1 /* 2 * vfio based device assignment support 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include <dirent.h> 22 #include <linux/vfio.h> 23 #include <sys/ioctl.h> 24 #include <sys/mman.h> 25 #include <sys/stat.h> 26 #include <sys/types.h> 27 #include <unistd.h> 28 29 #include "config.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci.h" 35 #include "qemu-common.h" 36 #include "qemu/error-report.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/queue.h" 39 #include "qemu/range.h" 40 #include "sysemu/kvm.h" 41 #include "sysemu/sysemu.h" 42 #include "trace.h" 43 #include "hw/vfio/vfio.h" 44 #include "hw/vfio/vfio-common.h" 45 46 struct VFIOPCIDevice; 47 48 typedef struct VFIOQuirk { 49 MemoryRegion mem; 50 struct VFIOPCIDevice *vdev; 51 QLIST_ENTRY(VFIOQuirk) next; 52 struct { 53 uint32_t base_offset:TARGET_PAGE_BITS; 54 uint32_t address_offset:TARGET_PAGE_BITS; 55 uint32_t address_size:3; 56 uint32_t bar:3; 57 58 uint32_t address_match; 59 uint32_t address_mask; 60 61 uint32_t address_val:TARGET_PAGE_BITS; 62 uint32_t data_offset:TARGET_PAGE_BITS; 63 uint32_t data_size:3; 64 65 uint8_t flags; 66 uint8_t read_flags; 67 uint8_t write_flags; 68 } data; 69 } VFIOQuirk; 70 71 typedef struct VFIOBAR { 72 VFIORegion region; 73 bool ioport; 74 bool mem64; 75 QLIST_HEAD(, VFIOQuirk) quirks; 76 } VFIOBAR; 77 78 typedef struct VFIOVGARegion { 79 MemoryRegion mem; 80 off_t offset; 81 int nr; 82 QLIST_HEAD(, VFIOQuirk) quirks; 83 } VFIOVGARegion; 84 85 typedef struct VFIOVGA { 86 off_t fd_offset; 87 int fd; 88 VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS]; 89 } VFIOVGA; 90 91 typedef struct VFIOINTx { 92 bool pending; /* interrupt pending */ 93 bool kvm_accel; /* set when QEMU bypass through KVM enabled */ 94 uint8_t pin; /* which pin to pull for qemu_set_irq */ 95 EventNotifier interrupt; /* eventfd triggered on interrupt */ 96 EventNotifier unmask; /* eventfd for unmask on QEMU bypass */ 97 PCIINTxRoute route; /* routing info for QEMU bypass */ 98 uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */ 99 QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */ 100 } VFIOINTx; 101 102 typedef struct VFIOMSIVector { 103 /* 104 * Two interrupt paths are configured per vector. The first, is only used 105 * for interrupts injected via QEMU. This is typically the non-accel path, 106 * but may also be used when we want QEMU to handle masking and pending 107 * bits. The KVM path bypasses QEMU and is therefore higher performance, 108 * but requires masking at the device. virq is used to track the MSI route 109 * through KVM, thus kvm_interrupt is only available when virq is set to a 110 * valid (>= 0) value. 111 */ 112 EventNotifier interrupt; 113 EventNotifier kvm_interrupt; 114 struct VFIOPCIDevice *vdev; /* back pointer to device */ 115 int virq; 116 bool use; 117 } VFIOMSIVector; 118 119 enum { 120 VFIO_INT_NONE = 0, 121 VFIO_INT_INTx = 1, 122 VFIO_INT_MSI = 2, 123 VFIO_INT_MSIX = 3, 124 }; 125 126 /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */ 127 typedef struct VFIOMSIXInfo { 128 uint8_t table_bar; 129 uint8_t pba_bar; 130 uint16_t entries; 131 uint32_t table_offset; 132 uint32_t pba_offset; 133 MemoryRegion mmap_mem; 134 void *mmap; 135 } VFIOMSIXInfo; 136 137 typedef struct VFIOPCIDevice { 138 PCIDevice pdev; 139 VFIODevice vbasedev; 140 VFIOINTx intx; 141 unsigned int config_size; 142 uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */ 143 off_t config_offset; /* Offset of config space region within device fd */ 144 unsigned int rom_size; 145 off_t rom_offset; /* Offset of ROM region within device fd */ 146 void *rom; 147 int msi_cap_size; 148 VFIOMSIVector *msi_vectors; 149 VFIOMSIXInfo *msix; 150 int nr_vectors; /* Number of MSI/MSIX vectors currently in use */ 151 int interrupt; /* Current interrupt type */ 152 VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */ 153 VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */ 154 PCIHostDeviceAddress host; 155 EventNotifier err_notifier; 156 EventNotifier req_notifier; 157 uint32_t features; 158 #define VFIO_FEATURE_ENABLE_VGA_BIT 0 159 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT) 160 #define VFIO_FEATURE_ENABLE_REQ_BIT 1 161 #define VFIO_FEATURE_ENABLE_REQ (1 << VFIO_FEATURE_ENABLE_REQ_BIT) 162 int32_t bootindex; 163 uint8_t pm_cap; 164 bool has_vga; 165 bool pci_aer; 166 bool req_enabled; 167 bool has_flr; 168 bool has_pm_reset; 169 bool rom_read_failed; 170 } VFIOPCIDevice; 171 172 typedef struct VFIORomBlacklistEntry { 173 uint16_t vendor_id; 174 uint16_t device_id; 175 } VFIORomBlacklistEntry; 176 177 /* 178 * List of device ids/vendor ids for which to disable 179 * option rom loading. This avoids the guest hangs during rom 180 * execution as noticed with the BCM 57810 card for lack of a 181 * more better way to handle such issues. 182 * The user can still override by specifying a romfile or 183 * rombar=1. 