never 581 * gets involved anyway so we can also ignore it's 582 * self-modiying code detection flags. However a vhost-user 583 * client could still confuse a TCG guest if it re-writes 584 * executable memory that has already been translated. 585 */ 586 handled_dirty = (1 << DIRTY_MEMORY_MIGRATION) | 587 (1 << DIRTY_MEMORY_CODE); 588 589 if (dirty_mask & ~handled_dirty) { 590 trace_vhost_reject_section(mr->name, 1); 591 return false; 592 } 593 594 /* 595 * Some backends (like vhost-user) can only handle memory regions 596 * that have an fd (can be mapped into a different process). Filter 597 * the ones without an fd out, if requested. 598 * 599 * TODO: we might have to limit to MAP_SHARED as well. 600 */ 601 if (memory_region_get_fd(section->mr) < 0 && 602 dev->vhost_ops->vhost_backend_no_private_memslots && 603 dev->vhost_ops->vhost_backend_no_private_memslots(dev)) { 604 trace_vhost_reject_section(mr->name, 2); 605 return false; 606 } 607 608 trace_vhost_section(mr->name); 609 return true; 610 } else { 611 trace_vhost_reject_section(mr->name, 3); 612 return false; 613 } 614 } 615 616 static void vhost_begin(MemoryListener *listener) 617 { 618 struct vhost_dev *dev = container_of(listener, struct vhost_dev, 619 memory_listener); 620 dev->tmp_sections = NULL; 621 dev->n_tmp_sections = 0; 622 } 623 624 static void vhost_commit(MemoryListener *listener) 625 { 626 struct vhost_dev *dev = container_of(listener, struct vhost_dev, 627 memory_listener); 628 MemoryRegionSection *old_sections; 629 int n_old_sections; 630 uint64_t log_size; 631 size_t regions_size; 632 int r; 633 int i; 634 bool changed = false; 635 636 /* Note we can be called before the device is started, but then 637 * starting the device calls set_mem_table, so we need to have 638 * built the data structures. 639 */ 640 old_sections = dev->mem_sections; 641 n_old_sections = dev->n_mem_sections; 642 dev->mem_sections = dev->tmp_sections; 643 dev->n_mem_sections = dev->n_tmp_sections; 644 645 if (dev->n_mem_sections != n_old_sections) { 646 changed = true; 647 } else { 648 /* Same size, lets check the contents */ 649 for (i = 0; i < n_old_sections; i++) { 650 if (!MemoryRegionSection_eq(&old_sections[i], 651 &dev->mem_sections[i])) { 652 changed = true; 653 break; 654 } 655 } 656 } 657 658 trace_vhost_commit(dev->started, changed); 659 if (!changed) { 660 goto out; 661 } 662 663 /* Rebuild the regions list from the new sections list */ 664 regions_size = offsetof(struct vhost_memory, regions) + 665 dev->n_mem_sections * sizeof dev->mem->regions[0]; 666 dev->mem = g_realloc(dev->mem, regions_size); 667 dev->mem->nregions = dev->n_mem_sections; 668 669 if (dev->vhost_ops->vhost_backend_no_private_memslots && 670 dev->vhost_ops->vhost_backend_no_private_memslots(dev)) { 671 used_shared_memslots = dev->mem->nregions; 672 } else { 673 used_memslots = dev->mem->nregions; 674 } 675 676 for (i = 0; i < dev->n_mem_sections; i++) { 677 struct vhost_memory_region *cur_vmr = dev->mem->regions + i; 678 struct MemoryRegionSection *mrs = dev->mem_sections + i; 679 680 cur_vmr->guest_phys_addr = mrs->offset_within_address_space; 681 cur_vmr->memory_size = int128_get64(mrs->size); 682 cur_vmr->userspace_addr = 683 (uintptr_t)memory_region_get_ram_ptr(mrs->mr) + 684 mrs->offset_within_region; 685 cur_vmr->flags_padding = 0; 686 } 687 688 if (!dev->started) { 689 goto out; 690 } 691 692 for (i = 0; i < dev->mem->nregions; i++) { 693 if (vhost_verify_ring_mappings(dev, 694 (void *)(uintptr_t)dev->mem->regions[i].userspace_addr, 695 dev->mem->regions[i].guest_phys_addr, 696 dev->mem->regions[i].memory_size)) { 697 error_report("Verify ring failure on region %d", i); 698 abort(); 699 } 700 } 701 702 if (!dev->log_enabled) { 703 r = dev->vhost_ops->vhost_set_mem_table(dev, dev->mem); 704 if (r < 0) { 705 VHOST_OPS_DEBUG(r, "vhost_set_mem_table failed"); 706 } 707 goto out; 708 } 709 log_size = vhost_get_log_size(dev); 710 /* We allocate an extra 4K bytes to log, 711 * to reduce the * number of reallocations. */ 712 #define VHOST_LOG_BUFFER (0x1000 / sizeof *dev->log) 713 /* To log more, must increase log size before table update. */ 714 if (dev->log_size < log_size) { 715 vhost_dev_log_resize(dev, log_size + VHOST_LOG_BUFFER); 716 } 717 r = dev->vhost_ops->vhost_set_mem_table(dev, dev->mem); 718 if (r < 0) { 719 VHOST_OPS_DEBUG(r, "vhost_set_mem_table failed"); 720 } 721 /* To log less, can only decrease log size after table update. */ 722 if (dev->log_size > log_size + VHOST_LOG_BUFFER) { 723 vhost_dev_log_resize(dev, log_size); 724 } 725 726 out: 727 /* Deref the old list of sections, this must happen _after_ the 728 * vhost_set_mem_table to ensure the client isn't still using the 729 * section we're about to unref. 730 */ 731 while (n_old_sections--) { 732 memory_region_unref(old_sections[n_old_sections].mr); 733 } 734 g_free(old_sections); 735 return; 736 } 737 738 /* Adds the section data to the tmp_section structure. 739 * It relies on the listener calling us in memory address order 740 * and for each region (via the _add and _nop methods) to 741 * join neighbours. 742 */ 743 static void vhost_region_add_section(struct vhost_dev *dev, 744 MemoryRegionSection *section) 745 { 746 bool need_add = true; 747 uint64_t mrs_size = int128_get64(section->size); 748 uint64_t mrs_gpa = section->offset_within_address_space; 749 uintptr_t mrs_host = (uintptr_t)memory_region_get_ram_ptr(section->mr) + 750 section->offset_within_region; 751 RAMBlock *mrs_rb = section->mr->ram_block; 752 753 trace_vhost_region_add_section(section->mr->name, mrs_gpa, mrs_size, 754 mrs_host); 755 756 if (dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_USER) { 757 /* Round the section to it's page size */ 758 /* First align the start down to a page boundary */ 759 size_t mrs_page = qemu_ram_pagesize(mrs_rb); 760 uint64_t alignage = mrs_host & (mrs_page - 1); 761 if (alignage) { 762 mrs_host -= alignage; 763 mrs_size += alignage; 764 mrs_gpa -= alignage; 765 } 766 /* Now align the size up to a page boundary */ 767 alignage = mrs_size & (mrs_page - 1); 768 if (alignage) { 769 mrs_size += mrs_page - alignage; 770 } 771 trace_vhost_region_add_section_aligned(section->mr->name, mrs_gpa, 772 mrs_size, mrs_host); 773 } 774 775 if (dev->n_tmp_sections && !section->unmergeable) { 776 /* Since we already have at least one section, lets see if 777 * this extends it; since we're scanning in order, we only 778 * have to look at the last one, and the FlatView that calls 779 * us shouldn't have overlaps. 