1 /* 2 * vfio based device assignment support 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include <dirent.h> 22 #include <linux/vfio.h> 23 #include <sys/ioctl.h> 24 #include <sys/mman.h> 25 #include <sys/stat.h> 26 #include <sys/types.h> 27 #include <unistd.h> 28 29 #include "config.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci.h" 35 #include "qemu-common.h" 36 #include "qemu/error-report.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/queue.h" 39 #include "qemu/range.h" 40 #include "sysemu/kvm.h" 41 #include "sysemu/sysemu.h" 42 #include "trace.h" 43 #include "hw/vfio/vfio.h" 44 #include "hw/vfio/vfio-common.h" 45 46 struct VFIOPCIDevice; 47 48 typedef struct VFIOQuirk { 49 MemoryRegion mem; 50 struct VFIOPCIDevice *vdev; 51 QLIST_ENTRY(VFIOQuirk) next; 52 struct { 53 uint32_t base_offset:TARGET_PAGE_BITS; 54 uint32_t address_offset:TARGET_PAGE_BITS; 55 uint32_t address_size:3; 56 uint32_t bar:3; 57 58 uint32_t address_match; 59 uint32_t address_mask; 60 61 uint32_t address_val:TARGET_PAGE_BITS; 62 uint32_t data_offset:TARGET_PAGE_BITS; 63 uint32_t data_size:3; 64 65 uint8_t flags; 66 uint8_t read_flags; 67 uint8_t write_flags; 68 } data; 69 } VFIOQuirk; 70 71 typedef struct VFIOBAR { 72 VFIORegion region; 73 bool ioport; 74 bool mem64; 75 QLIST_HEAD(, VFIOQuirk) quirks; 76 } VFIOBAR; 77 78 typedef struct VFIOVGARegion { 79 MemoryRegion mem; 80 off_t offset; 81 int nr; 82 QLIST_HEAD(, VFIOQuirk) quirks; 83 } VFIOVGARegion; 84 85 typedef struct VFIOVGA { 86 off_t fd_offset; 87 int fd; 88 VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS]; 89 } VFIOVGA; 90 91 typedef struct VFIOINTx { 92 bool pending; /* interrupt pending */ 93 bool kvm_accel; /* set when QEMU bypass through KVM enabled */ 94 uint8_t pin; /* which pin to pull for qemu_set_irq */ 95 EventNotifier interrupt; /* eventfd triggered on interrupt */ 96 EventNotifier unmask; /* eventfd for unmask on QEMU bypass */ 97 PCIINTxRoute route; /* routing info for QEMU bypass */ 98 uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */ 99 QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */ 100 } VFIOINTx; 101 102 typedef struct VFIOMSIVector { 103 /* 104 * Two interrupt paths are configured per vector. The first, is only used 105 * for interrupts injected via QEMU. This is typically the non-accel path, 106 * but may also be used when we want QEMU to handle masking and pending 107 * bits. The KVM path bypasses QEMU and is therefore higher performance, 108 * but requires masking at the device. virq is used to track the MSI route 109 * through KVM, thus kvm_interrupt is only available when virq is set to a 110 * valid (>= 0) value. 111 */ 112 EventNotifier interrupt; 113 EventNotifier kvm_interrupt; 114 struct VFIOPCIDevice *vdev; /* back pointer to device */ 115 int virq; 116 bool use; 117 } VFIOMSIVector; 118 119 enum { 120 VFIO_INT_NONE = 0, 121 VFIO_INT_INTx = 1, 122 VFIO_INT_MSI = 2, 123 VFIO_INT_MSIX = 3, 124 }; 125 126 /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */ 127 typedef struct VFIOMSIXInfo { 128 uint8_t table_bar; 129 uint8_t pba_bar; 130 uint16_t entries; 131 uint32_t table_offset; 132 uint32_t pba_offset; 133 MemoryRegion mmap_mem; 134 void *mmap; 135 } VFIOMSIXInfo; 136 137 typedef struct VFIOPCIDevice { 138 PCIDevice pdev; 139 VFIODevice vbasedev; 140 VFIOINTx intx; 141 unsigned int config_size; 142 uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */ 143 off_t config_offset; /* Offset of config space region within device fd */ 144 unsigned int rom_size; 145 off_t rom_offset; /* Offset of ROM region within device fd */ 146 void *rom; 147 int msi_cap_size; 148 VFIOMSIVector *msi_vectors; 149 VFIOMSIXInfo *msix; 150 int nr_vectors; /* Number of MSI/MSIX vectors currently in use */ 151 int interrupt; /* Current interrupt type */ 152 VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */ 153 VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */ 154 PCIHostDeviceAddress host; 155 EventNotifier err_notifier; 156 EventNotifier req_notifier; 157 uint32_t features; 158 #define VFIO_FEATURE_ENABLE_VGA_BIT 0 159 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT) 160 #define VFIO_FEATURE_ENABLE_REQ_BIT 1 161 #define VFIO_FEATURE_ENABLE_REQ (1 << VFIO_FEATURE_ENABLE_REQ_BIT) 162 int32_t bootindex; 163 uint8_t pm_cap; 164 bool has_vga; 165 bool pci_aer; 166 bool req_enabled; 167 bool has_flr; 168 bool has_pm_reset; 169 bool rom_read_failed; 170 } VFIOPCIDevice; 171 172 typedef struct VFIORomBlacklistEntry { 173 uint16_t vendor_id; 174 uint16_t device_id; 175 } VFIORomBlacklistEntry; 176 177 /* 178 * List of device ids/vendor ids for which to disable 179 * option rom loading. This avoids the guest hangs during rom 180 * execution as noticed with the BCM 57810 card for lack of a 181 * more better way to handle such issues. 182 * The user can still override by specifying a romfile or 183 * rombar=1. 184 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 185 * for an analysis of the 57810 card hang. When adding 186 * a new vendor id/device id combination below, please also add 187 * your card/environment details and information that could 188 * help in debugging to the bug tracking this issue 189 */ 190 static const VFIORomBlacklistEntry romblacklist[] = { 191 /* Broadcom BCM 57810 */ 192 { 0x14e4, 0x168e } 193 }; 194 195 #define MSIX_CAP_LENGTH 12 196 197 static void vfio_disable_interrupts(VFIOPCIDevice *vdev); 198 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len); 199 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, 200 uint32_t val, int len); 201 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled); 202 203 /* 204 * Disabling BAR mmaping can be slow, but toggling it around INTx can 205 * also be a huge overhead. We try to get the best of both worlds by 206 * waiting until an interrupt to disable mmaps (subsequent transitions 207 * to the same state are effectively no overhead). If the interrupt has 208 * been serviced and the time gap is long enough, we re-enable mmaps for 209 * performance. This works well for things like graphics cards, which 210 * may not use their interrupt at all and are penalized to an unusable 211 * level by read/write BAR traps. Other devices, like NICs, have more 212 * regular interrupts and see much better latency by staying in non-mmap 213 * mode. We therefore set the default mmap_timeout such that a ping 214 * is just enough to keep the mmap disabled. Users can experiment with 215 * other options with the x-intx-mmap-timeout-ms parameter (a value of 216 * zero disables the timer). 217 */ 218 static void vfio_intx_mmap_enable(void *opaque) 219 { 220 VFIOPCIDevice *vdev = opaque; 221 222 if (vdev->intx.pending) { 223 timer_mod(vdev->intx.mmap_timer, 224 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); 225 return; 226 } 227 228 vfio_mmap_set_enabled(vdev, true); 229 } 230 231 static void vfio_intx_interrupt(void *opaque) 232 { 233 VFIOPCIDevice *vdev = opaque; 234 235 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { 236 return; 237 } 238 239 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin); 240 241 vdev->intx.pending = true; 242 pci_irq_assert(&vdev->pdev); 243 vfio_mmap_set_enabled(vdev, false); 244 if (vdev->intx.mmap_timeout) { 245 timer_mod(vdev->intx.mmap_timer, 246 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); 247 } 248 } 249 250 static void vfio_eoi(VFIODevice *vbasedev) 251 { 252 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 253 254 if (!vdev->intx.pending) { 255 return; 256 } 257 258 trace_vfio_eoi(vbasedev->name); 259 260 vdev->intx.pending = false; 261 pci_irq_deassert(&vdev->pdev); 262 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 263 } 264 265 static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev) 266 { 267 #ifdef CONFIG_KVM 268 struct kvm_irqfd irqfd = { 269 .fd = event_notifier_get_fd(&vdev->intx.interrupt), 270 .gsi = vdev->intx.route.irq, 271 .flags = KVM_IRQFD_FLAG_RESAMPLE, 272 }; 273 struct vfio_irq_set *irq_set; 274 int ret, argsz; 275 int32_t *pfd; 276 277 if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() || 278 vdev->intx.route.mode != PCI_INTX_ENABLED || 279 !kvm_resamplefds_enabled()) { 280 return; 281 } 282 283 /* Get to a known interrupt state */ 284 qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev); 285 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 286 vdev->intx.pending = false; 287 pci_irq_deassert(&vdev->pdev); 288 289 /* Get an eventfd for resample/unmask */ 290 if (event_notifier_init(&vdev->intx.unmask, 0)) { 291 error_report("vfio: Error: event_notifier_init failed eoi"); 292 goto fail; 293 } 294 295 /* KVM triggers it, VFIO listens for it */ 296 irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask); 297 298 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { 299 error_report("vfio: Error: Failed to setup resample irqfd: %m"); 300 goto fail_irqfd; 301 } 302 303 argsz = sizeof(*irq_set) + sizeof(*pfd); 304 305 irq_set = g_malloc0(argsz); 306 irq_set->argsz = argsz; 307 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK; 308 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; 309 irq_set->start = 0; 310 irq_set->count = 1; 311 pfd = (int32_t *)&irq_set->data; 312 313 *pfd = irqfd.resamplefd; 314 315 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 316 g_free(irq_set); 317 if (ret) { 318 error_report("vfio: Error: Failed to setup INTx unmask fd: %m"); 319 goto fail_vfio; 320 } 321 322 /* Let'em rip */ 323 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 324 325 vdev->intx.kvm_accel = true; 326 327 trace_vfio_enable_intx_kvm(vdev->vbasedev.name); 328 329 return; 330 331 fail_vfio: 332 irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN; 333 kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd); 334 fail_irqfd: 335 event_notifier_cleanup(&vdev->intx.unmask); 336 fail: 337 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); 338 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 339 #endif 340 } 341 342 static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev) 343 { 344 #ifdef CONFIG_KVM 345 struct kvm_irqfd irqfd = { 346 .fd = event_notifier_get_fd(&vdev->intx.interrupt), 347 .gsi = vdev->intx.route.irq, 348 .flags = KVM_IRQFD_FLAG_DEASSIGN, 349 }; 350 351 if (!vdev->intx.kvm_accel) { 352 return; 353 } 354 355 /* 356 * Get to a known state, hardware masked, QEMU ready to accept new 357 * interrupts, QEMU IRQ de-asserted. 358 */ 359 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 360 vdev->intx.pending = false; 361 pci_irq_deassert(&vdev->pdev); 362 363 /* Tell KVM to stop listening for an INTx irqfd */ 364 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { 365 error_report("vfio: Error: Failed to disable INTx irqfd: %m"); 366 } 367 368 /* We only need to close the eventfd for VFIO to cleanup the kernel side */ 369 event_notifier_cleanup(&vdev->intx.unmask); 370 371 /* QEMU starts listening for interrupt events. */ 372 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); 373 374 vdev->intx.kvm_accel = false; 375 376 /* If we've missed an event, let it re-fire through QEMU */ 377 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 378 379 trace_vfio_disable_intx_kvm(vdev->vbasedev.name); 380 #endif 381 } 382 383 static void vfio_update_irq(PCIDevice *pdev) 384 { 385 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 386 PCIINTxRoute route; 387 388 if (vdev->interrupt != VFIO_INT_INTx) { 389 return; 390 } 391 392 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); 393 394 if (!pci_intx_route_changed(&vdev->intx.route, &route)) { 395 return; /* Nothing changed */ 396 } 397 398 trace_vfio_update_irq(vdev->vbasedev.name, 399 vdev->intx.route.irq, route.irq); 400 401 vfio_disable_intx_kvm(vdev); 402 403 vdev->intx.route = route; 404 405 if (route.mode != PCI_INTX_ENABLED) { 406 return; 407 } 408 409 vfio_enable_intx_kvm(vdev); 410 411 /* Re-enable the interrupt in cased we missed an EOI */ 412 vfio_eoi(&vdev->vbasedev); 413 } 414 415 static int vfio_enable_intx(VFIOPCIDevice *vdev) 416 { 417 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); 418 int ret, argsz; 419 struct vfio_irq_set *irq_set; 420 int32_t *pfd; 421 422 if (!pin) { 423 return 0; 424 } 425 426 vfio_disable_interrupts(vdev); 427 428 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ 429 pci_config_set_interrupt_pin(vdev->pdev.config, pin); 430 431 #ifdef CONFIG_KVM 432 /* 433 * Only conditional to avoid generating error messages on platforms 434 * where we won't actually use the result anyway. 