184 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 185 * for an analysis of the 57810 card hang. When adding 186 * a new vendor id/device id combination below, please also add 187 * your card/environment details and information that could 188 * help in debugging to the bug tracking this issue 189 */ 190 static const VFIORomBlacklistEntry romblacklist[] = { 191 /* Broadcom BCM 57810 */ 192 { 0x14e4, 0x168e } 193 }; 194 195 #define MSIX_CAP_LENGTH 12 196 197 static void vfio_disable_interrupts(VFIOPCIDevice *vdev); 198 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len); 199 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, 200 uint32_t val, int len); 201 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled); 202 203 /* 204 * Disabling BAR mmaping can be slow, but toggling it around INTx can 205 * also be a huge overhead. We try to get the best of both worlds by 206 * waiting until an interrupt to disable mmaps (subsequent transitions 207 * to the same state are effectively no overhead). If the interrupt has 208 * been serviced and the time gap is long enough, we re-enable mmaps for 209 * performance. This works well for things like graphics cards, which 210 * may not use their interrupt at all and are penalized to an unusable 211 * level by read/write BAR traps. Other devices, like NICs, have more 212 * regular interrupts and see much better latency by staying in non-mmap 213 * mode. We therefore set the default mmap_timeout such that a ping 214 * is just enough to keep the mmap disabled. Users can experiment with 215 * other options with the x-intx-mmap-timeout-ms parameter (a value of 216 * zero disables the timer). 217 */ 218 static void vfio_intx_mmap_enable(void *opaque) 219 { 220 VFIOPCIDevice *vdev = opaque; 221 222 if (vdev->intx.pending) { 223 timer_mod(vdev->intx.mmap_timer, 224 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); 225 return; 226 } 227 228 vfio_mmap_set_enabled(vdev, true); 229 } 230 231 static void vfio_intx_interrupt(void *opaque) 232 { 233 VFIOPCIDevice *vdev = opaque; 234 235 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { 236 return; 237 } 238 239 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin); 240 241 vdev->intx.pending = true; 242 pci_irq_assert(&vdev->pdev); 243 vfio_mmap_set_enabled(vdev, false); 244 if (vdev->intx.mmap_timeout) { 245 timer_mod(vdev->intx.mmap_timer, 246 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); 247 } 248 } 249 250 static void vfio_eoi(VFIODevice *vbasedev) 251 { 252 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 253 254 if (!vdev->intx.pending) { 255 return; 256 } 257 258 trace_vfio_eoi(vbasedev->name); 259 260 vdev->intx.pending = false; 261 pci_irq_deassert(&vdev->pdev); 262 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 263 } 264 265 static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev) 266 { 267 #ifdef CONFIG_KVM 268 struct kvm_irqfd irqfd = { 269 .fd = event_notifier_get_fd(&vdev->intx.interrupt), 270 .gsi = vdev->intx.route.irq, 271 .flags = KVM_IRQFD_FLAG_RESAMPLE, 272 }; 273 struct vfio_irq_set *irq_set; 274 int ret, argsz; 275 int32_t *pfd; 276 277 if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() || 278 vdev->intx.route.mode != PCI_INTX_ENABLED || 279 !kvm_resamplefds_enabled()) { 280 return; 281 } 282 283 /* Get to a known interrupt state */ 284 qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev); 285 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 286 vdev->intx.pending = false; 287 pci_irq_deassert(&vdev->pdev); 288 289 /* Get an eventfd for resample/unmask */ 290 if (event_notifier_init(&vdev->intx.unmask, 0)) { 291 error_report("vfio: Error: event_notifier_init failed eoi"); 292 goto fail; 293 } 294 295 /* KVM triggers it, VFIO listens for it */ 296 irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask); 297 298 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { 299 error_report("vfio: Error: Failed to setup resample irqfd: %m"); 300 goto fail_irqfd; 301 } 302 303 argsz = sizeof(*irq_set) + sizeof(*pfd); 304 305 irq_set = g_malloc0(argsz); 306 irq_set->argsz = argsz; 307 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK; 308 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; 309 irq_set->start = 0; 310 irq_set->count = 1; 311 pfd = (int32_t *)&irq_set->data; 312 313 *pfd = irqfd.resamplefd; 314 315 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 316 g_free(irq_set); 317 if (ret) { 318 error_report("vfio: Error: Failed to setup INTx unmask fd: %m"); 319 goto fail_vfio; 320 } 321 322 /* Let'em rip */ 323 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 324 325 vdev->intx.kvm_accel = true; 326 327 trace_vfio_enable_intx_kvm(vdev->vbasedev.name); 328 329 return; 330 331 fail_vfio: 332 irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN; 333 kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd); 334 fail_irqfd: 335 event_notifier_cleanup(&vdev->intx.unmask); 336 fail: 337 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); 338 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 339 #endif 340 } 341 342 static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev) 343 { 344 #ifdef CONFIG_KVM 345 struct kvm_irqfd irqfd = { 346 .fd = event_notifier_get_fd(&vdev->intx.interrupt), 347 .gsi = vdev->intx.route.irq, 348 .flags = KVM_IRQFD_FLAG_DEASSIGN, 349 }; 350 351 if (!vdev->intx.kvm_accel) { 352 return; 353 } 354 355 /* 356 * Get to a known state, hardware masked, QEMU ready to accept new 357 * interrupts, QEMU IRQ de-asserted. 