780 */ 781 MemoryRegionSection *prev_sec = dev->tmp_sections + 782 (dev->n_tmp_sections - 1); 783 uint64_t prev_gpa_start = prev_sec->offset_within_address_space; 784 uint64_t prev_size = int128_get64(prev_sec->size); 785 uint64_t prev_gpa_end = range_get_last(prev_gpa_start, prev_size); 786 uint64_t prev_host_start = 787 (uintptr_t)memory_region_get_ram_ptr(prev_sec->mr) + 788 prev_sec->offset_within_region; 789 uint64_t prev_host_end = range_get_last(prev_host_start, prev_size); 790 791 if (mrs_gpa <= (prev_gpa_end + 1)) { 792 /* OK, looks like overlapping/intersecting - it's possible that 793 * the rounding to page sizes has made them overlap, but they should 794 * match up in the same RAMBlock if they do. 795 */ 796 if (mrs_gpa < prev_gpa_start) { 797 error_report("%s:Section '%s' rounded to %"PRIx64 798 " prior to previous '%s' %"PRIx64, 799 __func__, section->mr->name, mrs_gpa, 800 prev_sec->mr->name, prev_gpa_start); 801 /* A way to cleanly fail here would be better */ 802 return; 803 } 804 /* Offset from the start of the previous GPA to this GPA */ 805 size_t offset = mrs_gpa - prev_gpa_start; 806 807 if (prev_host_start + offset == mrs_host && 808 section->mr == prev_sec->mr && !prev_sec->unmergeable) { 809 uint64_t max_end = MAX(prev_host_end, mrs_host + mrs_size); 810 need_add = false; 811 prev_sec->offset_within_address_space = 812 MIN(prev_gpa_start, mrs_gpa); 813 prev_sec->offset_within_region = 814 MIN(prev_host_start, mrs_host) - 815 (uintptr_t)memory_region_get_ram_ptr(prev_sec->mr); 816 prev_sec->size = int128_make64(max_end - MIN(prev_host_start, 817 mrs_host)); 818 trace_vhost_region_add_section_merge(section->mr->name, 819 int128_get64(prev_sec->size), 820 prev_sec->offset_within_address_space, 821 prev_sec->offset_within_region); 822 } else { 823 /* adjoining regions are fine, but overlapping ones with 824 * different blocks/offsets shouldn't happen 825 */ 826 if (mrs_gpa != prev_gpa_end + 1) { 827 error_report("%s: Overlapping but not coherent sections " 828 "at %"PRIx64, 829 __func__, mrs_gpa); 830 return; 831 } 832 } 833 } 834 } 835 836 if (need_add) { 837 ++dev->n_tmp_sections; 838 dev->tmp_sections = g_renew(MemoryRegionSection, dev->tmp_sections, 839 dev->n_tmp_sections); 840 dev->tmp_sections[dev->n_tmp_sections - 1] = *section; 841 /* The flatview isn't stable and we don't use it, making it NULL 842 * means we can memcmp the list. 843 */ 844 dev->tmp_sections[dev->n_tmp_sections - 1].fv = NULL; 845 memory_region_ref(section->mr); 846 } 847 } 848 849 /* Used for both add and nop callbacks */ 850 static void vhost_region_addnop(MemoryListener *listener, 851 MemoryRegionSection *section) 852 { 853 struct vhost_dev *dev = container_of(listener, struct vhost_dev, 854 memory_listener); 855 856 if (!vhost_section(dev, section)) { 857 return; 858 } 859 vhost_region_add_section(dev, section); 860 } 861 862 static void vhost_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 863 { 864 struct vhost_iommu *iommu = container_of(n, struct vhost_iommu, n); 865 struct vhost_dev *hdev = iommu->hdev; 866 hwaddr iova = iotlb->iova + iommu->iommu_offset; 867 868 if (vhost_backend_invalidate_device_iotlb(hdev, iova, 869 iotlb->addr_mask + 1)) { 870 error_report("Fail to invalidate device iotlb"); 871 } 872 } 873 874 static void vhost_iommu_region_add(MemoryListener *listener, 875 MemoryRegionSection *section) 876 { 877 struct vhost_dev *dev = container_of(listener, struct vhost_dev, 878 iommu_listener); 879 struct vhost_iommu *iommu; 880 Int128 end; 881 int iommu_idx; 882 IOMMUMemoryRegion *iommu_mr; 883 884 if (!memory_region_is_iommu(section->mr)) { 885 return; 886 } 887 888 iommu_mr = IOMMU_MEMORY_REGION(section->mr); 889 890 iommu = g_malloc0(sizeof(*iommu)); 891 end = int128_add(int128_make64(section->offset_within_region), 892 section->size); 893 end = int128_sub(end, int128_one()); 894 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, 895 MEMTXATTRS_UNSPECIFIED); 896 iommu_notifier_init(&iommu->n, vhost_iommu_unmap_notify, 897 dev->vdev->device_iotlb_enabled ? 898 IOMMU_NOTIFIER_DEVIOTLB_UNMAP : 899 IOMMU_NOTIFIER_UNMAP, 900 section->offset_within_region, 901 int128_get64(end), 902 iommu_idx); 903 iommu->mr = section->mr; 904 iommu->iommu_offset = section->offset_within_address_space - 905 section->offset_within_region; 906 iommu->hdev = dev; 907 memory_region_register_iommu_notifier(section->mr, &iommu->n, 908 &error_fatal); 909 QLIST_INSERT_HEAD(&dev->iommu_list, iommu, iommu_next); 910 /* TODO: can replay help performance here? */ 911 } 912 913 static void vhost_iommu_region_del(MemoryListener *listener, 914 MemoryRegionSection *section) 915 { 916 struct vhost_dev *dev = container_of(listener, struct vhost_dev, 917 iommu_listener); 918 struct vhost_iommu *iommu; 919 920 if (!memory_region_is_iommu(section->mr)) { 921 return; 922 } 923 924 QLIST_FOREACH(iommu, &dev->iommu_list, iommu_next) { 925 if (iommu->mr == section->mr && 926 iommu->n.start == section->offset_within_region) { 927 memory_region_unregister_iommu_notifier(iommu->mr, 928 &iommu->n); 929 QLIST_REMOVE(iommu, iommu_next); 930 g_free(iommu); 931 break; 932 } 933 } 934 } 935 936 void vhost_toggle_device_iotlb(VirtIODevice *vdev) 937 { 938 VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(vdev); 939 struct vhost_dev *dev; 940 struct vhost_iommu *iommu; 941 942 if (vdev->vhost_started) { 943 dev = vdc->get_vhost(vdev); 944 } else { 945 return; 946 } 947 948 QLIST_FOREACH(iommu, &dev->iommu_list, iommu_next) { 949 memory_region_unregister_iommu_notifier(iommu->mr, &iommu->n); 950 iommu->n.notifier_flags = vdev->device_iotlb_enabled ? 951 IOMMU_NOTIFIER_DEVIOTLB_UNMAP : IOMMU_NOTIFIER_UNMAP; 952 memory_region_register_iommu_notifier(iommu->mr, &iommu->n, 953 &error_fatal); 954 } 955 } 956 957 static int vhost_virtqueue_set_addr(struct vhost_dev *dev, 958 struct vhost_virtqueue *vq, 959 unsigned idx, bool enable_log) 960 { 961 struct vhost_vring_addr addr; 962 int r; 963 memset(&addr, 0, sizeof(struct vhost_vring_addr)); 964 965 if (dev->vhost_ops->vhost_vq_get_addr) { 966 r = dev->vhost_ops->vhost_vq_get_addr(dev, &addr, vq); 967 if (r < 0) { 968 VHOST_OPS_DEBUG(r, "vhost_vq_get_addr failed"); 969 return r; 970 } 971 } else { 972 addr.desc_user_addr = (uint64_t)(unsigned long)vq->desc; 973 addr.avail_user_addr = (uint64_t)(unsigned long)vq->avail; 974 addr.used_user_addr = (uint64_t)(unsigned long)vq->used; 975 } 976 addr.index = idx; 977 addr.log_guest_addr = vq->used_phys; 978 addr.flags = enable_log ? (1 << VHOST_VRING_F_LOG) : 0; 979 r = dev->vhost_ops->vhost_set_vring_addr(dev, &addr); 980 if (r < 0) { 981 VHOST_OPS_DEBUG(r, "vhost_set_vring_addr failed"); 982 } 983 return r; 984 } 985 986 static int vhost_dev_set_features(struct vhost_dev *dev, 987 bool enable_log) 988 { 989 uint64_t features = dev->acked_features; 990 int r; 991 if (enable_log) { 992 features |= 0x1ULL << VHOST_F_LOG_ALL; 993 } 994 if (!vhost_dev_has_iommu(dev)) { 995 features &= ~(0x1ULL << VIRTIO_F_IOMMU_PLATFORM); 996 } 997 if (dev->vhost_ops->vhost_force_iommu) { 998 if (dev->vhost_ops->vhost_force_iommu(dev) == true) { 999 features |= 0x1ULL << VIRTIO_F_IOMMU_PLATFORM; 1000 } 1001 } 1002 r = dev->vhost_ops->vhost_set_features(dev, features); 1003 if (r < 0) { 1004 VHOST_OPS_DEBUG(r, "vhost_set_features failed"); 1005 goto out; 1006 } 1007 if (dev->vhost_ops->vhost_set_backend_cap) { 1008 r = dev->vhost_ops->vhost_set_backend_cap(dev); 1009 if (r < 0) { 1010 VHOST_OPS_DEBUG(r, "vhost_set_backend_cap failed"); 1011 goto out; 1012 } 1013 } 1014 1015 out: 1016 return r; 1017 } 1018 1019 static int vhost_dev_set_log(struct vhost_dev *dev, bool enable_log) 1020 { 1021 int r, i, idx; 1022 hwaddr addr; 1023 1024 r = vhost_dev_set_features(dev, enable_log); 1025 if (r < 0) { 1026 goto err_features; 1027 } 1028 for (i = 0; i < dev->nvqs; ++i) { 1029 idx = dev->vhost_ops->vhost_get_vq_index(dev, dev->vq_index + i); 1030 addr = virtio_queue_get_desc_addr(dev->vdev, idx); 1031 if (!addr) { 1032 /* 1033 * The queue might not be ready for start. If this 1034 * is the case there is no reason to continue the process. 