435 */ 436 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) { 437 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, 438 vdev->intx.pin); 439 } 440 #endif 441 442 ret = event_notifier_init(&vdev->intx.interrupt, 0); 443 if (ret) { 444 error_report("vfio: Error: event_notifier_init failed"); 445 return ret; 446 } 447 448 argsz = sizeof(*irq_set) + sizeof(*pfd); 449 450 irq_set = g_malloc0(argsz); 451 irq_set->argsz = argsz; 452 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; 453 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; 454 irq_set->start = 0; 455 irq_set->count = 1; 456 pfd = (int32_t *)&irq_set->data; 457 458 *pfd = event_notifier_get_fd(&vdev->intx.interrupt); 459 qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev); 460 461 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 462 g_free(irq_set); 463 if (ret) { 464 error_report("vfio: Error: Failed to setup INTx fd: %m"); 465 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 466 event_notifier_cleanup(&vdev->intx.interrupt); 467 return -errno; 468 } 469 470 vfio_enable_intx_kvm(vdev); 471 472 vdev->interrupt = VFIO_INT_INTx; 473 474 trace_vfio_enable_intx(vdev->vbasedev.name); 475 476 return 0; 477 } 478 479 static void vfio_disable_intx(VFIOPCIDevice *vdev) 480 { 481 int fd; 482 483 timer_del(vdev->intx.mmap_timer); 484 vfio_disable_intx_kvm(vdev); 485 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 486 vdev->intx.pending = false; 487 pci_irq_deassert(&vdev->pdev); 488 vfio_mmap_set_enabled(vdev, true); 489 490 fd = event_notifier_get_fd(&vdev->intx.interrupt); 491 qemu_set_fd_handler(fd, NULL, NULL, vdev); 492 event_notifier_cleanup(&vdev->intx.interrupt); 493 494 vdev->interrupt = VFIO_INT_NONE; 495 496 trace_vfio_disable_intx(vdev->vbasedev.name); 497 } 498 499 /* 500 * MSI/X 501 */ 502 static void vfio_msi_interrupt(void *opaque) 503 { 504 VFIOMSIVector *vector = opaque; 505 VFIOPCIDevice *vdev = vector->vdev; 506 int nr = vector - vdev->msi_vectors; 507 508 if (!event_notifier_test_and_clear(&vector->interrupt)) { 509 return; 510 } 511 512 #ifdef DEBUG_VFIO 513 MSIMessage msg; 514 515 if (vdev->interrupt == VFIO_INT_MSIX) { 516 msg = msix_get_message(&vdev->pdev, nr); 517 } else if (vdev->interrupt == VFIO_INT_MSI) { 518 msg = msi_get_message(&vdev->pdev, nr); 519 } else { 520 abort(); 521 } 522 523 trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data); 524 #endif 525 526 if (vdev->interrupt == VFIO_INT_MSIX) { 527 msix_notify(&vdev->pdev, nr); 528 } else if (vdev->interrupt == VFIO_INT_MSI) { 529 msi_notify(&vdev->pdev, nr); 530 } else { 531 error_report("vfio: MSI interrupt receieved, but not enabled?"); 532 } 533 } 534 535 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix) 536 { 537 struct vfio_irq_set *irq_set; 538 int ret = 0, i, argsz; 539 int32_t *fds; 540 541 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); 542 543 irq_set = g_malloc0(argsz); 544 irq_set->argsz = argsz; 545 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; 546 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; 547 irq_set->start = 0; 548 irq_set->count = vdev->nr_vectors; 549 fds = (int32_t *)&irq_set->data; 550 551 for (i = 0; i < vdev->nr_vectors; i++) { 552 int fd = -1; 553 554 /* 555 * MSI vs MSI-X - The guest has direct access to MSI mask and pending 556 * bits, therefore we always use the KVM signaling path when setup. 557 * MSI-X mask and pending bits are emulated, so we want to use the 558 * KVM signaling path only when configured and unmasked. 559 */ 560 if (vdev->msi_vectors[i].use) { 561 if (vdev->msi_vectors[i].virq < 0 || 562 (msix && msix_is_masked(&vdev->pdev, i))) { 563 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); 564 } else { 565 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); 566 } 567 } 568 569 fds[i] = fd; 570 } 571 572 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 573 574 g_free(irq_set); 575 576 return ret; 577 } 578 579 static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg, 580 bool msix) 581 { 582 int virq; 583 584 if ((msix && !VFIO_ALLOW_KVM_MSIX) || 585 (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) { 586 return; 587 } 588 589 if (event_notifier_init(&vector->kvm_interrupt, 0)) { 590 return; 591 } 592 593 virq = kvm_irqchip_add_msi_route(kvm_state, *msg); 594 if (virq < 0) { 595 event_notifier_cleanup(&vector->kvm_interrupt); 596 return; 597 } 598 599 if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt, 600 NULL, virq) < 0) { 601 kvm_irqchip_release_virq(kvm_state, virq); 602 event_notifier_cleanup(&vector->kvm_interrupt); 603 return; 604 } 605 606 vector->virq = virq; 607 } 608 609 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) 610 { 611 kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt, 612 vector->virq); 613 kvm_irqchip_release_virq(kvm_state, vector->virq); 614 vector->virq = -1; 615 event_notifier_cleanup(&vector->kvm_interrupt); 616 } 617 618 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg) 619 { 620 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg); 621 } 622 623 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, 624 MSIMessage *msg, IOHandler *handler) 625 { 626 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 627 VFIOMSIVector *vector; 628 int ret; 629 630 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr); 631 632 vector = &vdev->msi_vectors[nr]; 633 634 if (!vector->use) { 635 vector->vdev = vdev; 636 vector->virq = -1; 637 if (event_notifier_init(&vector->interrupt, 0)) { 638 error_report("vfio: Error: event_notifier_init failed"); 639 } 640 vector->use = true; 641 msix_vector_use(pdev, nr); 642 } 643 644 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 645 handler, NULL, vector); 646 647 /* 648 * Attempt to enable route through KVM irqchip, 649 * default to userspace handling if unavailable. 650 */ 651 if (vector->virq >= 0) { 652 if (!msg) { 653 vfio_remove_kvm_msi_virq(vector); 654 } else { 655 vfio_update_kvm_msi_virq(vector, *msg); 656 } 657 } else { 658 vfio_add_kvm_msi_virq(vector, msg, true); 659 } 660 661 /* 662 * We don't want to have the host allocate all possible MSI vectors 663 * for a device if they're not in use, so we shutdown and incrementally 664 * increase them as needed. 665 */ 666 if (vdev->nr_vectors < nr + 1) { 667 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); 668 vdev->nr_vectors = nr + 1; 669 ret = vfio_enable_vectors(vdev, true); 670 if (ret) { 671 error_report("vfio: failed to enable vectors, %d", ret); 672 } 673 } else { 674 int argsz; 675 struct vfio_irq_set *irq_set; 676 int32_t *pfd; 677 678 argsz = sizeof(*irq_set) + sizeof(*pfd); 679 680 irq_set = g_malloc0(argsz); 681 irq_set->argsz = argsz; 682 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 683 VFIO_IRQ_SET_ACTION_TRIGGER; 684 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; 685 irq_set->start = nr; 686 irq_set->count = 1; 687 pfd = (int32_t *)&irq_set->data; 688 689 if (vector->virq >= 0) { 690 *pfd = event_notifier_get_fd(&vector->kvm_interrupt); 691 } else { 692 *pfd = event_notifier_get_fd(&vector->interrupt); 693 } 694 695 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 696 g_free(irq_set); 697 if (ret) { 698 error_report("vfio: failed to modify vector, %d", ret); 699 } 700 } 701 702 return 0; 703 } 704 705 static int vfio_msix_vector_use(PCIDevice *pdev, 706 unsigned int nr, MSIMessage msg) 707 { 708 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); 709 } 710 711 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) 712 { 713 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 714 VFIOMSIVector *vector = &vdev->msi_vectors[nr]; 715 716 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr); 717 718 /* 719 * There are still old guests that mask and unmask vectors on every 720 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of 721 * the KVM setup in place, simply switch VFIO to use the non-bypass 722 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X 723 * core will mask the interrupt and set pending bits, allowing it to 724 * be re-asserted on unmask. Nothing to do if already using QEMU mode. 725 */ 726 if (vector->virq >= 0) { 727 int argsz; 728 struct vfio_irq_set *irq_set; 729 int32_t *pfd; 730 731 argsz = sizeof(*irq_set) + sizeof(*pfd); 732 733 irq_set = g_malloc0(argsz); 734 irq_set->argsz = argsz; 735 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 736 VFIO_IRQ_SET_ACTION_TRIGGER; 737 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; 738 irq_set->start = nr; 739 irq_set->count = 1; 740 pfd = (int32_t *)&irq_set->data; 741 742 *pfd = event_notifier_get_fd(&vector->interrupt); 743 744 ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 745 746 g_free(irq_set); 747 } 748 } 749 750 static void vfio_enable_msix(VFIOPCIDevice *vdev) 751 { 752 vfio_disable_interrupts(vdev); 753 754 vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector)); 755 756 vdev->interrupt = VFIO_INT_MSIX; 757 758 /* 759 * Some communication channels between VF & PF or PF & fw rely on the 760 * physical state of the device and expect that enabling MSI-X from the 761 * guest enables the same on the host. When our guest is Linux, the 762 * guest driver call to pci_enable_msix() sets the enabling bit in the 763 * MSI-X capability, but leaves the vector table masked. We therefore 764 * can't rely on a vector_use callback (from request_irq() in the guest) 765 * to switch the physical device into MSI-X mode because that may come a 766 * long time after pci_enable_msix(). This code enables vector 0 with 767 * triggering to userspace, then immediately release the vector, leaving 768 * the physical device with no vectors enabled, but MSI-X enabled, just 769 * like the guest view. 770 */ 771 vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL); 772 vfio_msix_vector_release(&vdev->pdev, 0); 773 774 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, 775 vfio_msix_vector_release, NULL)) { 776 error_report("vfio: msix_set_vector_notifiers failed"); 777 } 778 779 trace_vfio_enable_msix(vdev->vbasedev.name); 780 } 781 782 static void vfio_enable_msi(VFIOPCIDevice *vdev) 783 { 784 int ret, i; 785 786 vfio_disable_interrupts(vdev); 787 788 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); 789 retry: 790 vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector)); 791 792 for (i = 0; i < vdev->nr_vectors; i++) { 793 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 794 MSIMessage msg = msi_get_message(&vdev->pdev, i); 795 796 vector->vdev = vdev; 797 vector->virq = -1; 798 vector->use = true; 799 800 if (event_notifier_init(&vector->interrupt, 0)) { 801 error_report("vfio: Error: event_notifier_init failed"); 802 } 803 804 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 805 vfio_msi_interrupt, NULL, vector); 806 807 /* 808 * Attempt to enable route through KVM irqchip, 809 * default to userspace handling if unavailable. 810 */ 811 vfio_add_kvm_msi_virq(vector, &msg, false); 812 } 813 814 /* Set interrupt type prior to possible interrupts */ 815 vdev->interrupt = VFIO_INT_MSI; 816 817 ret = vfio_enable_vectors(vdev, false); 818 if (ret) { 819 if (ret < 0) { 820 error_report("vfio: Error: Failed to setup MSI fds: %m"); 821 } else if (ret != vdev->nr_vectors) { 822 error_report("vfio: Error: Failed to enable %d " 823 "MSI vectors, retry with %d", vdev->nr_vectors, ret); 824 } 825 826 for (i = 0; i < vdev->nr_vectors; i++) { 827 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 828 if (vector->virq >= 0) { 829 vfio_remove_kvm_msi_virq(vector); 830 } 831 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 832 NULL, NULL, NULL); 833 event_notifier_cleanup(&vector->interrupt); 834 } 835 836 g_free(vdev->msi_vectors); 837 838 if (ret > 0 && ret != vdev->nr_vectors) { 839 vdev->nr_vectors = ret; 840 goto retry; 841 } 842 vdev->nr_vectors = 0; 843 844 /* 845 * Failing to setup MSI doesn't really fall within any specification. 846 * Let's try leaving interrupts disabled and hope the guest figures 847 * out to fall back to INTx for this device. 848 */ 849 error_report("vfio: Error: Failed to enable MSI"); 850 vdev->interrupt = VFIO_INT_NONE; 851 852 return; 853 } 854 855 trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors); 856 } 857 858 static void vfio_disable_msi_common(VFIOPCIDevice *vdev) 859 { 860 int i; 861 862 for (i = 0; i < vdev->nr_vectors; i++) { 863 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 864 if (vdev->msi_vectors[i].use) { 865 if (vector->virq >= 0) { 866 vfio_remove_kvm_msi_virq(vector); 867 } 868 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 869 NULL, NULL, NULL); 870 event_notifier_cleanup(&vector->interrupt); 871 } 872 } 873 874 g_free(vdev->msi_vectors); 875 vdev->msi_vectors = NULL; 876 vdev->nr_vectors = 0; 877 vdev->interrupt = VFIO_INT_NONE; 878 879 vfio_enable_intx(vdev); 880 } 881 882 static void vfio_disable_msix(VFIOPCIDevice *vdev) 883 { 884 int i; 885 886 msix_unset_vector_notifiers(&vdev->pdev); 887 888 /* 889 * MSI-X will only release vectors if MSI-X is still enabled on the 890 * device, check through the rest and release it ourselves if necessary. 891 */ 892 for (i = 0; i < vdev->nr_vectors; i++) { 893 if (vdev->msi_vectors[i].use) { 894 vfio_msix_vector_release(&vdev->pdev, i); 895 msix_vector_unuse(&vdev->pdev, i); 896 } 897 } 898 899 if (vdev->nr_vectors) { 900 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); 901 } 902 903 vfio_disable_msi_common(vdev); 904 905 trace_vfio_disable_msix(vdev->vbasedev.name); 906 } 907 908 static void vfio_disable_msi(VFIOPCIDevice *vdev) 909 { 910 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX); 911 vfio_disable_msi_common(vdev); 912 913 trace_vfio_disable_msi(vdev->vbasedev.name); 914 } 915 916 static void vfio_update_msi(VFIOPCIDevice *vdev) 917 { 918 int i; 919 920 for (i = 0; i < vdev->nr_vectors; i++) { 921 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 922 MSIMessage msg; 923 924 if (!vector->use || vector->virq < 0) { 925 continue; 926 } 927 928 msg = msi_get_message(&vdev->pdev, i); 929 vfio_update_kvm_msi_virq(vector, msg); 930 } 931 } 932 933 static void vfio_pci_load_rom(VFIOPCIDevice *vdev) 934 { 935 struct vfio_region_info reg_info = { 936 .argsz = sizeof(reg_info), 937 .index = VFIO_PCI_ROM_REGION_INDEX 938 }; 939 uint64_t size; 940 off_t off = 0; 941 size_t bytes; 942 943 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, ®_info)) { 944 error_report("vfio: Error getting ROM info: %m"); 945 return; 946 } 947 948 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size, 949 (unsigned long)reg_info.offset, 950 (unsigned long)reg_info.flags); 951 952 vdev->rom_size = size = reg_info.size; 953 vdev->rom_offset = reg_info.offset; 954 955 if (!vdev->rom_size) { 956 vdev->rom_read_failed = true; 957 error_report("vfio-pci: Cannot read device rom at " 958 "%s", vdev->vbasedev.name); 959 error_printf("Device option ROM contents are probably invalid " 960 "(check dmesg).