358 */ 359 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 360 vdev->intx.pending = false; 361 pci_irq_deassert(&vdev->pdev); 362 363 /* Tell KVM to stop listening for an INTx irqfd */ 364 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { 365 error_report("vfio: Error: Failed to disable INTx irqfd: %m"); 366 } 367 368 /* We only need to close the eventfd for VFIO to cleanup the kernel side */ 369 event_notifier_cleanup(&vdev->intx.unmask); 370 371 /* QEMU starts listening for interrupt events. */ 372 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); 373 374 vdev->intx.kvm_accel = false; 375 376 /* If we've missed an event, let it re-fire through QEMU */ 377 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 378 379 trace_vfio_disable_intx_kvm(vdev->vbasedev.name); 380 #endif 381 } 382 383 static void vfio_update_irq(PCIDevice *pdev) 384 { 385 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 386 PCIINTxRoute route; 387 388 if (vdev->interrupt != VFIO_INT_INTx) { 389 return; 390 } 391 392 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); 393 394 if (!pci_intx_route_changed(&vdev->intx.route, &route)) { 395 return; /* Nothing changed */ 396 } 397 398 trace_vfio_update_irq(vdev->vbasedev.name, 399 vdev->intx.route.irq, route.irq); 400 401 vfio_disable_intx_kvm(vdev); 402 403 vdev->intx.route = route; 404 405 if (route.mode != PCI_INTX_ENABLED) { 406 return; 407 } 408 409 vfio_enable_intx_kvm(vdev); 410 411 /* Re-enable the interrupt in cased we missed an EOI */ 412 vfio_eoi(&vdev->vbasedev); 413 } 414 415 static int vfio_enable_intx(VFIOPCIDevice *vdev) 416 { 417 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); 418 int ret, argsz; 419 struct vfio_irq_set *irq_set; 420 int32_t *pfd; 421 422 if (!pin) { 423 return 0; 424 } 425 426 vfio_disable_interrupts(vdev); 427 428 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ 429 pci_config_set_interrupt_pin(vdev->pdev.config, pin); 430 431 #ifdef CONFIG_KVM 432 /* 433 * Only conditional to avoid generating error messages on platforms 434 * where we won't actually use the result anyway. 435 */ 436 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) { 437 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, 438 vdev->intx.pin); 439 } 440 #endif 441 442 ret = event_notifier_init(&vdev->intx.interrupt, 0); 443 if (ret) { 444 error_report("vfio: Error: event_notifier_init failed"); 445 return ret; 446 } 447 448 argsz = sizeof(*irq_set) + sizeof(*pfd); 449 450 irq_set = g_malloc0(argsz); 451 irq_set->argsz = argsz; 452 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; 453 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; 454 irq_set->start = 0; 455 irq_set->count = 1; 456 pfd = (int32_t *)&irq_set->data; 457 458 *pfd = event_notifier_get_fd(&vdev->intx.interrupt); 459 qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev); 460 461 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 462 g_free(irq_set); 463 if (ret) { 464 error_report("vfio: Error: Failed to setup INTx fd: %m"); 465 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 466 event_notifier_cleanup(&vdev->intx.interrupt); 467 return -errno; 468 } 469 470 vfio_enable_intx_kvm(vdev); 471 472 vdev->interrupt = VFIO_INT_INTx; 473 474 trace_vfio_enable_intx(vdev->vbasedev.name); 475 476 return 0; 477 } 478 479 static void vfio_disable_intx(VFIOPCIDevice *vdev) 480 { 481 int fd; 482 483 timer_del(vdev->intx.mmap_timer); 484 vfio_disable_intx_kvm(vdev); 485 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 486 vdev->intx.pending = false; 487 pci_irq_deassert(&vdev->pdev); 488 vfio_mmap_set_enabled(vdev, true); 489 490 fd = event_notifier_get_fd(&vdev->intx.interrupt); 491 qemu_set_fd_handler(fd, NULL, NULL, vdev); 492 event_notifier_cleanup(&vdev->intx.interrupt); 493 494 vdev->interrupt = VFIO_INT_NONE; 495 496 trace_vfio_disable_intx(vdev->vbasedev.name); 497 } 498 499 /* 500 * MSI/X 501 */ 502 static void vfio_msi_interrupt(void *opaque) 503 { 504 VFIOMSIVector *vector = opaque; 505 VFIOPCIDevice *vdev = vector->vdev; 506 int nr = vector - vdev->msi_vectors; 507 508 if (!event_notifier_test_and_clear(&vector->interrupt)) { 509 return; 510 } 511 512 #ifdef DEBUG_VFIO 513 MSIMessage msg; 514 515 if (vdev->interrupt == VFIO_INT_MSIX) { 516 msg = msix_get_message(&vdev->pdev, nr); 517 } else if (vdev->interrupt == VFIO_INT_MSI) { 518 msg = msi_get_message(&vdev->pdev, nr); 519 } else { 520 abort(); 521 } 522 523 trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data); 524 #endif 525 526 if (vdev->interrupt == VFIO_INT_MSIX) { 527 msix_notify(&vdev->pdev, nr); 528 } else