1035 * The similar logic is used by the vhost_virtqueue_start() 1036 * routine. 1037 */ 1038 continue; 1039 } 1040 r = vhost_virtqueue_set_addr(dev, dev->vqs + i, idx, 1041 enable_log); 1042 if (r < 0) { 1043 goto err_vq; 1044 } 1045 } 1046 1047 /* 1048 * At log start we select our vhost_device logger that will scan the 1049 * memory sections and skip for the others. This is possible because 1050 * the log is shared amongst all vhost devices for a given type of 1051 * backend. 1052 */ 1053 vhost_dev_elect_mem_logger(dev, enable_log); 1054 1055 return 0; 1056 err_vq: 1057 for (; i >= 0; --i) { 1058 idx = dev->vhost_ops->vhost_get_vq_index(dev, dev->vq_index + i); 1059 addr = virtio_queue_get_desc_addr(dev->vdev, idx); 1060 if (!addr) { 1061 continue; 1062 } 1063 vhost_virtqueue_set_addr(dev, dev->vqs + i, idx, 1064 dev->log_enabled); 1065 } 1066 vhost_dev_set_features(dev, dev->log_enabled); 1067 err_features: 1068 return r; 1069 } 1070 1071 static int vhost_migration_log(MemoryListener *listener, bool enable) 1072 { 1073 struct vhost_dev *dev = container_of(listener, struct vhost_dev, 1074 memory_listener); 1075 int r; 1076 if (enable == dev->log_enabled) { 1077 return 0; 1078 } 1079 if (!dev->started) { 1080 dev->log_enabled = enable; 1081 return 0; 1082 } 1083 1084 r = 0; 1085 if (!enable) { 1086 r = vhost_dev_set_log(dev, false); 1087 if (r < 0) { 1088 goto check_dev_state; 1089 } 1090 vhost_log_put(dev, false); 1091 } else { 1092 vhost_dev_log_resize(dev, vhost_get_log_size(dev)); 1093 r = vhost_dev_set_log(dev, true); 1094 if (r < 0) { 1095 goto check_dev_state; 1096 } 1097 } 1098 1099 check_dev_state: 1100 dev->log_enabled = enable; 1101 /* 1102 * vhost-user-* devices could change their state during log 1103 * initialization due to disconnect. So check dev state after 1104 * vhost communication. 1105 */ 1106 if (!dev->started) { 1107 /* 1108 * Since device is in the stopped state, it is okay for 1109 * migration. Return success. 1110 */ 1111 r = 0; 1112 } 1113 if (r) { 1114 /* An error occurred. */ 1115 dev->log_enabled = false; 1116 } 1117 1118 return r; 1119 } 1120 1121 static bool vhost_log_global_start(MemoryListener *listener, Error **errp) 1122 { 1123 int r; 1124 1125 r = vhost_migration_log(listener, true); 1126 if (r < 0) { 1127 abort(); 1128 } 1129 return true; 1130 } 1131 1132 static void vhost_log_global_stop(MemoryListener *listener) 1133 { 1134 int r; 1135 1136 r = vhost_migration_log(listener, false); 1137 if (r < 0) { 1138 abort(); 1139 } 1140 } 1141 1142 static void vhost_log_start(MemoryListener *listener, 1143 MemoryRegionSection *section, 1144 int old, int new) 1145 { 1146 /* FIXME: implement */ 1147 } 1148 1149 static void vhost_log_stop(MemoryListener *listener, 1150 MemoryRegionSection *section, 1151 int old, int new) 1152 { 1153 /* FIXME: implement */ 1154 } 1155 1156 /* The vhost driver natively knows how to handle the vrings of non 1157 * cross-endian legacy devices and modern devices. Only legacy devices 1158 * exposed to a bi-endian guest may require the vhost driver to use a 1159 * specific endianness. 1160 */ 1161 static inline bool vhost_needs_vring_endian(VirtIODevice *vdev) 1162 { 1163 if (virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) { 1164 return false; 1165 } 1166 #if HOST_BIG_ENDIAN 1167 return vdev->device_endian == VIRTIO_DEVICE_ENDIAN_LITTLE; 1168 #else 1169 return vdev->device_endian == VIRTIO_DEVICE_ENDIAN_BIG; 1170 #endif 1171 } 1172 1173 static int vhost_virtqueue_set_vring_endian_legacy(struct vhost_dev *dev, 1174 bool is_big_endian, 1175 int vhost_vq_index) 1176 { 1177 int r; 1178 struct vhost_vring_state s = { 1179 .index = vhost_vq_index, 1180 .num = is_big_endian 1181 }; 1182 1183 r = dev->vhost_ops->vhost_set_vring_endian(dev, &s); 1184 if (r < 0) { 1185 VHOST_OPS_DEBUG(r, "vhost_set_vring_endian failed"); 1186 } 1187 return r; 1188 } 1189 1190 static int vhost_memory_region_lookup(struct vhost_dev *hdev, 1191 uint64_t gpa, uint64_t *uaddr, 1192 uint64_t *len) 1193 { 1194 int i; 1195 1196 for (i = 0; i < hdev->mem->nregions; i++) { 1197 struct vhost_memory_region *reg = hdev->mem->regions + i; 1198 1199 if (gpa >= reg->guest_phys_addr && 1200 reg->guest_phys_addr + reg->memory_size > gpa) { 1201 *uaddr = reg->userspace_addr + gpa - reg->guest_phys_addr; 1202 *len = reg->guest_phys_addr + reg->memory_size - gpa; 1203 return 0; 1204 } 1205 } 1206 1207 return -EFAULT; 1208 } 1209 1210 int vhost_device_iotlb_miss(struct vhost_dev *dev, uint64_t iova, int write) 1211 { 1212 IOMMUTLBEntry iotlb; 1213 uint64_t uaddr, len; 1214 int ret = -EFAULT; 1215 1216 RCU_READ_LOCK_GUARD(); 1217 1218 trace_vhost_iotlb_miss(dev, 1); 1219 1220 iotlb = address_space_get_iotlb_entry(dev->vdev->dma_as, 1221 iova, write, 1222 MEMTXATTRS_UNSPECIFIED); 1223 if (iotlb.target_as != NULL) { 1224 ret = vhost_memory_region_lookup(dev, iotlb.translated_addr, 1225 &uaddr, &len); 1226 if (ret) { 1227 trace_vhost_iotlb_miss(dev, 3); 1228 error_report("Fail to lookup the translated address " 1229 "%"PRIx64, iotlb.translated_addr); 1230 goto out; 1231 } 1232 1233 len = MIN(iotlb.addr_mask + 1, len); 1234 iova = iova & ~iotlb.addr_mask; 1235 1236 ret = vhost_backend_update_device_iotlb(dev, iova, uaddr, 1237 len, iotlb.perm); 1238 if (ret) { 1239 trace_vhost_iotlb_miss(dev, 4); 1240 error_report("Fail to update device iotlb"); 1241 goto out; 1242 } 1243 } 1244 1245 trace_vhost_iotlb_miss(dev, 2); 1246 1247 out: 1248 return ret; 1249 } 1250 1251 int vhost_virtqueue_start(struct vhost_dev *dev, 1252 struct VirtIODevice *vdev, 1253 struct vhost_virtqueue *vq, 1254 unsigned idx) 1255 { 1256 BusState *qbus = BUS(qdev_get_parent_bus(DEVICE(vdev))); 1257 VirtioBusState *vbus = VIRTIO_BUS(qbus); 1258 VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(vbus); 1259 hwaddr s, l, a; 1260 int r; 1261 int vhost_vq_index = dev->vhost_ops->vhost_get_vq_index(dev, idx); 1262 struct vhost_vring_file file = { 1263 .index = vhost_vq_index 1264 }; 1265 struct vhost_vring_state state = { 1266 .index = vhost_vq_index 1267 }; 1268 struct VirtQueue *vvq = virtio_get_queue(vdev, idx); 1269 1270 a = virtio_queue_get_desc_addr(vdev, idx); 1271 if (a == 0) { 1272 /* Queue might not be ready for start */ 1273 return 0; 1274 } 1275 1276 vq->num = state.num = virtio_queue_get_num(vdev, idx); 1277 r = dev->vhost_ops->vhost_set_vring_num(dev, &state); 