\nSkip option ROM probe with rombar=0, " 961 "or load from file with romfile=\n"); 962 return; 963 } 964 965 vdev->rom = g_malloc(size); 966 memset(vdev->rom, 0xff, size); 967 968 while (size) { 969 bytes = pread(vdev->vbasedev.fd, vdev->rom + off, 970 size, vdev->rom_offset + off); 971 if (bytes == 0) { 972 break; 973 } else if (bytes > 0) { 974 off += bytes; 975 size -= bytes; 976 } else { 977 if (errno == EINTR || errno == EAGAIN) { 978 continue; 979 } 980 error_report("vfio: Error reading device ROM: %m"); 981 break; 982 } 983 } 984 } 985 986 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) 987 { 988 VFIOPCIDevice *vdev = opaque; 989 union { 990 uint8_t byte; 991 uint16_t word; 992 uint32_t dword; 993 uint64_t qword; 994 } val; 995 uint64_t data = 0; 996 997 /* Load the ROM lazily when the guest tries to read it */ 998 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { 999 vfio_pci_load_rom(vdev); 1000 } 1001 1002 memcpy(&val, vdev->rom + addr, 1003 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); 1004 1005 switch (size) { 1006 case 1: 1007 data = val.byte; 1008 break; 1009 case 2: 1010 data = le16_to_cpu(val.word); 1011 break; 1012 case 4: 1013 data = le32_to_cpu(val.dword); 1014 break; 1015 default: 1016 hw_error("vfio: unsupported read size, %d bytes\n", size); 1017 break; 1018 } 1019 1020 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data); 1021 1022 return data; 1023 } 1024 1025 static void vfio_rom_write(void *opaque, hwaddr addr, 1026 uint64_t data, unsigned size) 1027 { 1028 } 1029 1030 static const MemoryRegionOps vfio_rom_ops = { 1031 .read = vfio_rom_read, 1032 .write = vfio_rom_write, 1033 .endianness = DEVICE_LITTLE_ENDIAN, 1034 }; 1035 1036 static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 1037 { 1038 PCIDevice *pdev = &vdev->pdev; 1039 uint16_t vendor_id, device_id; 1040 int count = 0; 1041 1042 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); 1043 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); 1044 1045 while (count < ARRAY_SIZE(romblacklist)) { 1046 if (romblacklist[count].vendor_id == vendor_id && 1047 romblacklist[count].device_id == device_id) { 1048 return true; 1049 } 1050 count++; 1051 } 1052 1053 return false; 1054 } 1055 1056 static void vfio_pci_size_rom(VFIOPCIDevice *vdev) 1057 { 1058 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); 1059 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; 1060 DeviceState *dev = DEVICE(vdev); 1061 char name[32]; 1062 int fd = vdev->vbasedev.fd; 1063 1064 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { 1065 /* Since pci handles romfile, just print a message and return */ 1066 if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) { 1067 error_printf("Warning : Device at %04x:%02x:%02x.%x " 1068 "is known to cause system instability issues during " 1069 "option rom execution. " 1070 "Proceeding anyway since user specified romfile\n", 1071 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1072 vdev->host.function); 1073 } 1074 return; 1075 } 1076 1077 /* 1078 * Use the same size ROM BAR as the physical device. The contents 1079 * will get filled in later when the guest tries to read it. 1080 */ 1081 if (pread(fd, &orig, 4, offset) != 4 || 1082 pwrite(fd, &size, 4, offset) != 4 || 1083 pread(fd, &size, 4, offset) != 4 || 1084 pwrite(fd, &orig, 4, offset) != 4) { 1085 error_report("%s(%04x:%02x:%02x.%x) failed: %m", 1086 __func__, vdev->host.domain, vdev->host.bus, 1087 vdev->host.slot, vdev->host.function); 1088 return; 1089 } 1090 1091 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; 1092 1093 if (!size) { 1094 return; 1095 } 1096 1097 if (vfio_blacklist_opt_rom(vdev)) { 1098 if (dev->opts && qemu_opt_get(dev->opts, "rombar")) { 1099 error_printf("Warning : Device at %04x:%02x:%02x.%x " 1100 "is known to cause system instability issues during " 1101 "option rom execution. " 1102 "Proceeding anyway since user specified non zero value for " 1103 "rombar\n", 1104 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1105 vdev->host.function); 1106 } else { 1107 error_printf("Warning : Rom loading for device at " 1108 "%04x:%02x:%02x.%x has been disabled due to " 1109 "system instability issues. " 1110 "Specify rombar=1 or romfile to force\n", 1111 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1112 vdev->host.function); 1113 return; 1114 } 1115 } 1116 1117 trace_vfio_pci_size_rom(vdev->vbasedev.name, size); 1118 1119 snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom", 1120 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1121 vdev->host.function); 1122 1123 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), 1124 &vfio_rom_ops, vdev, name, size); 1125 1126 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, 1127 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); 1128 1129 vdev->pdev.has_rom = true; 1130 vdev->rom_read_failed = false; 1131 } 1132 1133 static void vfio_vga_write(void *opaque, hwaddr addr, 1134 uint64_t data, unsigned size) 1135 { 1136 VFIOVGARegion *region = opaque; 1137 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); 1138 union { 1139 uint8_t byte; 1140 uint16_t word; 1141 uint32_t dword; 1142 uint64_t qword; 1143 } buf; 1144 off_t offset = vga->fd_offset + region->offset + addr; 1145 1146 switch (size) { 1147 case 1: 1148 buf.byte = data; 1149 break; 1150 case 2: 1151 buf.word = cpu_to_le16(data); 1152 break; 1153 case 4: 1154 buf.dword = cpu_to_le32(data); 1155 break; 1156 default: 1157 hw_error("vfio: unsupported write size, %d bytes", size); 1158 break; 1159 } 1160 1161 if (pwrite(vga->fd, &buf, size, offset) != size) { 1162 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", 1163 __func__, region->offset + addr, data, size); 1164 } 1165 1166 trace_vfio_vga_write(region->offset + addr, data, size); 1167 } 1168 1169 static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) 1170 { 1171 VFIOVGARegion *region = opaque; 1172 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); 1173 union { 1174 uint8_t byte; 1175 uint16_t word; 1176 uint32_t dword; 1177 uint64_t qword; 1178 } buf; 1179 uint64_t data = 0; 1180 off_t offset = vga->fd_offset + region->offset + addr; 1181 1182 if (pread(vga->fd, &buf, size, offset) != size) { 1183 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", 1184 __func__, region->offset + addr, size); 1185 return (uint64_t)-1; 1186 } 1187 1188 switch (size) { 1189 case 1: 1190 data = buf.byte; 1191 break; 1192 case 2: 1193 data = le16_to_cpu(buf.word); 1194 break; 1195 case 4: 1196 data = le32_to_cpu(buf.dword); 1197 break; 1198 default: 1199 hw_error("vfio: unsupported read size, %d bytes", size); 1200 break; 1201 } 1202 1203 trace_vfio_vga_read(region->offset + addr, size, data); 1204 1205 return data; 1206 } 1207 1208 static const MemoryRegionOps vfio_vga_ops = { 1209 .read = vfio_vga_read, 1210 .write = vfio_vga_write, 1211 .endianness = DEVICE_LITTLE_ENDIAN, 1212 }; 1213 1214 /* 1215 * Device specific quirks 1216 */ 1217 1218 /* Is range1 fully contained within range2? */ 1219 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 1220 uint64_t first2, uint64_t len2) { 1221 return (first1 >= first2 && first1 + len1 <= first2 + len2); 1222 } 1223 1224 static bool vfio_flags_enabled(uint8_t flags, uint8_t mask) 1225 { 1226 return (mask && (flags & mask) == mask); 1227 } 1228 1229 static uint64_t vfio_generic_window_quirk_read(void *opaque, 1230 hwaddr addr, unsigned size) 1231 { 1232 VFIOQuirk *quirk = opaque; 1233 VFIOPCIDevice *vdev = quirk->vdev; 1234 uint64_t data; 1235 1236 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && 1237 ranges_overlap(addr, size, 1238 quirk->data.data_offset, quirk->data.data_size)) { 1239 hwaddr offset = addr - quirk->data.data_offset; 1240 1241 if (!vfio_range_contained(addr, size, quirk->data.data_offset, 1242 quirk->data.data_size)) { 1243 hw_error("%s: window data read not fully contained: %s", 1244 __func__, memory_region_name(&quirk->mem)); 1245 } 1246 1247 data = vfio_pci_read_config(&vdev->pdev, 1248 quirk->data.address_val + offset, size); 1249 1250 trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem), 1251 vdev->vbasedev.name, 1252 quirk->data.bar, 1253 addr, size, data); 1254 } else { 1255 data = vfio_region_read(&vdev->bars[quirk->data.bar].region, 1256 addr + quirk->data.base_offset, size); 1257 } 1258 1259 return data; 1260 } 1261 1262 static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr, 1263 uint64_t data, unsigned size) 1264 { 1265 VFIOQuirk *quirk = opaque; 1266 VFIOPCIDevice *vdev = quirk->vdev; 1267 1268 if (ranges_overlap(addr, size, 1269 quirk->data.address_offset, quirk->data.address_size)) { 1270 1271 if (addr != quirk->data.address_offset) { 1272 hw_error("%s: offset write into address window: %s", 1273 __func__, memory_region_name(&quirk->mem)); 1274 } 1275 1276 if ((data & ~quirk->data.address_mask) == quirk->data.address_match) { 1277 quirk->data.flags |= quirk->data.write_flags | 1278 quirk->data.read_flags; 1279 quirk->data.address_val = data & quirk->data.address_mask; 1280 } else { 1281 quirk->data.flags &= ~(quirk->data.write_flags | 1282 quirk->data.read_flags); 1283 } 1284 } 1285 1286 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && 1287 ranges_overlap(addr, size, 1288 quirk->data.data_offset, quirk->data.data_size)) { 1289 hwaddr offset = addr - quirk->data.data_offset; 1290 1291 if (!vfio_range_contained(addr, size, quirk->data.data_offset, 1292 quirk->data.data_size)) { 1293 hw_error("%s: window data write not fully contained: %s", 1294 __func__, memory_region_name(&quirk->mem)); 1295 } 1296 1297 vfio_pci_write_config(&vdev->pdev, 1298 quirk->data.address_val + offset, data, size); 1299 trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem), 1300 vdev->vbasedev.name, 1301 quirk->data.bar, 1302 addr, data, size); 1303 return; 1304 } 1305 1306 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1307 addr + quirk->data.base_offset, data, size); 1308 } 1309 1310 static const MemoryRegionOps vfio_generic_window_quirk = { 1311 .read = vfio_generic_window_quirk_read, 1312 .write = vfio_generic_window_quirk_write, 1313 .endianness = DEVICE_LITTLE_ENDIAN, 1314 }; 1315 1316 static uint64_t vfio_generic_quirk_read(void *opaque, 1317 hwaddr addr, unsigned size) 1318 { 1319 VFIOQuirk *quirk = opaque; 1320 VFIOPCIDevice *vdev = quirk->vdev; 1321 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1322 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; 1323 uint64_t data; 1324 1325 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && 1326 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { 1327 if (!vfio_range_contained(addr, size, offset, 1328 quirk->data.address_mask + 1)) { 1329 hw_error("%s: read not fully contained: %s", 1330 __func__, memory_region_name(&quirk->mem)); 1331 } 1332 1333 data = vfio_pci_read_config(&vdev->pdev, addr - offset, size); 1334 1335 trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem), 1336 vdev->vbasedev.name, quirk->data.bar, 1337 addr + base, size, data); 1338 } else { 1339 data = vfio_region_read(&vdev->bars[quirk->data.bar].region, 1340 addr + base, size); 1341 } 1342 1343 return data; 1344 } 1345 1346 static void vfio_generic_quirk_write(void *opaque, hwaddr addr, 1347 uint64_t data, unsigned size) 1348 { 1349 VFIOQuirk *quirk = opaque; 1350 VFIOPCIDevice *vdev = quirk->vdev; 1351 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1352 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; 1353 1354 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && 1355 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { 1356 if (!vfio_range_contained(addr, size, offset, 1357 quirk->data.address_mask + 1)) { 1358 hw_error("%s: write not fully contained: %s", 1359 __func__, memory_region_name(&quirk->mem)); 1360 } 1361 1362 vfio_pci_write_config(&vdev->pdev, addr - offset, data, size); 1363 1364 trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem), 1365 vdev->vbasedev.name, quirk->data.bar, 1366 addr + base, data, size); 1367 } else { 1368 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1369 addr + base, data, size); 1370 } 1371 } 1372 1373 static const MemoryRegionOps vfio_generic_quirk = { 1374 .read = vfio_generic_quirk_read, 1375 .write = vfio_generic_quirk_write, 1376 .endianness = DEVICE_LITTLE_ENDIAN, 1377 }; 1378 1379 #define PCI_VENDOR_ID_ATI 0x1002 1380 1381 /* 1382 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 1383 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 1384 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 1385 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 1386 * I/O port BAR address. Originally this was coded to return the virtual BAR 1387 * address only if the physical register read returns the actual BAR address, 1388 * but users have reported greater success if we return the virtual address 1389 * unconditionally. 1390 */ 1391 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 1392 hwaddr addr, unsigned size) 1393 { 1394 VFIOQuirk *quirk = opaque; 1395 VFIOPCIDevice *vdev = quirk->vdev; 1396 uint64_t data = vfio_pci_read_config(&vdev->pdev, 1397 PCI_BASE_ADDRESS_0 + (4 * 4) + 1, 1398 size); 1399 trace_vfio_ati_3c3_quirk_read(data); 1400 1401 return data; 1402 } 1403 1404 static const MemoryRegionOps vfio_ati_3c3_quirk = { 1405 .read = vfio_ati_3c3_quirk_read, 1406 .endianness = DEVICE_LITTLE_ENDIAN, 1407 }; 1408 1409 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 1410 { 1411 PCIDevice *pdev = &vdev->pdev; 1412 VFIOQuirk *quirk; 1413 1414 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1415 return; 1416 } 1417 1418 /* 1419 * As long as the BAR is >= 256 bytes it will be aligned such that the 1420 * lower byte is always zero. Filter out anything else, if it exists. 