if (vdev->interrupt == VFIO_INT_MSI) { 529 msi_notify(&vdev->pdev, nr); 530 } else { 531 error_report("vfio: MSI interrupt receieved, but not enabled?"); 532 } 533 } 534 535 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix) 536 { 537 struct vfio_irq_set *irq_set; 538 int ret = 0, i, argsz; 539 int32_t *fds; 540 541 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); 542 543 irq_set = g_malloc0(argsz); 544 irq_set->argsz = argsz; 545 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; 546 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; 547 irq_set->start = 0; 548 irq_set->count = vdev->nr_vectors; 549 fds = (int32_t *)&irq_set->data; 550 551 for (i = 0; i < vdev->nr_vectors; i++) { 552 int fd = -1; 553 554 /* 555 * MSI vs MSI-X - The guest has direct access to MSI mask and pending 556 * bits, therefore we always use the KVM signaling path when setup. 557 * MSI-X mask and pending bits are emulated, so we want to use the 558 * KVM signaling path only when configured and unmasked. 559 */ 560 if (vdev->msi_vectors[i].use) { 561 if (vdev->msi_vectors[i].virq < 0 || 562 (msix && msix_is_masked(&vdev->pdev, i))) { 563 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); 564 } else { 565 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); 566 } 567 } 568 569 fds[i] = fd; 570 } 571 572 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 573 574 g_free(irq_set); 575 576 return ret; 577 } 578 579 static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg, 580 bool msix) 581 { 582 int virq; 583 584 if ((msix && !VFIO_ALLOW_KVM_MSIX) || 585 (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) { 586 return; 587 } 588 589 if (event_notifier_init(&vector->kvm_interrupt, 0)) { 590 return; 591 } 592 593 virq = kvm_irqchip_add_msi_route(kvm_state, *msg); 594 if (virq < 0) { 595 event_notifier_cleanup(&vector->kvm_interrupt); 596 return; 597 } 598 599 if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt, 600 NULL, virq) < 0) { 601 kvm_irqchip_release_virq(kvm_state, virq); 602 event_notifier_cleanup(&vector->kvm_interrupt); 603 return; 604 } 605 606 vector->virq = virq; 607 } 608 609 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) 610 { 611 kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt, 612 vector->virq); 613 kvm_irqchip_release_virq(kvm_state, vector->virq); 614 vector->virq = -1; 615 event_notifier_cleanup(&vector->kvm_interrupt); 616 } 617 618 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg) 619 { 620 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg); 621 } 622 623 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, 624 MSIMessage *msg, IOHandler *handler) 625 { 626 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 627 VFIOMSIVector *vector; 628 int ret; 629 630 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr); 631 632 vector = &vdev->msi_vectors[nr]; 633 634 if (!vector->use) { 635 vector->vdev = vdev; 636 vector->virq = -1; 637 if (event_notifier_init(&vector->interrupt, 0)) { 638 error_report("vfio: Error: event_notifier_init failed"); 639 } 640 vector->use = true; 641 msix_vector_use(pdev, nr); 642 } 643 644 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 645 handler, NULL, vector); 646 647 /* 648 * Attempt to enable route through KVM irqchip, 649 * default to userspace handling if unavailable. 650 */ 651 if (vector->virq >= 0) { 652 if (!msg) { 653 vfio_remove_kvm_msi_virq(vector); 654 } else { 655 vfio_update_kvm_msi_virq(vector, *msg); 656 } 657 } else { 658 vfio_add_kvm_msi_virq(vector, msg, true); 659 } 660 661 /* 662 * We don't want to have the host allocate all possible MSI vectors 663 * for a device if they're not in use, so we shutdown and incrementally 664 * increase them as needed. 665 */ 666 if (vdev->nr_vectors < nr + 1) { 667 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); 668 vdev->nr_vectors = nr + 1; 669 ret = vfio_enable_vectors(vdev, true); 670 if (ret) { 671 error_report("vfio: failed to enable vectors, %d", ret); 672 } 673 } else { 674 int argsz; 675 struct vfio_irq_set *irq_set; 676 int32_t *pfd; 677 678 argsz = sizeof(*irq_set) + sizeof(*pfd); 679 680 irq_set = g_malloc0(argsz); 681 irq_set->argsz = argsz; 682 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 683 VFIO_IRQ_SET_ACTION_TRIGGER; 684 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; 685 irq_set->start = nr; 686 irq_set->count = 1; 687 pfd = (int32_t *)&irq_set->data; 688 689 if (vector->virq >= 0) { 690 *pfd = event_notifier_get_fd(&vector->kvm_interrupt); 691 } else { 692 *pfd = event_notifier_get_fd(&vector->interrupt); 693 } 694 695 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 696 g_free(irq_set); 697 if (ret) { 698 error_report("vfio: failed to modify vector, %d", ret); 699 } 700 } 701 702 return 0; 703 } 704 705 static int vfio_msix_vector_use(PCIDevice *pdev, 706 unsigned int nr, MSIMessage msg) 707 { 708 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); 709 } 710 711 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) 712 { 713 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 714 VFIOMSIVector *vector = &vdev->msi_vectors[nr]; 715 716 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr); 717 718 /* 719 * There are still old guests that mask and unmask vectors on every 720 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of 721 * the KVM setup in place, simply switch VFIO to use the non-bypass 722 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X 723 * core will mask the interrupt and set pending bits, allowing it to 724 * be re-asserted on unmask. Nothing to do if already using QEMU mode. 725 */ 726 if (vector->virq >= 0) { 727 int argsz; 728 struct vfio_irq_set *irq_set; 729 int32_t *pfd; 730 731 argsz = sizeof(*irq_set) + sizeof(*pfd); 732 733 irq_set = g_malloc0(argsz); 734 irq_set->argsz = argsz; 735 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 736 VFIO_IRQ_SET_ACTION_TRIGGER; 737 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; 738 irq_set->start = nr; 739 irq_set->count = 1; 740 pfd = (int32_t *)&irq_set->data; 741 742 *pfd = event_notifier_get_fd(&vector->interrupt); 743 744 ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 745 746 g_free(irq_set); 747 } 748 } 749 750 static void vfio_enable_msix(VFIOPCIDevice *vdev) 751 { 752 vfio_disable_interrupts(vdev); 753 754 vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector)); 755 756 vdev->interrupt = VFIO_INT_MSIX; 757 758 /* 759 * Some communication channels between VF & PF or PF & fw rely on the 760 * physical state of the device and expect that enabling MSI-X from the 761 * guest enables the same on the host. When our guest is Linux, the 762 * guest driver call to pci_enable_msix() sets the enabling bit in the 763 * MSI-X capability, but leaves the vector table masked. We therefore 764 * can't rely on a vector_use callback (from request_irq() in the guest) 765 * to switch the physical device into MSI-X mode because that may come a 766 * long time after pci_enable_msix(). This code enables vector 0 with 767 * triggering to userspace, then immediately release the vector, leaving 768 * the physical device with no vectors enabled, but MSI-X enabled, just 769 * like the guest view. 770 */ 771 vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL); 772 vfio_msix_vector_release(&vdev->pdev, 0); 773 774 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, 775 vfio_msix_vector_release, NULL)) { 776 error_report("vfio: msix_set_vector_notifiers failed"); 777 } 778 779 trace_vfio_enable_msix(vdev->vbasedev.name); 780 } 781 782 static void vfio_enable_msi(VFIOPCIDevice *vdev) 783 { 784 int ret, i; 785 786 vfio_disable_interrupts(vdev); 787 788 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); 789 retry: 790 vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector)); 791 792 for (i = 0; i < vdev->nr_vectors; i++) { 793 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 794 MSIMessage msg = msi_get_message(&vdev->pdev, i); 795 796 vector->vdev = vdev; 797 vector->virq = -1; 798 vector->use = true; 799 800 if (event_notifier_init(&vector->interrupt, 0)) { 801 error_report("vfio: Error: event_notifier_init failed"); 802 } 803 804 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 805 vfio_msi_interrupt, NULL, vector); 806 807 /* 808 * Attempt to enable route through KVM irqchip, 809 * default to userspace handling if unavailable. 810 */ 811 vfio_add_kvm_msi_virq(vector, &msg, false); 812 } 813 814 /* Set interrupt type prior to possible interrupts */ 815 vdev->interrupt = VFIO_INT_MSI; 816 817 ret = vfio_enable_vectors(vdev, false); 818 if (ret) { 819 if (ret < 0) { 820 error_report("vfio: Error: Failed to setup MSI fds: %m"); 821 } else if (ret != vdev->nr_vectors) { 822 error_report("vfio: Error: Failed to enable %d " 823 "MSI vectors, retry with %d", vdev->nr_vectors, ret); 824 } 825 826 for (i = 0; i < vdev->nr_vectors; i++) { 827 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 828 if (vector->virq >= 0) { 829 vfio_remove_kvm_msi_virq(vector); 830 } 831 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 832 NULL, NULL, NULL); 833 event_notifier_cleanup(&vector->interrupt); 834 } 835 836 g_free(vdev->msi_vectors); 837 838 if (ret > 0 && ret != vdev->nr_vectors) { 839 vdev->nr_vectors = ret; 840 goto retry; 841 } 842 vdev->nr_vectors = 0; 843 844 /* 845 * Failing to setup MSI doesn't really fall within any specification. 846 * Let's try leaving interrupts disabled and hope the guest figures 847 * out to fall back to INTx for this device. 