1278 if (r) { 1279 VHOST_OPS_DEBUG(r, "vhost_set_vring_num failed"); 1280 return r; 1281 } 1282 1283 state.num = virtio_queue_get_last_avail_idx(vdev, idx); 1284 r = dev->vhost_ops->vhost_set_vring_base(dev, &state); 1285 if (r) { 1286 VHOST_OPS_DEBUG(r, "vhost_set_vring_base failed"); 1287 return r; 1288 } 1289 1290 if (vhost_needs_vring_endian(vdev)) { 1291 r = vhost_virtqueue_set_vring_endian_legacy(dev, 1292 virtio_is_big_endian(vdev), 1293 vhost_vq_index); 1294 if (r) { 1295 return r; 1296 } 1297 } 1298 1299 vq->desc_size = s = l = virtio_queue_get_desc_size(vdev, idx); 1300 vq->desc_phys = a; 1301 vq->desc = vhost_memory_map(dev, a, &l, false); 1302 if (!vq->desc || l != s) { 1303 r = -ENOMEM; 1304 goto fail_alloc_desc; 1305 } 1306 vq->avail_size = s = l = virtio_queue_get_avail_size(vdev, idx); 1307 vq->avail_phys = a = virtio_queue_get_avail_addr(vdev, idx); 1308 vq->avail = vhost_memory_map(dev, a, &l, false); 1309 if (!vq->avail || l != s) { 1310 r = -ENOMEM; 1311 goto fail_alloc_avail; 1312 } 1313 vq->used_size = s = l = virtio_queue_get_used_size(vdev, idx); 1314 vq->used_phys = a = virtio_queue_get_used_addr(vdev, idx); 1315 vq->used = vhost_memory_map(dev, a, &l, true); 1316 if (!vq->used || l != s) { 1317 r = -ENOMEM; 1318 goto fail_alloc_used; 1319 } 1320 1321 r = vhost_virtqueue_set_addr(dev, vq, vhost_vq_index, dev->log_enabled); 1322 if (r < 0) { 1323 goto fail_alloc; 1324 } 1325 1326 file.fd = event_notifier_get_fd(virtio_queue_get_host_notifier(vvq)); 1327 r = dev->vhost_ops->vhost_set_vring_kick(dev, &file); 1328 if (r) { 1329 VHOST_OPS_DEBUG(r, "vhost_set_vring_kick failed"); 1330 goto fail_kick; 1331 } 1332 1333 /* Clear and discard previous events if any. */ 1334 event_notifier_test_and_clear(&vq->masked_notifier); 1335 1336 /* Init vring in unmasked state, unless guest_notifier_mask 1337 * will do it later. 1338 */ 1339 if (!vdev->use_guest_notifier_mask) { 1340 /* TODO: check and handle errors. */ 1341 vhost_virtqueue_mask(dev, vdev, idx, false); 1342 } 1343 1344 if (k->query_guest_notifiers && 1345 k->query_guest_notifiers(qbus->parent) && 1346 virtio_queue_vector(vdev, idx) == VIRTIO_NO_VECTOR) { 1347 file.fd = -1; 1348 r = dev->vhost_ops->vhost_set_vring_call(dev, &file); 1349 if (r) { 1350 goto fail_vector; 1351 } 1352 } 1353 1354 return 0; 1355 1356 fail_vector: 1357 fail_kick: 1358 fail_alloc: 1359 vhost_memory_unmap(dev, vq->used, virtio_queue_get_used_size(vdev, idx), 1360 0, 0); 1361 fail_alloc_used: 1362 vhost_memory_unmap(dev, vq->avail, virtio_queue_get_avail_size(vdev, idx), 1363 0, 0); 1364 fail_alloc_avail: 1365 vhost_memory_unmap(dev, vq->desc, virtio_queue_get_desc_size(vdev, idx), 1366 0, 0); 1367 fail_alloc_desc: 1368 return r; 1369 } 1370 1371 void vhost_virtqueue_stop(struct vhost_dev *dev, 1372 struct VirtIODevice *vdev, 1373 struct vhost_virtqueue *vq, 1374 unsigned idx) 1375 { 1376 int vhost_vq_index = dev->vhost_ops->vhost_get_vq_index(dev, idx); 1377 struct vhost_vring_state state = { 1378 .index = vhost_vq_index, 1379 }; 1380 int r; 1381 1382 if (virtio_queue_get_desc_addr(vdev, idx) == 0) { 1383 /* Don't stop the virtqueue which might have not been started */ 1384 return; 1385 } 1386 1387 r = dev->vhost_ops->vhost_get_vring_base(dev, &state); 1388 if (r < 0) { 1389 VHOST_OPS_DEBUG(r, "vhost VQ %u ring restore failed: %d", idx, r); 1390 /* Connection to the backend is broken, so let's sync internal 1391 * last avail idx to the device used idx. 1392 */ 1393 virtio_queue_restore_last_avail_idx(vdev, idx); 1394 } else { 1395 virtio_queue_set_last_avail_idx(vdev, idx, state.num); 1396 } 1397 virtio_queue_invalidate_signalled_used(vdev, idx); 1398 virtio_queue_update_used_idx(vdev, idx); 1399 1400 /* In the cross-endian case, we need to reset the vring endianness to 1401 * native as legacy devices expect so by default. 1402 */ 1403 if (vhost_needs_vring_endian(vdev)) { 1404 vhost_virtqueue_set_vring_endian_legacy(dev, 1405 !virtio_is_big_endian(vdev), 1406 vhost_vq_index); 1407 } 1408 1409 vhost_memory_unmap(dev, vq->used, virtio_queue_get_used_size(vdev, idx), 1410 1, virtio_queue_get_used_size(vdev, idx)); 1411 vhost_memory_unmap(dev, vq->avail, virtio_queue_get_avail_size(vdev, idx), 1412 0, virtio_queue_get_avail_size(vdev, idx)); 1413 vhost_memory_unmap(dev, vq->desc, virtio_queue_get_desc_size(vdev, idx), 1414 0, virtio_queue_get_desc_size(vdev, idx)); 1415 } 1416 1417 static int vhost_virtqueue_set_busyloop_timeout(struct vhost_dev *dev, 1418 int n, uint32_t timeout) 1419 { 1420 int vhost_vq_index = dev->vhost_ops->vhost_get_vq_index(dev, n); 1421 struct vhost_vring_state state = { 1422 .index = vhost_vq_index, 1423 .num = timeout, 1424 }; 1425 int r; 1426 1427 if (!dev->vhost_ops->vhost_set_vring_busyloop_timeout) { 1428 return -EINVAL; 1429 } 1430 1431 r = dev->vhost_ops->vhost_set_vring_busyloop_timeout(dev, &state); 1432 if (r) { 1433 VHOST_OPS_DEBUG(r, "vhost_set_vring_busyloop_timeout failed"); 1434 return r; 1435 } 1436 1437 return 0; 1438 } 1439 1440 static void vhost_virtqueue_error_notifier(EventNotifier *n) 1441 { 1442 struct vhost_virtqueue *vq = container_of(n, struct vhost_virtqueue, 1443 error_notifier); 1444 struct vhost_dev *dev = vq->dev; 1445 int index = vq - dev->vqs; 1446 1447 if (event_notifier_test_and_clear(n) && dev->vdev) { 1448 VHOST_OPS_DEBUG(-EINVAL, "vhost vring error in virtqueue %d", 1449 dev->vq_index + index); 1450 } 1451 } 1452 1453 static int vhost_virtqueue_init(struct vhost_dev *dev, 1454 struct vhost_virtqueue *vq, int n) 1455 { 1456 int vhost_vq_index = dev->vhost_ops->vhost_get_vq_index(dev, n); 1457 struct vhost_vring_file file = { 1458 .index = vhost_vq_index, 1459 }; 1460 int r = event_notifier_init(&vq->masked_notifier, 0); 1461 if (r < 0) { 1462 return r; 1463 } 1464 1465 file.fd = event_notifier_get_wfd(&vq->masked_notifier); 1466 r = dev->vhost_ops->vhost_set_vring_call(dev, &file); 1467 if (r) { 1468 VHOST_OPS_DEBUG(r, "vhost_set_vring_call failed"); 1469 goto fail_call; 1470 } 1471 1472 vq->dev = dev; 1473 1474 if (dev->vhost_ops->vhost_set_vring_err) { 1475 r = event_notifier_init(&vq->error_notifier, 0); 1476 if (r < 0) { 1477 goto fail_call; 1478 } 1479 1480 file.fd = event_notifier_get_fd(&vq->error_notifier); 1481 r = dev->vhost_ops->vhost_set_vring_err(dev, &file); 1482 if (r) { 1483 VHOST_OPS_DEBUG(r, "vhost_set_vring_err failed"); 1484 goto fail_err; 1485 } 1486 1487 event_notifier_set_handler(&vq->error_notifier, 1488 vhost_virtqueue_error_notifier); 1489 } 1490 1491 return 0; 1492 1493 fail_err: 1494 event_notifier_cleanup(&vq->error_notifier); 1495 fail_call: 1496 event_notifier_cleanup(&vq->masked_notifier); 1497 return r; 1498 } 1499 1500 static void vhost_virtqueue_cleanup(struct vhost_virtqueue *vq) 1501 { 1502 event_notifier_cleanup(&vq->masked_notifier); 1503 if (vq->dev->vhost_ops->vhost_set_vring_err) { 1504 event_notifier_set_handler(&vq->error_notifier, NULL); 1505 event_notifier_cleanup(&vq->error_notifier); 1506 } 1507 } 1508 1509 int