1421 */ 1422 if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 1423 return; 1424 } 1425 1426 quirk = g_malloc0(sizeof(*quirk)); 1427 quirk->vdev = vdev; 1428 1429 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk, 1430 "vfio-ati-3c3-quirk", 1); 1431 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 1432 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem); 1433 1434 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, 1435 quirk, next); 1436 1437 trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name); 1438 } 1439 1440 /* 1441 * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI 1442 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 1443 * the MMIO space directly, but a window to this space is provided through 1444 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 1445 * data register. When the address is programmed to a range of 0x4000-0x4fff 1446 * PCI configuration space is available. Experimentation seems to indicate 1447 * that only read-only access is provided, but we drop writes when the window 1448 * is enabled to config space nonetheless. 1449 */ 1450 static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr) 1451 { 1452 PCIDevice *pdev = &vdev->pdev; 1453 VFIOQuirk *quirk; 1454 1455 if (!vdev->has_vga || nr != 4 || 1456 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1457 return; 1458 } 1459 1460 quirk = g_malloc0(sizeof(*quirk)); 1461 quirk->vdev = vdev; 1462 quirk->data.address_size = 4; 1463 quirk->data.data_offset = 4; 1464 quirk->data.data_size = 4; 1465 quirk->data.address_match = 0x4000; 1466 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1467 quirk->data.bar = nr; 1468 quirk->data.read_flags = quirk->data.write_flags = 1; 1469 1470 memory_region_init_io(&quirk->mem, OBJECT(vdev), 1471 &vfio_generic_window_quirk, quirk, 1472 "vfio-ati-bar4-window-quirk", 8); 1473 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1474 quirk->data.base_offset, &quirk->mem, 1); 1475 1476 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1477 1478 trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name); 1479 } 1480 1481 #define PCI_VENDOR_ID_REALTEK 0x10ec 1482 1483 /* 1484 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 1485 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 1486 * register. According to the Linux r8169 driver, the MSI-X table is addressed 1487 * when the "type" portion of the address register is set to 0x1. This appears 1488 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 1489 * "address latched" indicator. Bits 12:15 are a mask field, which we can 1490 * ignore because the MSI-X table should always be accessed as a dword (full 1491 * mask). Bits 0:11 is offset within the type. 1492 * 1493 * Example trace: 1494 * 1495 * Read from MSI-X table offset 0 1496 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 1497 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 1498 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 1499 * 1500 * Write 0xfee00000 to MSI-X table offset 0 1501 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 1502 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 1503 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 1504 */ 1505 1506 static uint64_t vfio_rtl8168_window_quirk_read(void *opaque, 1507 hwaddr addr, unsigned size) 1508 { 1509 VFIOQuirk *quirk = opaque; 1510 VFIOPCIDevice *vdev = quirk->vdev; 1511 1512 switch (addr) { 1513 case 4: /* address */ 1514 if (quirk->data.flags) { 1515 trace_vfio_rtl8168_window_quirk_read_fake( 1516 memory_region_name(&quirk->mem), 1517 vdev->vbasedev.name); 1518 1519 return quirk->data.address_match ^ 0x10000000U; 1520 } 1521 break; 1522 case 0: /* data */ 1523 if (quirk->data.flags) { 1524 uint64_t val; 1525 1526 trace_vfio_rtl8168_window_quirk_read_table( 1527 memory_region_name(&quirk->mem), 1528 vdev->vbasedev.name); 1529 1530 if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 1531 return 0; 1532 } 1533 1534 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, 1535 (hwaddr)(quirk->data.address_match 1536 & 0xfff), 1537 &val, 1538 size, 1539 MEMTXATTRS_UNSPECIFIED); 1540 return val; 1541 } 1542 } 1543 1544 trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem), 1545 vdev->vbasedev.name); 1546 1547 return vfio_region_read(&vdev->bars[quirk->data.bar].region, 1548 addr + 0x70, size); 1549 } 1550 1551 static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr, 1552 uint64_t data, unsigned size) 1553 { 1554 VFIOQuirk *quirk = opaque; 1555 VFIOPCIDevice *vdev = quirk->vdev; 1556 1557 switch (addr) { 1558 case 4: /* address */ 1559 if ((data & 0x7fff0000) == 0x10000) { 1560 if (data & 0x10000000U && 1561 vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 1562 1563 trace_vfio_rtl8168_window_quirk_write_table( 1564 memory_region_name(&quirk->mem), 1565 vdev->vbasedev.name); 1566 1567 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 1568 (hwaddr)(quirk->data.address_match 1569 & 0xfff), 1570 data, 1571 size, 1572 MEMTXATTRS_UNSPECIFIED); 1573 } 1574 1575 quirk->data.flags = 1; 1576 quirk->data.address_match = data; 1577 1578 return; 1579 } 1580 quirk->data.flags = 0; 1581 break; 1582 case 0: /* data */ 1583 quirk->data.address_mask = data; 1584 break; 1585 } 1586 1587 trace_vfio_rtl8168_window_quirk_write_direct( 1588 memory_region_name(&quirk->mem), 1589 vdev->vbasedev.name); 1590 1591 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1592 addr + 0x70, data, size); 1593 } 1594 1595 static const MemoryRegionOps vfio_rtl8168_window_quirk = { 1596 .read = vfio_rtl8168_window_quirk_read, 1597 .write = vfio_rtl8168_window_quirk_write, 1598 .valid = { 1599 .min_access_size = 4, 1600 .max_access_size = 4, 1601 .unaligned = false, 1602 }, 1603 .endianness = DEVICE_LITTLE_ENDIAN, 1604 }; 1605 1606 static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr) 1607 { 1608 PCIDevice *pdev = &vdev->pdev; 1609 VFIOQuirk *quirk; 1610 1611 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK || 1612 pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) { 1613 return; 1614 } 1615 1616 quirk = g_malloc0(sizeof(*quirk)); 1617 quirk->vdev = vdev; 1618 quirk->data.bar = nr; 1619 1620 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk, 1621 quirk, "vfio-rtl8168-window-quirk", 8); 1622 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1623 0x70, &quirk->mem, 1); 1624 1625 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1626 1627 trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name); 1628 } 1629 /* 1630 * Trap the BAR2 MMIO window to config space as well. 1631 */ 1632 static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr) 1633 { 1634 PCIDevice *pdev = &vdev->pdev; 1635 VFIOQuirk *quirk; 1636 1637 /* Only enable on newer devices where BAR2 is 64bit */ 1638 if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 || 1639 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1640 return; 1641 } 1642 1643 quirk = g_malloc0(sizeof(*quirk)); 1644 quirk->vdev = vdev; 1645 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1646 quirk->data.address_match = 0x4000; 1647 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1648 quirk->data.bar = nr; 1649 1650 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, 1651 "vfio-ati-bar2-4000-quirk", 1652 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1653 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1654 quirk->data.address_match & TARGET_PAGE_MASK, 1655 &quirk->mem, 1); 1656 1657 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1658 1659 trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name); 1660 } 1661 1662 /* 1663 * Older ATI/AMD cards like the X550 have a similar window to that above. 1664 * I/O port BAR1 provides a window to a mirror of PCI config space located 1665 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 1666 * note it for future reference. 1667 */ 1668 1669 #define PCI_VENDOR_ID_NVIDIA 0x10de 1670 1671 /* 1672 * Nvidia has several different methods to get to config space, the 1673 * nouveu project has several of these documented here: 1674 * https://github.com/pathscale/envytools/tree/master/hwdocs 1675 * 1676 * The first quirk is actually not documented in envytools and is found 1677 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 1678 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 1679 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 1680 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 1681 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 1682 * is written for a write to 0x3d4. The BAR0 offset is then accessible 1683 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 1684 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 1685 */ 1686 enum { 1687 NV_3D0_NONE = 0, 1688 NV_3D0_SELECT, 1689 NV_3D0_WINDOW, 1690 NV_3D0_READ, 1691 NV_3D0_WRITE, 1692 }; 1693 1694 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 1695 hwaddr addr, unsigned size) 1696 { 1697 VFIOQuirk *quirk = opaque; 1698 VFIOPCIDevice *vdev = quirk->vdev; 1699 PCIDevice *pdev = &vdev->pdev; 1700 uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], 1701 addr + quirk->data.base_offset, size); 1702 1703 if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) { 1704 data = vfio_pci_read_config(pdev, quirk->data.address_val, size); 1705 trace_vfio_nvidia_3d0_quirk_read(size, data); 1706 } 1707 1708 quirk->data.flags = NV_3D0_NONE; 1709 1710 return data; 1711 } 1712 1713 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 1714 uint64_t data, unsigned size) 1715 { 1716 VFIOQuirk *quirk = opaque; 1717 VFIOPCIDevice *vdev = quirk->vdev; 1718 PCIDevice *pdev = &vdev->pdev; 1719 1720 switch (quirk->data.flags) { 1721 case NV_3D0_NONE: 1722 if (addr == quirk->data.address_offset && data == 0x338) { 1723 quirk->data.flags = NV_3D0_SELECT; 1724 } 1725 break; 1726 case NV_3D0_SELECT: 1727 quirk->data.flags = NV_3D0_NONE; 1728 if (addr == quirk->data.data_offset && 1729 (data & ~quirk->data.address_mask) == quirk->data.address_match) { 1730 quirk->data.flags = NV_3D0_WINDOW; 1731 quirk->data.address_val = data & quirk->data.address_mask; 1732 } 1733 break; 1734 case NV_3D0_WINDOW: 1735 quirk->data.flags = NV_3D0_NONE; 1736 if (addr == quirk->data.address_offset) { 1737 if (data == 0x538) { 1738 quirk->data.flags = NV_3D0_READ; 1739 } else if (data == 0x738) { 1740 quirk->data.flags = NV_3D0_WRITE; 1741 } 1742 } 1743 break; 1744 case NV_3D0_WRITE: 1745 quirk->data.flags = NV_3D0_NONE; 1746 if (addr == quirk->data.data_offset) { 1747 vfio_pci_write_config(pdev, quirk->data.address_val, data, size); 1748 trace_vfio_nvidia_3d0_quirk_write(data, size); 1749 return; 1750 } 1751 break; 1752 } 1753 1754 vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], 1755 addr + quirk->data.base_offset, data, size); 1756 } 1757 1758 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 1759 .read = vfio_nvidia_3d0_quirk_read, 1760 .write = vfio_nvidia_3d0_quirk_write, 1761 .endianness = DEVICE_LITTLE_ENDIAN, 1762 }; 1763 1764 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 1765 { 1766 PCIDevice *pdev = &vdev->pdev; 1767 VFIOQuirk *quirk; 1768 1769 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA || 1770 !vdev->bars[1].region.size) { 1771 return; 1772 } 1773 1774 quirk = g_malloc0(sizeof(*quirk)); 1775 quirk->vdev = vdev; 1776 quirk->data.base_offset = 0x10; 1777 quirk->data.address_offset = 4; 1778 quirk->data.address_size = 2; 1779 quirk->data.address_match = 0x1800; 1780 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; 1781 quirk->data.data_offset = 0; 1782 quirk->data.data_size = 4; 1783 1784 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk, 1785 quirk, "vfio-nvidia-3d0-quirk", 6); 1786 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 1787 quirk->data.base_offset, &quirk->mem); 1788 1789 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, 1790 quirk, next); 1791 1792 trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name); 1793 } 1794 1795 /* 1796 * The second quirk is documented in envytools. The I/O port BAR5 is just 1797 * a set of address/data ports to the MMIO BARs. The BAR we care about is 1798 * again BAR0. This backdoor is apparently a bit newer than the one above 1799 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 1800 * space, including extended space is available at the 4k @0x88000. 