848 */ 849 error_report("vfio: Error: Failed to enable MSI"); 850 vdev->interrupt = VFIO_INT_NONE; 851 852 return; 853 } 854 855 trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors); 856 } 857 858 static void vfio_disable_msi_common(VFIOPCIDevice *vdev) 859 { 860 int i; 861 862 for (i = 0; i < vdev->nr_vectors; i++) { 863 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 864 if (vdev->msi_vectors[i].use) { 865 if (vector->virq >= 0) { 866 vfio_remove_kvm_msi_virq(vector); 867 } 868 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 869 NULL, NULL, NULL); 870 event_notifier_cleanup(&vector->interrupt); 871 } 872 } 873 874 g_free(vdev->msi_vectors); 875 vdev->msi_vectors = NULL; 876 vdev->nr_vectors = 0; 877 vdev->interrupt = VFIO_INT_NONE; 878 879 vfio_enable_intx(vdev); 880 } 881 882 static void vfio_disable_msix(VFIOPCIDevice *vdev) 883 { 884 int i; 885 886 msix_unset_vector_notifiers(&vdev->pdev); 887 888 /* 889 * MSI-X will only release vectors if MSI-X is still enabled on the 890 * device, check through the rest and release it ourselves if necessary. 891 */ 892 for (i = 0; i < vdev->nr_vectors; i++) { 893 if (vdev->msi_vectors[i].use) { 894 vfio_msix_vector_release(&vdev->pdev, i); 895 msix_vector_unuse(&vdev->pdev, i); 896 } 897 } 898 899 if (vdev->nr_vectors) { 900 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); 901 } 902 903 vfio_disable_msi_common(vdev); 904 905 trace_vfio_disable_msix(vdev->vbasedev.name); 906 } 907 908 static void vfio_disable_msi(VFIOPCIDevice *vdev) 909 { 910 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX); 911 vfio_disable_msi_common(vdev); 912 913 trace_vfio_disable_msi(vdev->vbasedev.name); 914 } 915 916 static void vfio_update_msi(VFIOPCIDevice *vdev) 917 { 918 int i; 919 920 for (i = 0; i < vdev->nr_vectors; i++) { 921 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 922 MSIMessage msg; 923 924 if (!vector->use || vector->virq < 0) { 925 continue; 926 } 927 928 msg = msi_get_message(&vdev->pdev, i); 929 vfio_update_kvm_msi_virq(vector, msg); 930 } 931 } 932 933 static void vfio_pci_load_rom(VFIOPCIDevice *vdev) 934 { 935 struct vfio_region_info reg_info = { 936 .argsz = sizeof(reg_info), 937 .index = VFIO_PCI_ROM_REGION_INDEX 938 }; 939 uint64_t size; 940 off_t off = 0; 941 size_t bytes; 942 943 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, ®_info)) { 944 error_report("vfio: Error getting ROM info: %m"); 945 return; 946 } 947 948 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size, 949 (unsigned long)reg_info.offset, 950 (unsigned long)reg_info.flags); 951 952 vdev->rom_size = size = reg_info.size; 953 vdev->rom_offset = reg_info.offset; 954 955 if (!vdev->rom_size) { 956 vdev->rom_read_failed = true; 957 error_report("vfio-pci: Cannot read device rom at " 958 "%s", vdev->vbasedev.name); 959 error_printf("Device option ROM contents are probably invalid " 960 "(check dmesg).\nSkip option ROM probe with rombar=0, " 961 "or load from file with romfile=\n"); 962 return; 963 } 964 965 vdev->rom = g_malloc(size); 966 memset(vdev->rom, 0xff, size); 967 968 while (size) { 969 bytes = pread(vdev->vbasedev.fd, vdev->rom + off, 970 size, vdev->rom_offset + off); 971 if (bytes == 0) { 972 break; 973 } else if (bytes > 0) { 974 off += bytes; 975 size -= bytes; 976 } else { 977 if (errno == EINTR || errno == EAGAIN) { 978 continue; 979 } 980 error_report("vfio: Error reading device ROM: %m"); 981 break; 982 } 983 } 984 } 985 986 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) 987 { 988 VFIOPCIDevice *vdev = opaque; 989 union { 990 uint8_t byte; 991 uint16_t word; 992 uint32_t dword; 993 uint64_t qword; 994 } val; 995 uint64_t data = 0; 996 997 /* Load the ROM lazily when the guest tries to read it */ 998 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { 999 vfio_pci_load_rom(vdev); 1000 } 1001 1002 memcpy(&val, vdev->rom + addr, 1003 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); 1004 1005 switch (size) { 1006 case 1: 1007 data = val.byte; 1008 break; 1009 case 2: 1010 data = le16_to_cpu(val.word); 1011 break; 1012 case 4: 1013 data = le32_to_cpu(val.dword); 1014 break; 1015 default: 1016 hw_error("vfio: unsupported read size, %d bytes\n", size); 1017 break; 1018 } 1019 1020 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data); 1021 1022 return data; 1023 } 1024 1025 static void vfio_rom_write(void *opaque, hwaddr addr, 1026 uint64_t data, unsigned size) 1027 { 1028 } 1029 1030 static const MemoryRegionOps vfio_rom_ops = { 1031 .read = vfio_rom_read, 1032 .write = vfio_rom_write, 1033 .endianness = DEVICE_LITTLE_ENDIAN, 1034 }; 1035 1036 static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 1037 { 1038 PCIDevice *pdev = &vdev->pdev; 1039 uint16_t vendor_id, device_id; 1040 int count = 0; 1041 1042 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); 1043 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); 1044 1045 while (count < ARRAY_SIZE(romblacklist)) { 1046 if (romblacklist[count].vendor_id == vendor_id && 1047 romblacklist[count].device_id == device_id) { 1048 return true; 1049 } 1050 count++; 1051 } 1052 1053 return false; 1054 } 1055 1056 static void vfio_pci_size_rom(VFIOPCIDevice *vdev) 1057 { 1058 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); 1059 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; 1060 DeviceState *dev = DEVICE(vdev); 1061 char name[32]; 1062 int fd = vdev->vbasedev.fd; 1063 1064 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { 1065 /* Since pci handles romfile, just print a message and return */ 1066 if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) { 1067 error_printf("Warning : Device at %04x:%02x:%02x.