vhost_dev_init(struct vhost_dev *hdev, void *opaque, 1510 VhostBackendType backend_type, uint32_t busyloop_timeout, 1511 Error **errp) 1512 { 1513 unsigned int used, reserved, limit; 1514 uint64_t features; 1515 int i, r, n_initialized_vqs = 0; 1516 1517 hdev->vdev = NULL; 1518 hdev->migration_blocker = NULL; 1519 1520 r = vhost_set_backend_type(hdev, backend_type); 1521 assert(r >= 0); 1522 1523 r = hdev->vhost_ops->vhost_backend_init(hdev, opaque, errp); 1524 if (r < 0) { 1525 goto fail; 1526 } 1527 1528 r = hdev->vhost_ops->vhost_set_owner(hdev); 1529 if (r < 0) { 1530 error_setg_errno(errp, -r, "vhost_set_owner failed"); 1531 goto fail; 1532 } 1533 1534 r = hdev->vhost_ops->vhost_get_features(hdev, &features); 1535 if (r < 0) { 1536 error_setg_errno(errp, -r, "vhost_get_features failed"); 1537 goto fail; 1538 } 1539 1540 limit = hdev->vhost_ops->vhost_backend_memslots_limit(hdev); 1541 if (limit < MEMORY_DEVICES_SAFE_MAX_MEMSLOTS && 1542 memory_devices_memslot_auto_decision_active()) { 1543 error_setg(errp, "some memory device (like virtio-mem)" 1544 " decided how many memory slots to use based on the overall" 1545 " number of memory slots; this vhost backend would further" 1546 " restricts the overall number of memory slots"); 1547 error_append_hint(errp, "Try plugging this vhost backend before" 1548 " plugging such memory devices.\n"); 1549 r = -EINVAL; 1550 goto fail; 1551 } 1552 1553 for (i = 0; i < hdev->nvqs; ++i, ++n_initialized_vqs) { 1554 r = vhost_virtqueue_init(hdev, hdev->vqs + i, hdev->vq_index + i); 1555 if (r < 0) { 1556 error_setg_errno(errp, -r, "Failed to initialize virtqueue %d", i); 1557 goto fail; 1558 } 1559 } 1560 1561 if (busyloop_timeout) { 1562 for (i = 0; i < hdev->nvqs; ++i) { 1563 r = vhost_virtqueue_set_busyloop_timeout(hdev, hdev->vq_index + i, 1564 busyloop_timeout); 1565 if (r < 0) { 1566 error_setg_errno(errp, -r, "Failed to set busyloop timeout"); 1567 goto fail_busyloop; 1568 } 1569 } 1570 } 1571 1572 hdev->features = features; 1573 1574 hdev->memory_listener = (MemoryListener) { 1575 .name = "vhost", 1576 .begin = vhost_begin, 1577 .commit = vhost_commit, 1578 .region_add = vhost_region_addnop, 1579 .region_nop = vhost_region_addnop, 1580 .log_start = vhost_log_start, 1581 .log_stop = vhost_log_stop, 1582 .log_sync = vhost_log_sync, 1583 .log_global_start = vhost_log_global_start, 1584 .log_global_stop = vhost_log_global_stop, 1585 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND 1586 }; 1587 1588 hdev->iommu_listener = (MemoryListener) { 1589 .name = "vhost-iommu", 1590 .region_add = vhost_iommu_region_add, 1591 .region_del = vhost_iommu_region_del, 1592 }; 1593 1594 if (hdev->migration_blocker == NULL) { 1595 if (!(hdev->features & (0x1ULL << VHOST_F_LOG_ALL))) { 1596 error_setg(&hdev->migration_blocker, 1597 "Migration disabled: vhost lacks VHOST_F_LOG_ALL feature."); 1598 } else if (vhost_dev_log_is_shared(hdev) && !qemu_memfd_alloc_check()) { 1599 error_setg(&hdev->migration_blocker, 1600 "Migration disabled: failed to allocate shared memory"); 1601 } 1602 } 1603 1604 if (hdev->migration_blocker != NULL) { 1605 r = migrate_add_blocker_normal(&hdev->migration_blocker, errp); 1606 if (r < 0) { 1607 goto fail_busyloop; 1608 } 1609 } 1610 1611 hdev->mem = g_malloc0(offsetof(struct vhost_memory, regions)); 1612 hdev->n_mem_sections = 0; 1613 hdev->mem_sections = NULL; 1614 hdev->log = NULL; 1615 hdev->log_size = 0; 1616 hdev->log_enabled = false; 1617 hdev->started = false; 1618 memory_listener_register(&hdev->memory_listener, &address_space_memory); 1619 QLIST_INSERT_HEAD(&vhost_devices, hdev, entry); 1620 1621 /* 1622 * The listener we registered properly updated the corresponding counter. 1623 * So we can trust that these values are accurate. 1624 */ 1625 if (hdev->vhost_ops->vhost_backend_no_private_memslots && 1626 hdev->vhost_ops->vhost_backend_no_private_memslots(hdev)) { 1627 used = used_shared_memslots; 1628 } else { 1629 used = used_memslots; 1630 } 1631 /* 1632 * We assume that all reserved memslots actually require a real memslot 1633 * in our vhost backend. This might not be true, for example, if the 1634 * memslot would be ROM. If ever relevant, we can optimize for that -- 1635 * but we'll need additional information about the reservations. 1636 */ 1637 reserved = memory_devices_get_reserved_memslots(); 1638 if (used + reserved > limit) { 1639 error_setg(errp, "vhost backend memory slots limit (%d) is less" 1640 " than current number of used (%d) and reserved (%d)" 1641 " memory slots for memory devices.", limit, used, reserved); 1642 r = -EINVAL; 1643 goto fail_busyloop; 1644 } 1645 1646 return 0; 1647 1648 fail_busyloop: 1649 if (busyloop_timeout) { 1650 while (--i >= 0) { 1651 vhost_virtqueue_set_busyloop_timeout(hdev, hdev->vq_index + i, 0); 1652 } 1653 } 1654 fail: 1655 hdev->nvqs = n_initialized_vqs; 1656 vhost_dev_cleanup(hdev); 1657 return r; 1658 } 1659 1660 void vhost_dev_cleanup(struct vhost_dev *hdev) 1661 { 1662 int i; 1663 1664 trace_vhost_dev_cleanup(hdev); 1665 1666 for (i = 0; i < hdev->nvqs; ++i) { 1667 vhost_virtqueue_cleanup(hdev->vqs + i); 1668 } 1669 if (hdev->mem) { 1670 /* those are only safe after successful init */ 1671 memory_listener_unregister(&hdev->memory_listener); 1672 QLIST_REMOVE(hdev, entry); 1673 } 1674 migrate_del_blocker(&hdev->migration_blocker); 1675 g_free(hdev->mem); 1676 g_free(hdev->mem_sections); 1677 if (hdev->vhost_ops) { 1678 hdev->vhost_ops->vhost_backend_cleanup(hdev); 1679 } 1680 assert(!hdev->log); 1681 1682 memset(hdev, 0, sizeof(struct vhost_dev)); 1683 } 1684 1685 static void vhost_dev_disable_notifiers_nvqs(struct vhost_dev *hdev, 1686 VirtIODevice *vdev, 1687 unsigned int nvqs) 1688 { 1689 BusState *qbus = BUS(qdev_get_parent_bus(DEVICE(vdev))); 1690 int i, r; 1691 1692 /* 1693 * Batch all the host notifiers in a single transaction to avoid 1694 * quadratic time complexity in address_space_update_ioeventfds(). 1695 */ 1696 memory_region_transaction_begin(); 1697 1698 for (i = 0; i < nvqs; ++i) { 1699 r = virtio_bus_set_host_notifier(VIRTIO_BUS(qbus), hdev->vq_index + i, 1700 false); 1701 if (r < 0) { 1702 error_report("vhost VQ %d notifier cleanup failed: %d", i, -r); 1703 } 1704 assert(r >= 0); 1705 } 1706 1707 /* 1708 * The transaction expects the ioeventfds to be open when it 1709 * commits. Do it now, before the cleanup loop. 1710 */ 1711 memory_region_transaction_commit(); 1712 1713 for (i = 0; i < nvqs; ++i) { 1714 virtio_bus_cleanup_host_notifier(VIRTIO_BUS(qbus), hdev->vq_index + i); 1715 } 1716 virtio_device_release_ioeventfd(vdev); 1717 } 1718 1719 /* Stop processing guest IO notifications in qemu. 1720 * Start processing them in vhost in kernel. 1721 */ 1722 int vhost_dev_enable_notifiers(struct vhost_dev *hdev, VirtIODevice *vdev) 1723 { 1724 BusState *qbus = BUS(qdev_get_parent_bus(DEVICE(vdev))); 1725 int i, r; 1726 1727 /* We will pass the notifiers to the kernel, make sure that QEMU 1728 * doesn't interfere. 