1801 */ 1802 enum { 1803 NV_BAR5_ADDRESS = 0x1, 1804 NV_BAR5_ENABLE = 0x2, 1805 NV_BAR5_MASTER = 0x4, 1806 NV_BAR5_VALID = 0x7, 1807 }; 1808 1809 static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr, 1810 uint64_t data, unsigned size) 1811 { 1812 VFIOQuirk *quirk = opaque; 1813 1814 switch (addr) { 1815 case 0x0: 1816 if (data & 0x1) { 1817 quirk->data.flags |= NV_BAR5_MASTER; 1818 } else { 1819 quirk->data.flags &= ~NV_BAR5_MASTER; 1820 } 1821 break; 1822 case 0x4: 1823 if (data & 0x1) { 1824 quirk->data.flags |= NV_BAR5_ENABLE; 1825 } else { 1826 quirk->data.flags &= ~NV_BAR5_ENABLE; 1827 } 1828 break; 1829 case 0x8: 1830 if (quirk->data.flags & NV_BAR5_MASTER) { 1831 if ((data & ~0xfff) == 0x88000) { 1832 quirk->data.flags |= NV_BAR5_ADDRESS; 1833 quirk->data.address_val = data & 0xfff; 1834 } else if ((data & ~0xff) == 0x1800) { 1835 quirk->data.flags |= NV_BAR5_ADDRESS; 1836 quirk->data.address_val = data & 0xff; 1837 } else { 1838 quirk->data.flags &= ~NV_BAR5_ADDRESS; 1839 } 1840 } 1841 break; 1842 } 1843 1844 vfio_generic_window_quirk_write(opaque, addr, data, size); 1845 } 1846 1847 static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = { 1848 .read = vfio_generic_window_quirk_read, 1849 .write = vfio_nvidia_bar5_window_quirk_write, 1850 .valid.min_access_size = 4, 1851 .endianness = DEVICE_LITTLE_ENDIAN, 1852 }; 1853 1854 static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr) 1855 { 1856 PCIDevice *pdev = &vdev->pdev; 1857 VFIOQuirk *quirk; 1858 1859 if (!vdev->has_vga || nr != 5 || 1860 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { 1861 return; 1862 } 1863 1864 quirk = g_malloc0(sizeof(*quirk)); 1865 quirk->vdev = vdev; 1866 quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID; 1867 quirk->data.address_offset = 0x8; 1868 quirk->data.address_size = 0; /* actually 4, but avoids generic code */ 1869 quirk->data.data_offset = 0xc; 1870 quirk->data.data_size = 4; 1871 quirk->data.bar = nr; 1872 1873 memory_region_init_io(&quirk->mem, OBJECT(vdev), 1874 &vfio_nvidia_bar5_window_quirk, quirk, 1875 "vfio-nvidia-bar5-window-quirk", 16); 1876 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1877 0, &quirk->mem, 1); 1878 1879 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1880 1881 trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name); 1882 } 1883 1884 static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr, 1885 uint64_t data, unsigned size) 1886 { 1887 VFIOQuirk *quirk = opaque; 1888 VFIOPCIDevice *vdev = quirk->vdev; 1889 PCIDevice *pdev = &vdev->pdev; 1890 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1891 1892 vfio_generic_quirk_write(opaque, addr, data, size); 1893 1894 /* 1895 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 1896 * MSI capability ID register. Both the ID and next register are 1897 * read-only, so we allow writes covering either of those to real hw. 1898 * NB - only fixed for the 0x88000 MMIO window. 1899 */ 1900 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 1901 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 1902 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1903 addr + base, data, size); 1904 } 1905 } 1906 1907 static const MemoryRegionOps vfio_nvidia_88000_quirk = { 1908 .read = vfio_generic_quirk_read, 1909 .write = vfio_nvidia_88000_quirk_write, 1910 .endianness = DEVICE_LITTLE_ENDIAN, 1911 }; 1912 1913 /* 1914 * Finally, BAR0 itself. We want to redirect any accesses to either 1915 * 0x1800 or 0x88000 through the PCI config space access functions. 1916 * 1917 * NB - quirk at a page granularity or else they don't seem to work when 1918 * BARs are mmap'd 1919 * 1920 * Here's offset 0x88000... 1921 */ 1922 static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr) 1923 { 1924 PCIDevice *pdev = &vdev->pdev; 1925 VFIOQuirk *quirk; 1926 uint16_t vendor, class; 1927 1928 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID); 1929 class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 1930 1931 if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA || 1932 class != PCI_CLASS_DISPLAY_VGA) { 1933 return; 1934 } 1935 1936 quirk = g_malloc0(sizeof(*quirk)); 1937 quirk->vdev = vdev; 1938 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1939 quirk->data.address_match = 0x88000; 1940 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1941 quirk->data.bar = nr; 1942 1943 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk, 1944 quirk, "vfio-nvidia-bar0-88000-quirk", 1945 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1946 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1947 quirk->data.address_match & TARGET_PAGE_MASK, 1948 &quirk->mem, 1); 1949 1950 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1951 1952 trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name); 1953 } 1954 1955 /* 1956 * And here's the same for BAR0 offset 0x1800... 1957 */ 1958 static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr) 1959 { 1960 PCIDevice *pdev = &vdev->pdev; 1961 VFIOQuirk *quirk; 1962 1963 if (!vdev->has_vga || nr != 0 || 1964 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { 1965 return; 1966 } 1967 1968 /* Log the chipset ID */ 1969 trace_vfio_probe_nvidia_bar0_1800_quirk_id( 1970 (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20) 1971 & 0xff); 1972 1973 quirk = g_malloc0(sizeof(*quirk)); 1974 quirk->vdev = vdev; 1975 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1976 quirk->data.address_match = 0x1800; 1977 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; 1978 quirk->data.bar = nr; 1979 1980 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, 1981 "vfio-nvidia-bar0-1800-quirk", 1982 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1983 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1984 quirk->data.address_match & TARGET_PAGE_MASK, 1985 &quirk->mem, 1); 1986 1987 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1988 1989 trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name); 1990 } 1991 1992 /* 1993 * TODO - Some Nvidia devices provide config access to their companion HDA 1994 * device and even to their parent bridge via these config space mirrors. 1995 * Add quirks for those regions. 1996 */ 1997 1998 /* 1999 * Common quirk probe entry points. 2000 */ 2001 static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 2002 { 2003 vfio_vga_probe_ati_3c3_quirk(vdev); 2004 vfio_vga_probe_nvidia_3d0_quirk(vdev); 2005 } 2006 2007 static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev) 2008 { 2009 VFIOQuirk *quirk; 2010 int i; 2011 2012 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { 2013 QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) { 2014 memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem); 2015 } 2016 } 2017 } 2018 2019 static void vfio_vga_quirk_free(VFIOPCIDevice *vdev) 2020 { 2021 int i; 2022 2023 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { 2024 while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) { 2025 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks); 2026 object_unparent(OBJECT(&quirk->mem)); 2027 QLIST_REMOVE(quirk, next); 2028 g_free(quirk); 2029 } 2030 } 2031 } 2032 2033 static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 2034 { 2035 vfio_probe_ati_bar4_window_quirk(vdev, nr); 2036 vfio_probe_ati_bar2_4000_quirk(vdev, nr); 2037 vfio_probe_nvidia_bar5_window_quirk(vdev, nr); 2038 vfio_probe_nvidia_bar0_88000_quirk(vdev, nr); 2039 vfio_probe_nvidia_bar0_1800_quirk(vdev, nr); 2040 vfio_probe_rtl8168_bar2_window_quirk(vdev, nr); 2041 } 2042 2043 static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr) 2044 { 2045 VFIOBAR *bar = &vdev->bars[nr]; 2046 VFIOQuirk *quirk; 2047 2048 QLIST_FOREACH(quirk, &bar->quirks, next) { 2049 memory_region_del_subregion(&bar->region.mem, &quirk->mem); 2050 } 2051 } 2052 2053 static void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr) 2054 { 2055 VFIOBAR *bar = &vdev->bars[nr]; 2056 2057 while (!QLIST_EMPTY(&bar->quirks)) { 2058 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 2059 object_unparent(OBJECT(&quirk->mem)); 2060 QLIST_REMOVE(quirk, next); 2061 g_free(quirk); 2062 } 2063 } 2064 2065 /* 2066 * PCI config space 2067 */ 2068 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) 2069 { 2070 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 2071 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; 2072 2073 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); 2074 emu_bits = le32_to_cpu(emu_bits); 2075 2076 if (emu_bits) { 2077 emu_val = pci_default_read_config(pdev, addr, len); 2078 } 2079 2080 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { 2081 ssize_t ret; 2082 2083 ret = pread(vdev->vbasedev.fd, &phys_val, len, 2084 vdev->config_offset + addr); 2085 if (ret != len) { 2086 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m", 2087 __func__, vdev->host.domain, vdev->host.bus, 2088 vdev->host.slot, vdev->host.function, addr, len); 2089 return -errno; 2090 } 2091 phys_val = le32_to_cpu(phys_val); 2092 } 2093 2094 val = (emu_val & emu_bits) | (phys_val & ~emu_bits); 2095 2096 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val); 2097 2098 return val; 2099 } 2100 2101 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, 2102 uint32_t val, int len) 2103 { 2104 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 2105 uint32_t val_le = cpu_to_le32(val); 2106 2107 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len); 2108 2109 /* Write everything to VFIO, let it filter out what we can't write */ 2110 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr) 2111 != len) { 2112 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m", 2113 __func__, vdev->host.domain, vdev->host.bus, 2114 vdev->host.slot, vdev->host.function, addr, val, len); 2115 } 2116 2117 /* MSI/MSI-X Enabling/Disabling */ 2118 if (pdev->cap_present & QEMU_PCI_CAP_MSI && 2119 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { 2120 int is_enabled, was_enabled = msi_enabled(pdev); 2121 2122 pci_default_write_config(pdev, addr, val, len); 2123 2124 is_enabled = msi_enabled(pdev); 2125 2126 if (!was_enabled) { 2127 if (is_enabled) { 2128 vfio_enable_msi(vdev); 2129 } 2130 } else { 2131 if (!is_enabled) { 2132 vfio_disable_msi(vdev); 2133 } else { 2134 vfio_update_msi(vdev); 2135 } 2136 } 2137 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && 2138 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { 2139 int is_enabled, was_enabled = msix_enabled(pdev); 2140 2141 pci_default_write_config(pdev, addr, val, len); 2142 2143 is_enabled = msix_enabled(pdev); 2144 2145 if (!was_enabled && is_enabled) { 2146 vfio_enable_msix(vdev); 2147 } else if (was_enabled && !is_enabled) { 2148 vfio_disable_msix(vdev); 2149 } 2150 } else { 2151 /* Write everything to QEMU to keep emulated bits correct */ 2152 pci_default_write_config(pdev, addr, val, len); 2153 } 2154 } 2155 2156 /* 2157 * Interrupt setup 2158 */ 2159 static void vfio_disable_interrupts(VFIOPCIDevice *vdev) 2160 { 2161 /* 2162 * More complicated than it looks. Disabling MSI/X transitions the 2163 * device to INTx mode (if supported). Therefore we need to first 2164 * disable MSI/X and then cleanup by disabling INTx. 2165 */ 2166 if (vdev->interrupt == VFIO_INT_MSIX) { 2167 vfio_disable_msix(vdev); 2168 } else if (vdev->interrupt == VFIO_INT_MSI) { 2169 vfio_disable_msi(vdev); 2170 } 2171 2172 if (vdev->interrupt == VFIO_INT_INTx) { 2173 vfio_disable_intx(vdev); 2174 } 2175 } 2176 2177 static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos) 2178 { 2179 uint16_t ctrl; 2180 bool msi_64bit, msi_maskbit; 2181 int ret, entries; 2182 2183 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), 2184 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { 2185 return -errno; 2186 } 2187 ctrl = le16_to_cpu(ctrl); 2188 2189 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); 2190 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); 2191 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); 2192 2193 trace_vfio_setup_msi(vdev->vbasedev.name, pos); 2194 2195 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit); 2196 if (ret < 0) { 2197 if (ret == -ENOTSUP) { 2198 return 0; 2199 } 2200 error_report("vfio: msi_init failed"); 2201 return ret; 2202 } 2203 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); 2204 2205 return 0; 2206 } 2207 2208 /* 2209 * We don't have any control over how pci_add_capability() inserts 2210 * capabilities into the chain. In order to setup MSI-X we need a 2211 * MemoryRegion for the BAR. In order to setup the BAR and not 2212 * attempt to mmap the MSI-X table area, which VFIO won't allow, we 2213 * need to first look for where the MSI-X table lives. So we 2214 * unfortunately split MSI-X setup across two functions. 