%x " 1068 "is known to cause system instability issues during " 1069 "option rom execution. " 1070 "Proceeding anyway since user specified romfile\n", 1071 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1072 vdev->host.function); 1073 } 1074 return; 1075 } 1076 1077 /* 1078 * Use the same size ROM BAR as the physical device. The contents 1079 * will get filled in later when the guest tries to read it. 1080 */ 1081 if (pread(fd, &orig, 4, offset) != 4 || 1082 pwrite(fd, &size, 4, offset) != 4 || 1083 pread(fd, &size, 4, offset) != 4 || 1084 pwrite(fd, &orig, 4, offset) != 4) { 1085 error_report("%s(%04x:%02x:%02x.%x) failed: %m", 1086 __func__, vdev->host.domain, vdev->host.bus, 1087 vdev->host.slot, vdev->host.function); 1088 return; 1089 } 1090 1091 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; 1092 1093 if (!size) { 1094 return; 1095 } 1096 1097 if (vfio_blacklist_opt_rom(vdev)) { 1098 if (dev->opts && qemu_opt_get(dev->opts, "rombar")) { 1099 error_printf("Warning : Device at %04x:%02x:%02x.%x " 1100 "is known to cause system instability issues during " 1101 "option rom execution. " 1102 "Proceeding anyway since user specified non zero value for " 1103 "rombar\n", 1104 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1105 vdev->host.function); 1106 } else { 1107 error_printf("Warning : Rom loading for device at " 1108 "%04x:%02x:%02x.%x has been disabled due to " 1109 "system instability issues. " 1110 "Specify rombar=1 or romfile to force\n", 1111 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1112 vdev->host.function); 1113 return; 1114 } 1115 } 1116 1117 trace_vfio_pci_size_rom(vdev->vbasedev.name, size); 1118 1119 snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom", 1120 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1121 vdev->host.function); 1122 1123 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), 1124 &vfio_rom_ops, vdev, name, size); 1125 1126 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, 1127 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); 1128 1129 vdev->pdev.has_rom = true; 1130 vdev->rom_read_failed = false; 1131 } 1132 1133 static void vfio_vga_write(void *opaque, hwaddr addr, 1134 uint64_t data, unsigned size) 1135 { 1136 VFIOVGARegion *region = opaque; 1137 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); 1138 union { 1139 uint8_t byte; 1140 uint16_t word; 1141 uint32_t dword; 1142 uint64_t qword; 1143 } buf; 1144 off_t offset = vga->fd_offset + region->offset + addr; 1145 1146 switch (size) { 1147 case 1: 1148 buf.byte = data; 1149 break; 1150 case 2: 1151 buf.word = cpu_to_le16(data); 1152 break; 1153 case 4: 1154 buf.dword = cpu_to_le32(data); 1155 break; 1156 default: 1157 hw_error("vfio: unsupported write size, %d bytes", size); 1158 break; 1159 } 1160 1161 if (pwrite(vga->fd, &buf, size, offset) != size) { 1162 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", 1163 __func__, region->offset + addr, data, size); 1164 } 1165 1166 trace_vfio_vga_write(region->offset + addr, data, size); 1167 } 1168 1169 static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) 1170 { 1171 VFIOVGARegion *region = opaque; 1172 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); 1173 union { 1174 uint8_t byte; 1175 uint16_t word; 1176 uint32_t dword; 1177 uint64_t qword; 1178 } buf; 1179 uint64_t data = 0; 1180 off_t offset = vga->fd_offset + region->offset + addr; 1181 1182 if (pread(vga->fd, &buf, size, offset) != size) { 1183 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", 1184 __func__, region->offset + addr, size); 1185 return (uint64_t)-1; 1186 } 1187 1188 switch (size) { 1189 case 1: 1190 data = buf.byte; 1191 break; 1192 case 2: 1193 data = le16_to_cpu(buf.word); 1194 break; 1195 case 4: 1196 data = le32_to_cpu(buf.dword); 1197 break; 1198 default: 1199 hw_error("vfio: unsupported read size, %d bytes", size); 1200 break; 1201 } 1202 1203 trace_vfio_vga_read(region->offset + addr, size, data); 1204 1205 return data; 1206 } 1207 1208 static const MemoryRegionOps vfio_vga_ops = { 1209 .read = vfio_vga_read, 1210 .write = vfio_vga_write, 1211 .endianness = DEVICE_LITTLE_ENDIAN, 1212 }; 1213 1214 /* 1215 * Device specific quirks 1216 */ 1217 1218 /* Is range1 fully contained within range2? */ 1219 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 1220 uint64_t first2, uint64_t len2) { 1221 return (first1 >= first2 && first1 + len1 <= first2 + len2); 1222 } 1223 1224 static bool vfio_flags_enabled(uint8_t flags, uint8_t mask) 1225 { 1226 return (mask && (flags & mask) == mask); 1227 } 1228 1229 static uint64_t vfio_generic_window_quirk_read(void *opaque, 1230 hwaddr addr, unsigned size) 1231 { 1232 VFIOQuirk *quirk = opaque; 1233 VFIOPCIDevice *vdev = quirk->vdev; 1234 uint64_t data; 1235 1236 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && 1237 ranges_overlap(addr, size, 