1729 */ 1730 r = virtio_device_grab_ioeventfd(vdev); 1731 if (r < 0) { 1732 error_report("binding does not support host notifiers"); 1733 return r; 1734 } 1735 1736 /* 1737 * Batch all the host notifiers in a single transaction to avoid 1738 * quadratic time complexity in address_space_update_ioeventfds(). 1739 */ 1740 memory_region_transaction_begin(); 1741 1742 for (i = 0; i < hdev->nvqs; ++i) { 1743 r = virtio_bus_set_host_notifier(VIRTIO_BUS(qbus), hdev->vq_index + i, 1744 true); 1745 if (r < 0) { 1746 error_report("vhost VQ %d notifier binding failed: %d", i, -r); 1747 memory_region_transaction_commit(); 1748 vhost_dev_disable_notifiers_nvqs(hdev, vdev, i); 1749 return r; 1750 } 1751 } 1752 1753 memory_region_transaction_commit(); 1754 1755 return 0; 1756 } 1757 1758 /* Stop processing guest IO notifications in vhost. 1759 * Start processing them in qemu. 1760 * This might actually run the qemu handlers right away, 1761 * so virtio in qemu must be completely setup when this is called. 1762 */ 1763 void vhost_dev_disable_notifiers(struct vhost_dev *hdev, VirtIODevice *vdev) 1764 { 1765 vhost_dev_disable_notifiers_nvqs(hdev, vdev, hdev->nvqs); 1766 } 1767 1768 /* Test and clear event pending status. 1769 * Should be called after unmask to avoid losing events. 1770 */ 1771 bool vhost_virtqueue_pending(struct vhost_dev *hdev, int n) 1772 { 1773 struct vhost_virtqueue *vq = hdev->vqs + n - hdev->vq_index; 1774 assert(n >= hdev->vq_index && n < hdev->vq_index + hdev->nvqs); 1775 return event_notifier_test_and_clear(&vq->masked_notifier); 1776 } 1777 1778 /* Mask/unmask events from this vq. */ 1779 void vhost_virtqueue_mask(struct vhost_dev *hdev, VirtIODevice *vdev, int n, 1780 bool mask) 1781 { 1782 struct VirtQueue *vvq = virtio_get_queue(vdev, n); 1783 int r, index = n - hdev->vq_index; 1784 struct vhost_vring_file file; 1785 1786 /* should only be called after backend is connected */ 1787 assert(hdev->vhost_ops); 1788 1789 if (mask) { 1790 assert(vdev->use_guest_notifier_mask); 1791 file.fd = event_notifier_get_wfd(&hdev->vqs[index].masked_notifier); 1792 } else { 1793 file.fd = event_notifier_get_wfd(virtio_queue_get_guest_notifier(vvq)); 1794 } 1795 1796 file.index = hdev->vhost_ops->vhost_get_vq_index(hdev, n); 1797 r = hdev->vhost_ops->vhost_set_vring_call(hdev, &file); 1798 if (r < 0) { 1799 error_report("vhost_set_vring_call failed %d", -r); 1800 } 1801 } 1802 1803 bool vhost_config_pending(struct vhost_dev *hdev) 1804 { 1805 assert(hdev->vhost_ops); 1806 if ((hdev->started == false) || 1807 (hdev->vhost_ops->vhost_set_config_call == NULL)) { 1808 return false; 1809 } 1810 1811 EventNotifier *notifier = 1812 &hdev->vqs[VHOST_QUEUE_NUM_CONFIG_INR].masked_config_notifier; 1813 return event_notifier_test_and_clear(notifier); 1814 } 1815 1816 void vhost_config_mask(struct vhost_dev *hdev, VirtIODevice *vdev, bool mask) 1817 { 1818 int fd; 1819 int r; 1820 EventNotifier *notifier = 1821 &hdev->vqs[VHOST_QUEUE_NUM_CONFIG_INR].masked_config_notifier; 1822 EventNotifier *config_notifier = &vdev->config_notifier; 1823 assert(hdev->vhost_ops); 1824 1825 if ((hdev->started == false) || 1826 (hdev->vhost_ops->vhost_set_config_call == NULL)) { 1827 return; 1828 } 1829 if (mask) { 1830 assert(vdev->use_guest_notifier_mask); 1831 fd = event_notifier_get_fd(notifier); 1832 } else { 1833 fd = event_notifier_get_fd(config_notifier); 1834 } 1835 r = hdev->vhost_ops->vhost_set_config_call(hdev, fd); 1836 if (r < 0) { 1837 error_report("vhost_set_config_call failed %d", -r); 1838 } 1839 } 1840 1841 static void vhost_stop_config_intr(struct vhost_dev *dev) 1842 { 1843 int fd = -1; 1844 assert(dev->vhost_ops); 1845 if (dev->vhost_ops->vhost_set_config_call) { 1846 dev->vhost_ops->vhost_set_config_call(dev, fd); 1847 } 1848 } 1849 1850 static void vhost_start_config_intr(struct vhost_dev *dev) 1851 { 1852 int r; 1853 1854 assert(dev->vhost_ops); 1855 int fd = event_notifier_get_fd(&dev->vdev->config_notifier); 1856 if (dev->vhost_ops->vhost_set_config_call) { 1857 r = dev->vhost_ops->vhost_set_config_call(dev, fd); 1858 if (!r) { 1859 event_notifier_set(&dev->vdev->config_notifier); 1860 } 1861 } 1862 } 1863 1864 uint64_t vhost_get_features(struct vhost_dev *hdev, const int *feature_bits, 1865 uint64_t features) 1866 { 1867 const int *bit = feature_bits; 1868 while (*bit != VHOST_INVALID_FEATURE_BIT) { 1869 uint64_t bit_mask = (1ULL << *bit); 1870 if (!(hdev->features & bit_mask)) { 1871 features &= ~bit_mask; 1872 } 1873 bit++; 1874 } 1875 return features; 1876 } 1877 1878 void vhost_ack_features(struct vhost_dev *hdev, const int *feature_bits, 1879 uint64_t features) 1880 { 1881 const int *bit = feature_bits; 1882 while (*bit != VHOST_INVALID_FEATURE_BIT) { 1883 uint64_t bit_mask = (1ULL << *bit); 1884 if (features & bit_mask) { 1885 hdev->acked_features |= bit_mask; 1886 } 1887 bit++; 1888 } 1889 } 1890 1891 int vhost_dev_get_config(struct vhost_dev *hdev, uint8_t *config, 1892 uint32_t config_len, Error **errp) 1893 { 1894 assert(hdev->vhost_ops); 1895 1896 if (hdev->vhost_ops->vhost_get_config) { 1897 return hdev->vhost_ops->vhost_get_config(hdev, config, config_len, 1898 errp); 1899 } 1900 1901 error_setg(errp, "vhost_get_config not implemented"); 1902 return -ENOSYS; 1903 } 1904 1905 int vhost_dev_set_config(struct vhost_dev *hdev, const uint8_t *data, 1906 uint32_t offset, uint32_t size, uint32_t flags) 1907 { 1908 assert(hdev->vhost_ops); 1909 1910 if (hdev->vhost_ops->vhost_set_config) { 1911 return hdev->vhost_ops->vhost_set_config(hdev, data, offset, 1912 size, flags); 1913 } 1914 1915 return -ENOSYS; 1916 } 1917 1918 void vhost_dev_set_config_notifier(struct vhost_dev *hdev, 1919 const VhostDevConfigOps *ops) 1920 { 1921 hdev->config_ops = ops; 1922 } 1923 1924 void vhost_dev_free_inflight(struct vhost_inflight *inflight) 1925 { 1926 if (inflight && inflight->addr) { 1927 qemu_memfd_free(inflight->addr, inflight->size, inflight->fd); 1928 inflight->addr = NULL; 1929 inflight->fd = -1; 1930 } 1931 } 1932 1933 static int vhost_dev_resize_inflight(struct vhost_inflight *inflight, 1934 uint64_t new_size) 1935 { 1936 Error *err = NULL; 1937 int fd = -1; 1938 void *addr = qemu_memfd_alloc("vhost-inflight", new_size, 1939 F_SEAL_GROW | F_SEAL_SHRINK | F_SEAL_SEAL, 1940 &fd, &err); 1941 1942 if (err) { 1943 error_report_err(err); 1944 return -ENOMEM; 1945 } 1946 1947 vhost_dev_free_inflight(inflight); 1948 inflight->offset = 0; 1949 inflight->addr = addr; 1950 inflight->fd = fd; 1951 inflight->size = new_size; 1952 1953 return 0; 1954 } 1955 1956 void vhost_dev_save_inflight(struct vhost_inflight *inflight, QEMUFile *f) 1957 { 1958 if (inflight->addr) { 1959 qemu_put_be64(f, inflight->size); 1960 qemu_put_be16(f, inflight->queue_size); 1961 qemu_put_buffer(f, inflight->addr, inflight->size); 1962 } else { 1963 qemu_put_be64(f, 0); 1964 } 1965 } 1966 1967 int vhost_dev_load_inflight(struct vhost_inflight *inflight, QEMUFile *f) 1968 { 1969 uint64_t size; 1970 1971 size = qemu_get_be64(f); 1972 if (!size) { 1973 return 