2215 */ 2216 static int vfio_early_setup_msix(VFIOPCIDevice *vdev) 2217 { 2218 uint8_t pos; 2219 uint16_t ctrl; 2220 uint32_t table, pba; 2221 int fd = vdev->vbasedev.fd; 2222 2223 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); 2224 if (!pos) { 2225 return 0; 2226 } 2227 2228 if (pread(fd, &ctrl, sizeof(ctrl), 2229 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { 2230 return -errno; 2231 } 2232 2233 if (pread(fd, &table, sizeof(table), 2234 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { 2235 return -errno; 2236 } 2237 2238 if (pread(fd, &pba, sizeof(pba), 2239 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { 2240 return -errno; 2241 } 2242 2243 ctrl = le16_to_cpu(ctrl); 2244 table = le32_to_cpu(table); 2245 pba = le32_to_cpu(pba); 2246 2247 vdev->msix = g_malloc0(sizeof(*(vdev->msix))); 2248 vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; 2249 vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; 2250 vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; 2251 vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; 2252 vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 2253 2254 trace_vfio_early_setup_msix(vdev->vbasedev.name, pos, 2255 vdev->msix->table_bar, 2256 vdev->msix->table_offset, 2257 vdev->msix->entries); 2258 2259 return 0; 2260 } 2261 2262 static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos) 2263 { 2264 int ret; 2265 2266 ret = msix_init(&vdev->pdev, vdev->msix->entries, 2267 &vdev->bars[vdev->msix->table_bar].region.mem, 2268 vdev->msix->table_bar, vdev->msix->table_offset, 2269 &vdev->bars[vdev->msix->pba_bar].region.mem, 2270 vdev->msix->pba_bar, vdev->msix->pba_offset, pos); 2271 if (ret < 0) { 2272 if (ret == -ENOTSUP) { 2273 return 0; 2274 } 2275 error_report("vfio: msix_init failed"); 2276 return ret; 2277 } 2278 2279 return 0; 2280 } 2281 2282 static void vfio_teardown_msi(VFIOPCIDevice *vdev) 2283 { 2284 msi_uninit(&vdev->pdev); 2285 2286 if (vdev->msix) { 2287 msix_uninit(&vdev->pdev, 2288 &vdev->bars[vdev->msix->table_bar].region.mem, 2289 &vdev->bars[vdev->msix->pba_bar].region.mem); 2290 } 2291 } 2292 2293 /* 2294 * Resource setup 2295 */ 2296 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled) 2297 { 2298 int i; 2299 2300 for (i = 0; i < PCI_ROM_SLOT; i++) { 2301 VFIOBAR *bar = &vdev->bars[i]; 2302 2303 if (!bar->region.size) { 2304 continue; 2305 } 2306 2307 memory_region_set_enabled(&bar->region.mmap_mem, enabled); 2308 if (vdev->msix && vdev->msix->table_bar == i) { 2309 memory_region_set_enabled(&vdev->msix->mmap_mem, enabled); 2310 } 2311 } 2312 } 2313 2314 static void vfio_unregister_bar(VFIOPCIDevice *vdev, int nr) 2315 { 2316 VFIOBAR *bar = &vdev->bars[nr]; 2317 2318 if (!bar->region.size) { 2319 return; 2320 } 2321 2322 vfio_bar_quirk_teardown(vdev, nr); 2323 2324 memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem); 2325 2326 if (vdev->msix && vdev->msix->table_bar == nr) { 2327 memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem); 2328 } 2329 } 2330 2331 static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr) 2332 { 2333 VFIOBAR *bar = &vdev->bars[nr]; 2334 2335 if (!bar->region.size) { 2336 return; 2337 } 2338 2339 vfio_bar_quirk_free(vdev, nr); 2340 2341 munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem)); 2342 2343 if (vdev->msix && vdev->msix->table_bar == nr) { 2344 munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem)); 2345 } 2346 } 2347 2348 static void vfio_map_bar(VFIOPCIDevice *vdev, int nr) 2349 { 2350 VFIOBAR *bar = &vdev->bars[nr]; 2351 uint64_t size = bar->region.size; 2352 char name[64]; 2353 uint32_t pci_bar; 2354 uint8_t type; 2355 int ret; 2356 2357 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ 2358 if (!size) { 2359 return; 2360 } 2361 2362 snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d", 2363 vdev->host.domain, vdev->host.bus, vdev->host.slot, 2364 vdev->host.function, nr); 2365 2366 /* Determine what type of BAR this is for registration */ 2367 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar), 2368 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); 2369 if (ret != sizeof(pci_bar)) { 2370 error_report("vfio: Failed to read BAR %d (%m)", nr); 2371 return; 2372 } 2373 2374 pci_bar = le32_to_cpu(pci_bar); 2375 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO); 2376 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64); 2377 type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK : 2378 ~PCI_BASE_ADDRESS_MEM_MASK); 2379 2380 /* A "slow" read/write mapping underlies all BARs */ 2381 memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops, 2382 bar, name, size); 2383 pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem); 2384 2385 /* 2386 * We can't mmap areas overlapping the MSIX vector table, so we 2387 * potentially insert a direct-mapped subregion before and after it. 2388 */ 2389 if (vdev->msix && vdev->msix->table_bar == nr) { 2390 size = vdev->msix->table_offset & qemu_host_page_mask; 2391 } 2392 2393 strncat(name, " mmap", sizeof(name) - strlen(name) - 1); 2394 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem, 2395 &bar->region.mmap_mem, &bar->region.mmap, 2396 size, 0, name)) { 2397 error_report("%s unsupported. Performance may be slow", name); 2398 } 2399 2400 if (vdev->msix && vdev->msix->table_bar == nr) { 2401 uint64_t start; 2402 2403 start = HOST_PAGE_ALIGN(vdev->msix->table_offset + 2404 (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); 2405 2406 size = start < bar->region.size ? bar->region.size - start : 0; 2407 strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1); 2408 /* VFIOMSIXInfo contains another MemoryRegion for this mapping */ 2409 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem, 2410 &vdev->msix->mmap_mem, 2411 &vdev->msix->mmap, size, start, name)) { 2412 error_report("%s unsupported. Performance may be slow", name); 2413 } 2414 } 2415 2416 vfio_bar_quirk_setup(vdev, nr); 2417 } 2418 2419 static void vfio_map_bars(VFIOPCIDevice *vdev) 2420 { 2421 int i; 2422 2423 for (i = 0; i < PCI_ROM_SLOT; i++) { 2424 vfio_map_bar(vdev, i); 2425 } 2426 2427 if (vdev->has_vga) { 2428 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem, 2429 OBJECT(vdev), &vfio_vga_ops, 2430 &vdev->vga.region[QEMU_PCI_VGA_MEM], 2431 "vfio-vga-mmio@0xa0000", 2432 QEMU_PCI_VGA_MEM_SIZE); 2433 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, 2434 OBJECT(vdev), &vfio_vga_ops, 2435 &vdev->vga.region[QEMU_PCI_VGA_IO_LO], 2436 "vfio-vga-io@0x3b0", 2437 QEMU_PCI_VGA_IO_LO_SIZE); 2438 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 2439 OBJECT(vdev), &vfio_vga_ops, 2440 &vdev->vga.region[QEMU_PCI_VGA_IO_HI], 2441 "vfio-vga-io@0x3c0", 2442 QEMU_PCI_VGA_IO_HI_SIZE); 2443 2444 pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem, 2445 &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, 2446 &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem); 2447 vfio_vga_quirk_setup(vdev); 2448 } 2449 } 2450 2451 static void vfio_unregister_bars(VFIOPCIDevice *vdev) 2452 { 2453 int i; 2454 2455 for (i = 0; i < PCI_ROM_SLOT; i++) { 2456 vfio_unregister_bar(vdev, i); 2457 } 2458 2459 if (vdev->has_vga) { 2460 vfio_vga_quirk_teardown(vdev); 2461 pci_unregister_vga(&vdev->pdev); 2462 } 2463 } 2464 2465 static void vfio_unmap_bars(VFIOPCIDevice *vdev) 2466 { 2467 int i; 2468 2469 for (i = 0; i < PCI_ROM_SLOT; i++) { 2470 vfio_unmap_bar(vdev, i); 2471 } 2472 2473 if (vdev->has_vga) { 2474 vfio_vga_quirk_free(vdev); 2475 } 2476 } 2477 2478 /* 2479 * General setup 2480 */ 2481 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) 2482 { 2483 uint8_t tmp, next = 0xff; 2484 2485 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; 2486 tmp = pdev->config[tmp + 1]) { 2487 if (tmp > pos && tmp < next) { 2488 next = tmp; 2489 } 2490 } 2491 2492 return next - pos; 2493 } 2494 2495 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) 2496 { 2497 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); 2498 } 2499 2500 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos, 2501 uint16_t val, uint16_t mask) 2502 { 2503 vfio_set_word_bits(vdev->pdev.config + pos, val, mask); 2504 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); 2505 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); 2506 } 2507 2508 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) 2509 { 2510 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); 2511 } 2512 2513 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos, 2514 uint32_t val, uint32_t mask) 2515 { 2516 vfio_set_long_bits(vdev->pdev.config + pos, val, mask); 2517 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); 2518 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); 2519 } 2520 2521 static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size) 2522 { 2523 uint16_t flags; 2524 uint8_t type; 2525 2526 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); 2527 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; 2528 2529 if (type != PCI_EXP_TYPE_ENDPOINT && 2530 type != PCI_EXP_TYPE_LEG_END && 2531 type != PCI_EXP_TYPE_RC_END) { 2532 2533 error_report("vfio: Assignment of PCIe type 0x%x " 2534 "devices is not currently supported", type); 2535 return -EINVAL; 2536 } 2537 2538 if (!pci_bus_is_express(vdev->pdev.bus)) { 2539 /* 2540 * Use express capability as-is on PCI bus. It doesn't make much 2541 * sense to even expose, but some drivers (ex. tg3) depend on it 2542 * and guests don't seem to be particular about it. We'll need 2543 * to revist this or force express devices to express buses if we 2544 * ever expose an IOMMU to the guest. 2545 */ 2546 } else if (pci_bus_is_root(vdev->pdev.bus)) { 2547 /* 2548 * On a Root Complex bus Endpoints become Root Complex Integrated 2549 * Endpoints, which changes the type and clears the LNK & LNK2 fields. 2550 */ 2551 if (type == PCI_EXP_TYPE_ENDPOINT) { 2552 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2553 PCI_EXP_TYPE_RC_END << 4, 2554 PCI_EXP_FLAGS_TYPE); 2555 2556 /* Link Capabilities, Status, and Control goes away */ 2557 if (size > PCI_EXP_LNKCTL) { 2558 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); 2559 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); 2560 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); 2561 2562 #ifndef PCI_EXP_LNKCAP2 2563 #define PCI_EXP_LNKCAP2 44 2564 #endif 2565 #ifndef PCI_EXP_LNKSTA2 2566 #define PCI_EXP_LNKSTA2 50 2567 #endif 2568 /* Link 2 Capabilities, Status, and Control goes away */ 2569 if (size > PCI_EXP_LNKCAP2) { 2570 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); 2571 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); 2572 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); 2573 } 2574 } 2575 2576 } else if (type == PCI_EXP_TYPE_LEG_END) { 2577 /* 2578 * Legacy endpoints don't belong on the root complex. Windows 2579 * seems to be happier with devices if we skip the capability. 2580 */ 2581 return 0; 2582 } 2583 2584 } else { 2585 /* 2586 * Convert Root Complex Integrated Endpoints to regular endpoints. 2587 * These devices don't support LNK/LNK2 capabilities, so make them up. 2588 */ 2589 if (type == PCI_EXP_TYPE_RC_END) { 2590 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2591 PCI_EXP_TYPE_ENDPOINT << 4, 2592 PCI_EXP_FLAGS_TYPE); 2593 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 2594 PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0); 2595 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); 2596 } 2597 2598 /* Mark the Link Status bits as emulated to allow virtual negotiation */ 2599 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 2600 pci_get_word(vdev->pdev.config + pos + 2601 PCI_EXP_LNKSTA), 2602 PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS); 2603 } 2604 2605 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size); 2606 if (pos >= 0) { 2607 vdev->pdev.exp.exp_cap = pos; 2608 } 2609 2610 return pos; 2611 } 2612 2613 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos) 2614 { 2615 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP); 2616 2617 if (cap & PCI_EXP_DEVCAP_FLR) { 2618 trace_vfio_check_pcie_flr(vdev->vbasedev.name); 2619 vdev->has_flr = true; 2620 } 2621 } 2622 2623 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos) 2624 { 2625 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL); 2626 2627 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) { 2628 trace_vfio_check_pm_reset(vdev->vbasedev.name); 2629 vdev->has_pm_reset = true; 2630 } 2631 } 2632 2633 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos) 2634 { 2635 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP); 2636 2637 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) { 2638 trace_vfio_check_af_flr(vdev->vbasedev.name); 2639 vdev->has_flr = true; 2640 } 2641 } 2642 2643 static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos) 2644 { 2645 PCIDevice *pdev = &vdev->pdev; 2646 uint8_t cap_id, next, size; 2647 int ret; 2648 2649 cap_id = pdev->config[pos]; 2650 next = pdev->config[pos + 1]; 2651 2652 /* 2653 * If it becomes important to configure capabilities to their actual 2654 * size, use this as the default when it's something we don't recognize. 2655 * Since QEMU doesn't actually handle many of the config accesses, 2656 * exact size doesn't seem worthwhile. 2657 */ 2658 size = vfio_std_cap_max_size(pdev, pos); 2659 2660 /* 2661 * pci_add_capability always inserts the new capability at the head 2662 * of the chain. Therefore to end up with a chain that matches the 2663 * physical device, we insert from the end by making this recursive. 2664 * This is also why we pre-caclulate size above as cached config space 2665 * will be changed as we unwind the stack. 2666 */ 2667 if (next) { 2668 ret = vfio_add_std_cap(vdev, next); 2669 if (ret) { 2670 return ret; 2671 } 2672 } else { 2673 /* Begin the rebuild, use QEMU emulated list bits */ 2674 pdev->config[PCI_CAPABILITY_LIST] = 0; 2675 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; 2676 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; 2677 } 2678 2679 /* Use emulated next pointer to allow dropping caps */ 2680 pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff); 2681 2682 switch (cap_id) { 2683 case PCI_CAP_ID_MSI: 2684 ret = vfio_setup_msi(vdev, pos); 2685 break; 2686 case PCI_CAP_ID_EXP: 2687 vfio_check_pcie_flr(vdev, pos); 2688 ret = vfio_setup_pcie_cap(vdev, pos, size); 2689 break; 2690 case PCI_CAP_ID_MSIX: 2691 ret = vfio_setup_msix(vdev, pos); 2692 break; 2693 case PCI_CAP_ID_PM: 2694 vfio_check_pm_reset(vdev, pos); 2695 vdev->pm_cap = pos; 2696 ret = pci_add_capability(pdev, cap_id, pos, size); 2697 break; 2698 case PCI_CAP_ID_AF: 2699 vfio_check_af_flr(vdev, pos); 2700 ret = pci_add_capability(pdev, cap_id, pos, size); 2701 break; 2702 default: 2703 ret = pci_add_capability(pdev, cap_id, pos, size); 2704 break; 2705 } 2706 2707 if (ret < 0) { 2708 error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability " 2709 "0x%x[0x%x]@0x%x: %d", vdev->host.domain, 2710 vdev->host.bus, vdev->host.slot, vdev->host.function, 2711 cap_id, size, pos, ret); 2712 return ret; 2713 } 2714 2715 return 0; 2716 } 2717 2718 static int vfio_add_capabilities(VFIOPCIDevice *vdev) 2719 { 2720 PCIDevice *pdev = &vdev->pdev; 2721 2722 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || 2723 !pdev->config[PCI_CAPABILITY_LIST]) { 2724 return 0; /* Nothing to add */ 2725 } 2726 2727 return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]); 2728 } 2729 2730 static void vfio_pci_pre_reset(VFIOPCIDevice *vdev) 2731 { 2732 PCIDevice *pdev = &vdev->pdev; 2733 uint16_t cmd; 2734 2735 vfio_disable_interrupts(vdev); 2736 2737 /* Make sure the device is in D0 */ 2738 if (vdev->pm_cap) { 2739 uint16_t pmcsr; 2740 uint8_t state; 2741 2742 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); 2743 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 2744 if (state) { 2745 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 2746 vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); 2747 /* vfio handles the necessary delay here */ 2748 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); 2749 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 2750 if (state) { 2751 error_report("vfio: Unable to power on device, stuck in D%d", 2752 state); 2753 } 2754 } 2755 } 2756 2757 /* 2758 * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master. 2759 * Also put INTx Disable in known state. 2760 */ 2761 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); 2762 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | 2763 PCI_COMMAND_INTX_DISABLE); 2764 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); 2765 } 2766 2767 static void vfio_pci_post_reset(VFIOPCIDevice *vdev) 2768 { 2769 vfio_enable_intx(vdev); 2770 } 2771 2772 static bool vfio_pci_host_match(PCIHostDeviceAddress *host1, 2773 PCIHostDeviceAddress *host2) 2774 { 2775 return (host1->domain == host2->domain && host1->bus == host2->bus && 2776 host1->slot == host2->slot && host1->function == host2->function); 2777 } 2778 2779 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single) 2780 { 2781 VFIOGroup *group; 2782 struct vfio_pci_hot_reset_info *info; 2783 struct vfio_pci_dependent_device *devices; 2784 struct vfio_pci_hot_reset *reset; 2785 int32_t *fds; 2786 int ret, i, count; 2787 bool multi = false; 2788 2789 trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi"); 2790 2791 vfio_pci_pre_reset(vdev); 2792 vdev->vbasedev.needs_reset = false; 2793 2794 info = g_malloc0(sizeof(*info)); 2795 info->argsz = sizeof(*info); 2796 2797 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); 2798 if (ret && errno != ENOSPC) { 2799 ret = -errno; 2800 if (!vdev->has_pm_reset) { 2801 error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, " 2802 "no available reset mechanism.", vdev->host.domain, 2803 vdev->host.bus, vdev->host.slot, vdev->host.function); 2804 } 2805 goto out_single; 2806 } 2807 2808 count = info->count; 2809 info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices))); 2810 info->argsz = sizeof(*info) + (count * sizeof(*devices)); 2811 devices = &info->devices[0]; 2812 2813 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); 2814 if (ret) { 2815 ret = -errno; 2816 error_report("vfio: hot reset info failed: %m"); 2817 goto out_single; 2818 } 2819 2820 trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name); 2821 2822 /* Verify that we have all the groups required */ 2823 for (i = 0; i < info->count; i++) { 2824 PCIHostDeviceAddress host; 2825 VFIOPCIDevice *tmp; 2826 VFIODevice *vbasedev_iter; 2827 2828 host.domain = devices[i].segment; 2829 host.bus = devices[i].bus; 2830 host.slot = PCI_SLOT(devices[i].devfn); 2831 host.function = PCI_FUNC(devices[i].devfn); 2832 2833 trace_vfio_pci_hot_reset_dep_devices(host.domain, 2834 host.bus, host.slot, host.function, devices[i].group_id); 2835 2836 if (vfio_pci_host_match(&host, &vdev->host)) { 2837 continue; 2838 } 2839 2840 QLIST_FOREACH(group, &vfio_group_list, next) { 2841 if (group->groupid == devices[i].group_id) { 2842 break; 2843 } 2844 } 2845 2846 if (!group) { 2847 if (!vdev->has_pm_reset) { 2848 error_report("vfio: Cannot reset device %s, " 2849 "depends on group %d which is not owned.", 2850 vdev->vbasedev.name, devices[i].group_id); 2851 } 2852 ret = -EPERM; 2853 goto out; 2854 } 2855 2856 /* Prep dependent devices for reset and clear our marker. */ 2857 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 2858 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { 2859 continue; 2860 } 2861 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); 2862 if (vfio_pci_host_match(&host, &tmp->host)) { 2863 if (single) { 2864 ret = -EINVAL; 2865 goto out_single; 2866 } 2867 vfio_pci_pre_reset(tmp); 2868 tmp->vbasedev.needs_reset = false; 2869 multi = true; 2870 break; 2871 } 2872 } 2873 } 2874 2875 if (!single && !multi) { 2876 ret = -EINVAL; 2877 goto out_single; 2878 } 2879 2880 /* Determine how many group fds need to be passed */ 2881 count = 0; 2882 QLIST_FOREACH(group, &vfio_group_list, next) { 2883 for (i = 0; i < info->count; i++) { 2884 if (group->groupid == devices[i].group_id) { 2885 count++; 2886 break; 2887 } 2888 } 2889 } 2890 2891 reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds))); 2892 reset->argsz = sizeof(*reset) + (count * sizeof(*fds)); 2893 fds = &reset->group_fds[0]; 2894 2895 /* Fill in group fds */ 2896 QLIST_FOREACH(group, &vfio_group_list, next) { 2897 for (i = 0; i < info->count; i++) { 2898 if (group->groupid == devices[i].group_id) { 2899 fds[reset->count++] = group->fd; 2900 break; 2901 } 2902 } 2903 } 2904 2905 /* Bus reset! */ 2906 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset); 2907 g_free(reset); 2908 2909 trace_vfio_pci_hot_reset_result(vdev->vbasedev.name, 2910 ret ? "%m" : "Success"); 2911 2912 out: 2913 /* Re-enable INTx on affected devices */ 2914 for (i = 0; i < info->count; i++) { 2915 PCIHostDeviceAddress host; 2916 VFIOPCIDevice *tmp; 2917 VFIODevice *vbasedev_iter; 2918 2919 host.domain = devices[i].segment; 2920 host.bus = devices[i].bus; 2921 host.slot = PCI_SLOT(devices[i].devfn); 2922 host.function = PCI_FUNC(devices[i].devfn); 2923 2924 if (vfio_pci_host_match(&host, &vdev->host)) { 2925 continue; 2926 } 2927 2928 QLIST_FOREACH(group, &vfio_group_list, next) { 2929 if (group->groupid == devices[i].group_id) { 2930 break; 2931 } 2932 } 2933 2934 if (!group) { 2935 break; 2936 } 2937 2938 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 2939 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { 2940 continue; 2941 } 2942 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); 2943 if (vfio_pci_host_match(&host, &tmp->host)) { 2944 vfio_pci_post_reset(tmp); 2945 break; 2946 } 2947 } 2948 } 2949 out_single: 2950 vfio_pci_post_reset(vdev); 2951 g_free(info); 2952 2953 return ret; 2954 } 2955 2956 /* 2957 * We want to differentiate hot reset of mulitple in-use devices vs hot reset 2958 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case 2959 * of doing hot resets when there is only a single device per bus. The in-use 2960 * here refers to how many VFIODevices are affected. A hot reset that affects 2961 * multiple devices, but only a single in-use device, means that we can call 2962 * it from our bus ->reset() callback since the extent is effectively a single 2963 * device. This allows us to make use of it in the hotplug path. When there 2964 * are multiple in-use devices, we can only trigger the hot reset during a 2965 * system reset and thus from our reset handler. We separate _one vs _multi 2966 * here so that we don't overlap and do a double reset on the system reset 2967 * path where both our reset handler and ->reset() callback are used. Calling 2968 * _one() will only do a hot reset for the one in-use devices case, calling 2969 * _multi() will do nothing if a _one() would have been sufficient. 2970 */ 2971 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev) 2972 { 2973 return vfio_pci_hot_reset(vdev, true); 2974 } 2975 2976 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev) 2977 { 2978 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2979 return vfio_pci_hot_reset(vdev, false); 2980 } 2981 2982 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev) 2983 { 2984 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2985 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { 2986 vbasedev->needs_reset = true; 2987 } 2988 } 2989 2990 static VFIODeviceOps vfio_pci_ops = { 2991 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset, 2992 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi, 2993 .vfio_eoi = vfio_eoi, 2994 }; 2995 2996 static int vfio_populate_device(VFIOPCIDevice *vdev) 2997 { 2998 VFIODevice *vbasedev = &vdev->vbasedev; 2999 struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) }; 3000 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; 3001 int i, ret = -1; 3002 3003 /* Sanity check device */ 3004 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) { 3005 error_report("vfio: Um, this isn't a PCI device"); 3006 goto error; 3007 } 3008 3009 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { 3010 error_report("vfio: unexpected number of io regions %u", 3011 vbasedev->num_regions); 3012 goto error; 3013 } 3014 3015 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { 3016 error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs); 3017 goto error; 3018 } 3019 3020 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { 3021 reg_info.index = i; 3022 3023 ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); 3024 if (ret) { 3025 error_report("vfio: Error getting region %d info: %m", i); 3026 goto error; 3027 } 3028 3029 trace_vfio_populate_device_region(vbasedev->name, i, 3030 (unsigned long)reg_info.size, 3031 (unsigned long)reg_info.offset, 3032 (unsigned long)reg_info.flags); 3033 3034 vdev->bars[i].region.vbasedev = vbasedev; 3035 vdev->bars[i].region.flags = reg_info.flags; 3036 vdev->bars[i].region.size = reg_info.size; 3037 vdev->bars[i].region.fd_offset = reg_info.offset; 3038 vdev->bars[i].region.nr = i; 3039 QLIST_INIT(&vdev->bars[i].quirks); 3040 } 3041 3042 reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX; 3043 3044 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); 3045 if (ret) { 3046 error_report("vfio: Error getting config info: %m"); 3047 goto error; 3048 } 3049 3050 trace_vfio_populate_device_config(vdev->vbasedev.name, 3051 (unsigned long)reg_info.size, 3052 (unsigned long)reg_info.offset, 3053 (unsigned long)reg_info.flags); 3054 3055 vdev->config_size = reg_info.size; 3056 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { 3057 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; 3058 } 3059 vdev->config_offset = reg_info.offset; 3060 3061 if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) && 3062 vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) { 3063 struct vfio_region_info vga_info = { 3064 .argsz = sizeof(vga_info), 3065 .index = VFIO_PCI_VGA_REGION_INDEX, 3066 }; 3067 3068 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info); 3069 if (ret) { 3070 error_report( 3071 "vfio: Device does not support requested feature x-vga"); 3072 goto error; 3073 } 3074 3075 if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) || 3076 !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) || 3077 vga_info.size < 0xbffff + 1) { 3078 error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx", 3079 (unsigned long)vga_info.flags, 3080 (unsigned long)vga_info.size); 3081 goto error; 3082 } 3083 3084 vdev->vga.fd_offset = vga_info.offset; 3085 vdev->vga.fd = vdev->vbasedev.fd; 3086 3087 vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; 3088 vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; 3089 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks); 3090 3091 vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; 3092 vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; 3093 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks); 3094 3095 vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; 3096 vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; 3097 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks); 3098 3099 vdev->has_vga = true; 3100 } 3101 3102 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX; 3103 3104 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); 3105 if (ret) { 3106 /* This can fail for an old kernel or legacy PCI dev */ 3107 trace_vfio_populate_device_get_irq_info_failure(); 3108 ret = 0; 3109 } else if (irq_info.count == 1) { 3110 vdev->pci_aer = true; 3111 } else { 3112 error_report("vfio: %s " 3113 "Could not enable error recovery for the device", 3114 vbasedev->name); 3115 } 3116 3117 error: 3118 return ret; 3119 } 3120 3121 static void vfio_put_device(VFIOPCIDevice *vdev) 3122 { 3123 g_free(vdev->vbasedev.name); 3124 if (vdev->msix) { 3125 object_unparent(OBJECT(&vdev->msix->mmap_mem)); 3126 g_free(vdev->msix); 3127 vdev->msix = NULL; 3128 } 3129 vfio_put_base_device(&vdev->vbasedev); 3130 } 3131 3132 static void vfio_err_notifier_handler(void *opaque) 3133 { 3134 VFIOPCIDevice *vdev = opaque; 3135 3136 if (!event_notifier_test_and_clear(&vdev->err_notifier)) { 3137 return; 3138 } 3139 3140 /* 3141 * TBD. Retrieve the error details and decide what action 3142 * needs to be taken. One of the actions could be to pass 3143 * the error to the guest and have the guest driver recover 3144 * from the error. This requires that PCIe capabilities be 3145 * exposed to the guest. For now, we just terminate the 3146 * guest to contain the error. 3147 */ 3148 3149 error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. " 3150 "Please collect any data possible and then kill the guest", 3151 __func__, vdev->host.domain, vdev->host.bus, 3152 vdev->host.slot, vdev->host.function); 3153 3154 vm_stop(RUN_STATE_INTERNAL_ERROR); 3155 } 3156 3157 /* 3158 * Registers error notifier for devices supporting error recovery. 3159 * If we encounter a failure in this function, we report an error 3160 * and continue after disabling error recovery support for the 3161 * device. 