0; 1974 } 1975 1976 if (inflight->size != size) { 1977 int ret = vhost_dev_resize_inflight(inflight, size); 1978 if (ret < 0) { 1979 return ret; 1980 } 1981 } 1982 inflight->queue_size = qemu_get_be16(f); 1983 1984 qemu_get_buffer(f, inflight->addr, size); 1985 1986 return 0; 1987 } 1988 1989 int vhost_dev_prepare_inflight(struct vhost_dev *hdev, VirtIODevice *vdev) 1990 { 1991 int r; 1992 1993 if (hdev->vhost_ops->vhost_get_inflight_fd == NULL || 1994 hdev->vhost_ops->vhost_set_inflight_fd == NULL) { 1995 return 0; 1996 } 1997 1998 hdev->vdev = vdev; 1999 2000 r = vhost_dev_set_features(hdev, hdev->log_enabled); 2001 if (r < 0) { 2002 VHOST_OPS_DEBUG(r, "vhost_dev_prepare_inflight failed"); 2003 return r; 2004 } 2005 2006 return 0; 2007 } 2008 2009 int vhost_dev_set_inflight(struct vhost_dev *dev, 2010 struct vhost_inflight *inflight) 2011 { 2012 int r; 2013 2014 if (dev->vhost_ops->vhost_set_inflight_fd && inflight->addr) { 2015 r = dev->vhost_ops->vhost_set_inflight_fd(dev, inflight); 2016 if (r) { 2017 VHOST_OPS_DEBUG(r, "vhost_set_inflight_fd failed"); 2018 return r; 2019 } 2020 } 2021 2022 return 0; 2023 } 2024 2025 int vhost_dev_get_inflight(struct vhost_dev *dev, uint16_t queue_size, 2026 struct vhost_inflight *inflight) 2027 { 2028 int r; 2029 2030 if (dev->vhost_ops->vhost_get_inflight_fd) { 2031 r = dev->vhost_ops->vhost_get_inflight_fd(dev, queue_size, inflight); 2032 if (r) { 2033 VHOST_OPS_DEBUG(r, "vhost_get_inflight_fd failed"); 2034 return r; 2035 } 2036 } 2037 2038 return 0; 2039 } 2040 2041 static int vhost_dev_set_vring_enable(struct vhost_dev *hdev, int enable) 2042 { 2043 if (!hdev->vhost_ops->vhost_set_vring_enable) { 2044 return 0; 2045 } 2046 2047 /* 2048 * For vhost-user devices, if VHOST_USER_F_PROTOCOL_FEATURES has not 2049 * been negotiated, the rings start directly in the enabled state, and 2050 * .vhost_set_vring_enable callback will fail since 2051 * VHOST_USER_SET_VRING_ENABLE is not supported. 2052 */ 2053 if (hdev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_USER && 2054 !virtio_has_feature(hdev->backend_features, 2055 VHOST_USER_F_PROTOCOL_FEATURES)) { 2056 return 0; 2057 } 2058 2059 return hdev->vhost_ops->vhost_set_vring_enable(hdev, enable); 2060 } 2061 2062 /* 2063 * Host notifiers must be enabled at this point. 2064 * 2065 * If @vrings is true, this function will enable all vrings before starting the 2066 * device. If it is false, the vring initialization is left to be done by the 2067 * caller. 2068 */ 2069 int vhost_dev_start(struct vhost_dev *hdev, VirtIODevice *vdev, bool vrings) 2070 { 2071 int i, r; 2072 2073 /* should only be called after backend is connected */ 2074 assert(hdev->vhost_ops); 2075 2076 trace_vhost_dev_start(hdev, vdev->name, vrings); 2077 2078 vdev->vhost_started = true; 2079 hdev->started = true; 2080 hdev->vdev = vdev; 2081 2082 r = vhost_dev_set_features(hdev, hdev->log_enabled); 2083 if (r < 0) { 2084 goto fail_features; 2085 } 2086 2087 if (vhost_dev_has_iommu(hdev)) { 2088 memory_listener_register(&hdev->iommu_listener, vdev->dma_as); 2089 } 2090 2091 r = hdev->vhost_ops->vhost_set_mem_table(hdev, hdev->mem); 2092 if (r < 0) { 2093 VHOST_OPS_DEBUG(r, "vhost_set_mem_table failed"); 2094 goto fail_mem; 2095 } 2096 for (i = 0; i < hdev->nvqs; ++i) { 2097 r = vhost_virtqueue_start(hdev, 2098 vdev, 2099 hdev->vqs + i, 2100 hdev->vq_index + i); 2101 if (r < 0) { 2102 goto fail_vq; 2103 } 2104 } 2105 2106 r = event_notifier_init( 2107 &hdev->vqs[VHOST_QUEUE_NUM_CONFIG_INR].masked_config_notifier, 0); 2108 if (r < 0) { 2109 VHOST_OPS_DEBUG(r, "event_notifier_init failed"); 2110 goto fail_vq; 2111 } 2112 event_notifier_test_and_clear( 2113 &hdev->vqs[VHOST_QUEUE_NUM_CONFIG_INR].masked_config_notifier); 2114 if (!vdev->use_guest_notifier_mask) { 2115 vhost_config_mask(hdev, vdev, true); 2116 } 2117 if (hdev->log_enabled) { 2118 uint64_t log_base; 2119 2120 hdev->log_size = vhost_get_log_size(hdev); 2121 hdev->log = vhost_log_get(hdev->vhost_ops->backend_type, 2122 hdev->log_size, 2123 vhost_dev_log_is_shared(hdev)); 2124 log_base = (uintptr_t)hdev->log->log; 2125 r = hdev->vhost_ops->vhost_set_log_base(hdev, 2126 hdev->log_size ? log_base : 0, 2127 hdev->log); 2128 if (r < 0) { 2129 VHOST_OPS_DEBUG(r, "vhost_set_log_base failed"); 2130 goto fail_log; 2131 } 2132 vhost_dev_elect_mem_logger(hdev, true); 2133 } 2134 if (vrings) { 2135 r = vhost_dev_set_vring_enable(hdev, true); 2136 if (r) { 2137 goto fail_log; 2138 } 2139 } 2140 if (hdev->vhost_ops->vhost_dev_start) { 2141 r = hdev->vhost_ops->vhost_dev_start(hdev, true); 2142 if (r) { 2143 goto fail_start; 2144 } 2145 } 2146 if (vhost_dev_has_iommu(hdev) && 2147 hdev->vhost_ops->vhost_set_iotlb_callback) { 2148 hdev->vhost_ops->vhost_set_iotlb_callback(hdev, true); 2149 2150 /* Update used ring information for IOTLB to work correctly, 2151 * vhost-kernel code requires for this.*/ 2152 for (i = 0; i < hdev->nvqs; ++i) { 2153 struct vhost_virtqueue *vq = hdev->vqs + i; 2154 vhost_device_iotlb_miss(hdev, vq->used_phys, true); 2155 } 2156 } 2157 vhost_start_config_intr(hdev); 2158 return 0; 2159 fail_start: 2160 if (vrings) { 2161 vhost_dev_set_vring_enable(hdev, false); 2162 } 2163 fail_log: 2164 vhost_log_put(hdev, false); 2165 fail_vq: 2166 while (--i >= 0) { 2167 vhost_virtqueue_stop(hdev, 2168 vdev, 2169 hdev->vqs + i, 2170 hdev->vq_index + i); 2171 } 2172 2173 fail_mem: 2174 if (vhost_dev_has_iommu(hdev)) { 2175 memory_listener_unregister(&hdev->iommu_listener); 2176 } 2177 fail_features: 2178 vdev->vhost_started = false; 2179 hdev->started = false; 2180 return r; 2181 } 2182 2183 /* Host notifiers must be enabled at this point. */ 2184 void vhost_dev_stop(struct vhost_dev *hdev, VirtIODevice *vdev, bool vrings) 2185 { 2186 int i; 2187 2188 /* should only be called after backend is connected */ 2189 assert(hdev->vhost_ops); 2190 event_notifier_test_and_clear( 2191 &hdev->vqs[VHOST_QUEUE_NUM_CONFIG_INR].masked_config_notifier); 2192 event_notifier_test_and_clear(&vdev->config_notifier); 2193 event_notifier_cleanup( 2194 &hdev->vqs[VHOST_QUEUE_NUM_CONFIG_INR].masked_config_notifier); 2195 2196 trace_vhost_dev_stop(hdev, vdev->name, vrings); 2197 2198 if (hdev->vhost_ops->vhost_dev_start) { 2199 hdev->vhost_ops->vhost_dev_start(hdev, false); 2200 } 2201 if (vrings) { 2202 vhost_dev_set_vring_enable(hdev, false); 2203 } 2204 for (i = 0; i < hdev->nvqs; ++i) { 2205 vhost_virtqueue_stop(hdev, 2206 vdev, 2207 hdev->vqs + i, 2208 hdev->vq_index + i); 2209 } 2210 if (hdev->vhost_ops->vhost_reset_status) { 2211 hdev->vhost_ops->vhost_reset_status(hdev); 2212 } 2213 2214 if (vhost_dev_has_iommu(hdev)) { 2215 if (hdev->vhost_ops->vhost_set_iotlb_callback) { 2216 hdev->vhost_ops->vhost_set_iotlb_callback(hdev, false); 2217 } 2218 memory_listener_unregister(&hdev->iommu_listener); 2219 } 2220 vhost_stop_config_intr(hdev); 2221 vhost_log_put(hdev, true); 2222 hdev->started = false; 2223 vdev->vhost_started = false; 2224 hdev->vdev = NULL; 2225 } 2226 2227 int