3162 */ 3163 static void vfio_register_err_notifier(VFIOPCIDevice *vdev) 3164 { 3165 int ret; 3166 int argsz; 3167 struct vfio_irq_set *irq_set; 3168 int32_t *pfd; 3169 3170 if (!vdev->pci_aer) { 3171 return; 3172 } 3173 3174 if (event_notifier_init(&vdev->err_notifier, 0)) { 3175 error_report("vfio: Unable to init event notifier for error detection"); 3176 vdev->pci_aer = false; 3177 return; 3178 } 3179 3180 argsz = sizeof(*irq_set) + sizeof(*pfd); 3181 3182 irq_set = g_malloc0(argsz); 3183 irq_set->argsz = argsz; 3184 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3185 VFIO_IRQ_SET_ACTION_TRIGGER; 3186 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; 3187 irq_set->start = 0; 3188 irq_set->count = 1; 3189 pfd = (int32_t *)&irq_set->data; 3190 3191 *pfd = event_notifier_get_fd(&vdev->err_notifier); 3192 qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev); 3193 3194 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 3195 if (ret) { 3196 error_report("vfio: Failed to set up error notification"); 3197 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 3198 event_notifier_cleanup(&vdev->err_notifier); 3199 vdev->pci_aer = false; 3200 } 3201 g_free(irq_set); 3202 } 3203 3204 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev) 3205 { 3206 int argsz; 3207 struct vfio_irq_set *irq_set; 3208 int32_t *pfd; 3209 int ret; 3210 3211 if (!vdev->pci_aer) { 3212 return; 3213 } 3214 3215 argsz = sizeof(*irq_set) + sizeof(*pfd); 3216 3217 irq_set = g_malloc0(argsz); 3218 irq_set->argsz = argsz; 3219 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3220 VFIO_IRQ_SET_ACTION_TRIGGER; 3221 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; 3222 irq_set->start = 0; 3223 irq_set->count = 1; 3224 pfd = (int32_t *)&irq_set->data; 3225 *pfd = -1; 3226 3227 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 3228 if (ret) { 3229 error_report("vfio: Failed to de-assign error fd: %m"); 3230 } 3231 g_free(irq_set); 3232 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier), 3233 NULL, NULL, vdev); 3234 event_notifier_cleanup(&vdev->err_notifier); 3235 } 3236 3237 static void vfio_req_notifier_handler(void *opaque) 3238 { 3239 VFIOPCIDevice *vdev = opaque; 3240 3241 if (!event_notifier_test_and_clear(&vdev->req_notifier)) { 3242 return; 3243 } 3244 3245 qdev_unplug(&vdev->pdev.qdev, NULL); 3246 } 3247 3248 static void vfio_register_req_notifier(VFIOPCIDevice *vdev) 3249 { 3250 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), 3251 .index = VFIO_PCI_REQ_IRQ_INDEX }; 3252 int argsz; 3253 struct vfio_irq_set *irq_set; 3254 int32_t *pfd; 3255 3256 if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) { 3257 return; 3258 } 3259 3260 if (ioctl(vdev->vbasedev.fd, 3261 VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) { 3262 return; 3263 } 3264 3265 if (event_notifier_init(&vdev->req_notifier, 0)) { 3266 error_report("vfio: Unable to init event notifier for device request"); 3267 return; 3268 } 3269 3270 argsz = sizeof(*irq_set) + sizeof(*pfd); 3271 3272 irq_set = g_malloc0(argsz); 3273 irq_set->argsz = argsz; 3274 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3275 VFIO_IRQ_SET_ACTION_TRIGGER; 3276 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; 3277 irq_set->start = 0; 3278 irq_set->count = 1; 3279 pfd = (int32_t *)&irq_set->data; 3280 3281 *pfd = event_notifier_get_fd(&vdev->req_notifier); 3282 qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev); 3283 3284 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 3285 error_report("vfio: Failed to set up device request notification"); 3286 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 3287 event_notifier_cleanup(&vdev->req_notifier); 3288 } else { 3289 vdev->req_enabled = true; 3290 } 3291 3292 g_free(irq_set); 3293 } 3294 3295 static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev) 3296 { 3297 int argsz; 3298 struct vfio_irq_set *irq_set; 3299 int32_t *pfd; 3300 3301 if (!vdev->req_enabled) { 3302 return; 3303 } 3304 3305 argsz = sizeof(*irq_set) + sizeof(*pfd); 3306 3307 irq_set = g_malloc0(argsz); 3308 irq_set->argsz = argsz; 3309 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3310 VFIO_IRQ_SET_ACTION_TRIGGER; 3311 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; 3312 irq_set->start = 0; 3313 irq_set->count = 1; 3314 pfd = (int32_t *)&irq_set->data; 3315 *pfd = -1; 3316 3317 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 3318 error_report("vfio: Failed to de-assign device request fd: %m"); 3319 } 3320 g_free(irq_set); 3321 qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier), 3322 NULL, NULL, vdev); 3323 event_notifier_cleanup(&vdev->req_notifier); 3324 3325 vdev->req_enabled = false; 3326 } 3327 3328 static int vfio_initfn(PCIDevice *pdev) 3329 { 3330 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3331 VFIODevice *vbasedev_iter; 3332 VFIOGroup *group; 3333 char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name; 3334 ssize_t len; 3335 struct stat st; 3336 int groupid; 3337 int ret; 3338 3339 /* Check that the host device exists */ 3340 snprintf(path, sizeof(path), 3341 "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/", 3342 vdev->host.domain, vdev->host.bus, vdev->host.slot, 3343 vdev->host.function); 3344 if (stat(path, &st) < 0) { 3345 error_report("vfio: error: no such host device: %s", path); 3346 return -errno; 3347 } 3348 3349 vdev->vbasedev.ops = &vfio_pci_ops; 3350 3351 vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI; 3352 vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x", 3353 vdev->host.domain, vdev->host.bus, 3354 vdev->host.slot, vdev->host.function); 3355 3356 strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1); 3357 3358 len = readlink(path, iommu_group_path, sizeof(path)); 3359 if (len <= 0 || len >= sizeof(path)) { 3360 error_report("vfio: error no iommu_group for device"); 3361 return len < 0 ? -errno : ENAMETOOLONG; 3362 } 3363 3364 iommu_group_path[len] = 0; 3365 group_name = basename(iommu_group_path); 3366 3367 if (sscanf(group_name, "%d", &groupid) != 1) { 3368 error_report("vfio: error reading %s: %m", path); 3369 return -errno; 3370 } 3371 3372 trace_vfio_initfn(vdev->vbasedev.name, groupid); 3373 3374 group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev)); 3375 if (!group) { 3376 error_report("vfio: failed to get group %d", groupid); 3377 return -ENOENT; 3378 } 3379 3380 snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x", 3381 vdev->host.domain, vdev->host.bus, vdev->host.slot, 3382 vdev->host.function); 3383 3384 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 3385 if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) { 3386 error_report("vfio: error: device %s is already attached", path); 3387 vfio_put_group(group); 3388 return -EBUSY; 3389 } 3390 } 3391 3392 ret = vfio_get_device(group, path, &vdev->vbasedev); 3393 if (ret) { 3394 error_report("vfio: failed to get device %s", path); 3395 vfio_put_group(group); 3396 return ret; 3397 } 3398 3399 ret = vfio_populate_device(vdev); 3400 if (ret) { 3401 return ret; 3402 } 3403 3404 /* Get a copy of config space */ 3405 ret = pread(vdev->vbasedev.fd, vdev->pdev.config, 3406 MIN(pci_config_size(&vdev->pdev), vdev->config_size), 3407 vdev->config_offset); 3408 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { 3409 ret = ret < 0 ? -errno : -EFAULT; 3410 error_report("vfio: Failed to read device config space"); 3411 return ret; 3412 } 3413 3414 /* vfio emulates a lot for us, but some bits need extra love */ 3415 vdev->emulated_config_bits = g_malloc0(vdev->config_size); 3416 3417 /* QEMU can choose to expose the ROM or not */ 3418 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); 3419 3420 /* QEMU can change multi-function devices to single function, or reverse */ 3421 vdev->emulated_config_bits[PCI_HEADER_TYPE] = 3422 PCI_HEADER_TYPE_MULTI_FUNCTION; 3423 3424 /* Restore or clear multifunction, this is always controlled by QEMU */ 3425 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 3426 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; 3427 } else { 3428 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; 3429 } 3430 3431 /* 3432 * Clear host resource mapping info. If we choose not to register a 3433 * BAR, such as might be the case with the option ROM, we can get 3434 * confusing, unwritable, residual addresses from the host here. 3435 */ 3436 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); 3437 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); 3438 3439 vfio_pci_size_rom(vdev); 3440 3441 ret = vfio_early_setup_msix(vdev); 3442 if (ret) { 3443 return ret; 3444 } 3445 3446 vfio_map_bars(vdev); 3447 3448 ret = vfio_add_capabilities(vdev); 3449 if (ret) { 3450 goto out_teardown; 3451 } 3452 3453 /* QEMU emulates all of MSI & MSIX */ 3454 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { 3455 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, 3456 MSIX_CAP_LENGTH); 3457 } 3458 3459 if (pdev->cap_present & QEMU_PCI_CAP_MSI) { 3460 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, 3461 vdev->msi_cap_size); 3462 } 3463 3464 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { 3465 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3466 vfio_intx_mmap_enable, vdev); 3467 pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq); 3468 ret = vfio_enable_intx(vdev); 3469 if (ret) { 3470 goto out_teardown; 3471 } 3472 } 3473 3474 vfio_register_err_notifier(vdev); 3475 vfio_register_req_notifier(vdev); 3476 3477 return 0; 3478 3479 out_teardown: 3480 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); 3481 vfio_teardown_msi(vdev); 3482 vfio_unregister_bars(vdev); 3483 return ret; 3484 } 3485 3486 static void vfio_instance_finalize(Object *obj) 3487 { 3488 PCIDevice *pci_dev = PCI_DEVICE(obj); 3489 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev); 3490 VFIOGroup *group = vdev->vbasedev.group; 3491 3492 vfio_unmap_bars(vdev); 3493 g_free(vdev->emulated_config_bits); 3494 g_free(vdev->rom); 3495 vfio_put_device(vdev); 3496 vfio_put_group(group); 3497 } 3498 3499 static void vfio_exitfn(PCIDevice *pdev) 3500 { 3501 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3502 3503 vfio_unregister_req_notifier(vdev); 3504 vfio_unregister_err_notifier(vdev); 3505 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); 3506 vfio_disable_interrupts(vdev); 3507 if (vdev->intx.mmap_timer) { 3508 timer_free(vdev->intx.mmap_timer); 3509 } 3510 vfio_teardown_msi(vdev); 3511 vfio_unregister_bars(vdev); 3512 } 3513 3514 static void vfio_pci_reset(DeviceState *dev) 3515 { 3516 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev); 3517 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3518 3519 trace_vfio_pci_reset(vdev->vbasedev.name); 3520 3521 vfio_pci_pre_reset(vdev); 3522 3523 if (vdev->vbasedev.reset_works && 3524 (vdev->has_flr || !vdev->has_pm_reset) && 3525 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { 3526 trace_vfio_pci_reset_flr(vdev->vbasedev.name); 3527 goto post_reset; 3528 } 3529 3530 /* See if we can do our own bus reset */ 3531 if (!vfio_pci_hot_reset_one(vdev)) { 3532 goto post_reset; 3533 } 3534 3535 /* If nothing else works and the device supports PM reset, use it */ 3536 if (vdev->vbasedev.reset_works && vdev->has_pm_reset && 3537 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { 3538 trace_vfio_pci_reset_pm(vdev->vbasedev.name); 3539 goto post_reset; 3540 } 3541 3542 post_reset: 3543 vfio_pci_post_reset(vdev); 3544 } 3545 3546 static void vfio_instance_init(Object *obj) 3547 { 3548 PCIDevice *pci_dev = PCI_DEVICE(obj); 3549 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj)); 3550 3551 device_add_bootindex_property(obj, &vdev->bootindex, 3552 "bootindex", NULL, 3553 &pci_dev->qdev, NULL); 3554 } 3555 3556 static Property vfio_pci_dev_properties[] = { 3557 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host), 3558 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice, 3559 intx.mmap_timeout, 1100), 3560 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features, 3561 VFIO_FEATURE_ENABLE_VGA_BIT, false), 3562 DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features, 3563 VFIO_FEATURE_ENABLE_REQ_BIT, true), 3564 DEFINE_PROP_INT32("bootindex", VFIOPCIDevice, bootindex, -1), 3565 DEFINE_PROP_BOOL("x-mmap", VFIOPCIDevice, vbasedev.allow_mmap, true), 3566 /* 3567 * TODO - support passed fds... is this necessary? 3568 * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name), 3569 * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name), 3570 */ 3571 DEFINE_PROP_END_OF_LIST(), 3572 }; 3573 3574 static const VMStateDescription vfio_pci_vmstate = { 3575 .name = "vfio-pci", 3576 .unmigratable = 1, 3577 }; 3578 3579 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) 3580 { 3581 DeviceClass *dc = DEVICE_CLASS(klass); 3582 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); 3583 3584 dc->reset = vfio_pci_reset; 3585 dc->props = vfio_pci_dev_properties; 3586 dc->vmsd = &vfio_pci_vmstate; 3587 dc->desc = "VFIO-based PCI device assignment"; 3588 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 3589 pdc->init = vfio_initfn; 3590 pdc->exit = vfio_exitfn; 3591 pdc->config_read = vfio_pci_read_config; 3592 pdc->config_write = vfio_pci_write_config; 3593 pdc->is_express = 1; /* We might be */ 3594 } 3595 3596 static const TypeInfo vfio_pci_dev_info = { 3597 .name = "vfio-pci", 3598 .parent = TYPE_PCI_DEVICE, 3599 .instance_size = sizeof(VFIOPCIDevice), 3600 .class_init = vfio_pci_dev_class_init, 3601 .instance_init = vfio_instance_init, 3602 .instance_finalize = vfio_instance_finalize, 3603 }; 3604 3605 static void register_vfio_pci_dev_type(void) 3606 { 3607 type_register_static(&vfio_pci_dev_info); 3608 } 3609 3610 type_init(register_vfio_pci_dev_type) 3611