vhost_net_set_backend(struct vhost_dev *hdev, 2228 struct vhost_vring_file *file) 2229 { 2230 if (hdev->vhost_ops->vhost_net_set_backend) { 2231 return hdev->vhost_ops->vhost_net_set_backend(hdev, file); 2232 } 2233 2234 return -ENOSYS; 2235 } 2236 2237 int vhost_reset_device(struct vhost_dev *hdev) 2238 { 2239 if (hdev->vhost_ops->vhost_reset_device) { 2240 return hdev->vhost_ops->vhost_reset_device(hdev); 2241 } 2242 2243 return -ENOSYS; 2244 } 2245 2246 bool vhost_supports_device_state(struct vhost_dev *dev) 2247 { 2248 if (dev->vhost_ops->vhost_supports_device_state) { 2249 return dev->vhost_ops->vhost_supports_device_state(dev); 2250 } 2251 2252 return false; 2253 } 2254 2255 int vhost_set_device_state_fd(struct vhost_dev *dev, 2256 VhostDeviceStateDirection direction, 2257 VhostDeviceStatePhase phase, 2258 int fd, 2259 int *reply_fd, 2260 Error **errp) 2261 { 2262 if (dev->vhost_ops->vhost_set_device_state_fd) { 2263 return dev->vhost_ops->vhost_set_device_state_fd(dev, direction, phase, 2264 fd, reply_fd, errp); 2265 } 2266 2267 error_setg(errp, 2268 "vhost transport does not support migration state transfer"); 2269 return -ENOSYS; 2270 } 2271 2272 int vhost_check_device_state(struct vhost_dev *dev, Error **errp) 2273 { 2274 if (dev->vhost_ops->vhost_check_device_state) { 2275 return dev->vhost_ops->vhost_check_device_state(dev, errp); 2276 } 2277 2278 error_setg(errp, 2279 "vhost transport does not support migration state transfer"); 2280 return -ENOSYS; 2281 } 2282 2283 int vhost_save_backend_state(struct vhost_dev *dev, QEMUFile *f, Error **errp) 2284 { 2285 ERRP_GUARD(); 2286 /* Maximum chunk size in which to transfer the state */ 2287 const size_t chunk_size = 1 * 1024 * 1024; 2288 g_autofree void *transfer_buf = NULL; 2289 g_autoptr(GError) g_err = NULL; 2290 int pipe_fds[2], read_fd = -1, write_fd = -1, reply_fd = -1; 2291 int ret; 2292 2293 /* [0] for reading (our end), [1] for writing (back-end's end) */ 2294 if (!g_unix_open_pipe(pipe_fds, FD_CLOEXEC, &g_err)) { 2295 error_setg(errp, "Failed to set up state transfer pipe: %s", 2296 g_err->message); 2297 ret = -EINVAL; 2298 goto fail; 2299 } 2300 2301 read_fd = pipe_fds[0]; 2302 write_fd = pipe_fds[1]; 2303 2304 /* 2305 * VHOST_TRANSFER_STATE_PHASE_STOPPED means the device must be stopped. 2306 * Ideally, it is suspended, but SUSPEND/RESUME currently do not exist for 2307 * vhost-user, so just check that it is stopped at all. 2308 */ 2309 assert(!dev->started); 2310 2311 /* Transfer ownership of write_fd to the back-end */ 2312 ret = vhost_set_device_state_fd(dev, 2313 VHOST_TRANSFER_STATE_DIRECTION_SAVE, 2314 VHOST_TRANSFER_STATE_PHASE_STOPPED, 2315 write_fd, 2316 &reply_fd, 2317 errp); 2318 if (ret < 0) { 2319 error_prepend(errp, "Failed to initiate state transfer: "); 2320 goto fail; 2321 } 2322 2323 /* If the back-end wishes to use a different pipe, switch over */ 2324 if (reply_fd >= 0) { 2325 close(read_fd); 2326 read_fd = reply_fd; 2327 } 2328 2329 transfer_buf = g_malloc(chunk_size); 2330 2331 while (true) { 2332 ssize_t read_ret; 2333 2334 read_ret = RETRY_ON_EINTR(read(read_fd, transfer_buf, chunk_size)); 2335 if (read_ret < 0) { 2336 ret = -errno; 2337 error_setg_errno(errp, -ret, "Failed to receive state"); 2338 goto fail; 2339 } 2340 2341 assert(read_ret <= chunk_size); 2342 qemu_put_be32(f, read_ret); 2343 2344 if (read_ret == 0) { 2345 /* EOF */ 2346 break; 2347 } 2348 2349 qemu_put_buffer(f, transfer_buf, read_ret); 2350 } 2351 2352 /* 2353 * Back-end will not really care, but be clean and close our end of the pipe 2354 * before inquiring the back-end about whether transfer was successful 2355 */ 2356 close(read_fd); 2357 read_fd = -1; 2358 2359 /* Also, verify that the device is still stopped */ 2360 assert(!dev->started); 2361 2362 ret = vhost_check_device_state(dev, errp); 2363 if (ret < 0) { 2364 goto fail; 2365 } 2366 2367 ret = 0; 2368 fail: 2369 if (read_fd >= 0) { 2370 close(read_fd); 2371 } 2372 2373 return ret; 2374 } 2375 2376 int vhost_load_backend_state(struct vhost_dev *dev, QEMUFile *f, Error **errp) 2377 { 2378 ERRP_GUARD(); 2379 size_t transfer_buf_size = 0; 2380 g_autofree void *transfer_buf = NULL; 2381 g_autoptr(GError) g_err = NULL; 2382 int pipe_fds[2], read_fd = -1, write_fd = -1, reply_fd = -1; 2383 int ret; 2384 2385 /* [0] for reading (back-end's end), [1] for writing (our end) */ 2386 if (!g_unix_open_pipe(pipe_fds, FD_CLOEXEC, &g_err)) { 2387 error_setg(errp, "Failed to set up state transfer pipe: %s", 2388 g_err->message); 2389 ret = -EINVAL; 2390 goto fail; 2391 } 2392 2393 read_fd = pipe_fds[0]; 2394 write_fd = pipe_fds[1]; 2395 2396 /* 2397 * VHOST_TRANSFER_STATE_PHASE_STOPPED means the device must be stopped. 2398 * Ideally, it is suspended, but SUSPEND/RESUME currently do not exist for 2399 * vhost-user, so just check that it is stopped at all. 2400 */ 2401 assert(!dev->started); 2402 2403 /* Transfer ownership of read_fd to the back-end */ 2404 ret = vhost_set_device_state_fd(dev, 2405 VHOST_TRANSFER_STATE_DIRECTION_LOAD, 2406 VHOST_TRANSFER_STATE_PHASE_STOPPED, 2407 read_fd, 2408 &reply_fd, 2409 errp); 2410 if (ret < 0) { 2411 error_prepend(errp, "Failed to initiate state transfer: "); 2412 goto fail; 2413 } 2414 2415 /* If the back-end wishes to use a different pipe, switch over */ 2416 if (reply_fd >= 0) { 2417 close(write_fd); 2418 write_fd = reply_fd; 2419 } 2420 2421 while (true) { 2422 size_t this_chunk_size = qemu_get_be32(f); 2423 ssize_t write_ret; 2424 const uint8_t *transfer_pointer; 2425 2426 if (this_chunk_size == 0) { 2427 /* End of state */ 2428 break; 2429 } 2430 2431 if (transfer_buf_size < this_chunk_size) { 2432 transfer_buf = g_realloc(transfer_buf, this_chunk_size); 2433 transfer_buf_size = this_chunk_size; 2434 } 2435 2436 if (qemu_get_buffer(f, transfer_buf, this_chunk_size) < 2437 this_chunk_size) 2438 { 2439 error_setg(errp, "Failed to read state"); 2440 ret = -EINVAL; 2441 goto fail; 2442 } 2443 2444 transfer_pointer = transfer_buf; 2445 while (this_chunk_size > 0) { 2446 write_ret = RETRY_ON_EINTR( 2447 write(write_fd, transfer_pointer, this_chunk_size) 2448 ); 2449 if (write_ret < 0) { 2450 ret = -errno; 2451 error_setg_errno(errp, -ret, "Failed to send state"); 2452 goto fail; 2453 } else if (write_ret == 0) { 2454 error_setg(errp, "Failed to send state: Connection is closed"); 2455 ret = -ECONNRESET; 2456 goto fail; 2457 } 2458 2459 assert(write_ret <= this_chunk_size); 2460 this_chunk_size -= write_ret; 2461 transfer_pointer += write_ret; 2462 } 2463 } 2464 2465 /* 2466 * Close our end, thus ending transfer, before inquiring the back-end about 2467 * whether transfer was successful 2468 */ 2469 close(write_fd); 2470 write_fd = -1; 2471 2472 /* Also, verify that the device is still stopped */ 2473 assert(!dev->started); 2474 2475 ret = vhost_check_device_state(dev, errp); 2476 if (ret < 0) { 2477 goto fail; 2478 } 2479 2480 ret = 0; 2481 fail: 2482 if (write_fd >= 0) { 2483 close(write_fd); 2484 } 2485 2486 return ret; 2487 } 2488