1238 quirk->data.data_offset, quirk->data.data_size)) { 1239 hwaddr offset = addr - quirk->data.data_offset; 1240 1241 if (!vfio_range_contained(addr, size, quirk->data.data_offset, 1242 quirk->data.data_size)) { 1243 hw_error("%s: window data read not fully contained: %s", 1244 __func__, memory_region_name(&quirk->mem)); 1245 } 1246 1247 data = vfio_pci_read_config(&vdev->pdev, 1248 quirk->data.address_val + offset, size); 1249 1250 trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem), 1251 vdev->vbasedev.name, 1252 quirk->data.bar, 1253 addr, size, data); 1254 } else { 1255 data = vfio_region_read(&vdev->bars[quirk->data.bar].region, 1256 addr + quirk->data.base_offset, size); 1257 } 1258 1259 return data; 1260 } 1261 1262 static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr, 1263 uint64_t data, unsigned size) 1264 { 1265 VFIOQuirk *quirk = opaque; 1266 VFIOPCIDevice *vdev = quirk->vdev; 1267 1268 if (ranges_overlap(addr, size, 1269 quirk->data.address_offset, quirk->data.address_size)) { 1270 1271 if (addr != quirk->data.address_offset) { 1272 hw_error("%s: offset write into address window: %s", 1273 __func__, memory_region_name(&quirk->mem)); 1274 } 1275 1276 if ((data & ~quirk->data.address_mask) == quirk->data.address_match) { 1277 quirk->data.flags |= quirk->data.write_flags | 1278 quirk->data.read_flags; 1279 quirk->data.address_val = data & quirk->data.address_mask; 1280 } else { 1281 quirk->data.flags &= ~(quirk->data.write_flags | 1282 quirk->data.read_flags); 1283 } 1284 } 1285 1286 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && 1287 ranges_overlap(addr, size, 1288 quirk->data.data_offset, quirk->data.data_size)) { 1289 hwaddr offset = addr - quirk->data.data_offset; 1290 1291 if (!vfio_range_contained(addr, size, quirk->data.data_offset, 1292 quirk->data.data_size)) { 1293 hw_error("%s: window data write not fully contained: %s", 1294 __func__, memory_region_name(&quirk->mem)); 1295 } 1296 1297 vfio_pci_write_config(&vdev->pdev, 1298 quirk->data.address_val + offset, data, size); 1299 trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem), 1300 vdev->vbasedev.name, 1301 quirk->data.bar, 1302 addr, data, size); 1303 return; 1304 } 1305 1306 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1307 addr + quirk->data.base_offset, data, size); 1308 } 1309 1310 static const MemoryRegionOps vfio_generic_window_quirk = { 1311 .read = vfio_generic_window_quirk_read, 1312 .write = vfio_generic_window_quirk_write, 1313 .endianness = DEVICE_LITTLE_ENDIAN, 1314 }; 1315 1316 static uint64_t vfio_generic_quirk_read(void *opaque, 1317 hwaddr addr, unsigned size) 1318 { 1319 VFIOQuirk *quirk = opaque; 1320 VFIOPCIDevice *vdev = quirk->vdev; 1321 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1322 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; 1323 uint64_t data; 1324 1325 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && 1326 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { 1327 if (!vfio_range_contained(addr, size, offset, 1328 quirk->data.address_mask + 1)) { 1329 hw_error("%s: read not fully contained: %s", 1330 __func__, memory_region_name(&quirk->mem)); 1331 } 1332 1333 data = vfio_pci_read_config(&vdev->pdev, addr - offset, size); 1334 1335 trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem), 1336 vdev->vbasedev.name, quirk->data.bar, 1337 addr + base, size, data); 1338 } else { 1339 data = vfio_region_read(&vdev->bars[quirk->data.bar].region, 1340 addr + base, size); 1341 } 1342 1343 return data; 1344 } 1345 1346 static void vfio_generic_quirk_write(void *opaque, hwaddr addr, 1347 uint64_t data, unsigned size) 1348 { 1349 VFIOQuirk *quirk = opaque; 1350 VFIOPCIDevice *vdev = quirk->vdev; 1351 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1352 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; 1353 1354 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && 1355 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { 1356 if (!vfio_range_contained(addr, size, offset, 1357 quirk->data.address_mask + 1)) { 1358 hw_error("%s: write not fully contained: %s", 1359 __func__, memory_region_name(&quirk->mem)); 1360 } 1361 1362 vfio_pci_write_config(&vdev->pdev, addr - offset, data, size); 1363 1364 trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem), 1365 vdev->vbasedev.name, quirk->data.bar, 1366 addr + base, data, size); 1367 } else { 1368 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1369 addr + base, data, size); 1370 } 1371 } 1372 1373 static const MemoryRegionOps vfio_generic_quirk = { 1374 .read = vfio_generic_quirk_read, 1375 .write = vfio_generic_quirk_write, 1376 .endianness = DEVICE_LITTLE_ENDIAN, 1377 }; 1378 1379 #define PCI_VENDOR_ID_ATI 0x1002 1380 1381 /* 1382 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 1383 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 1384 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 1385 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 1386 * I/O port BAR address. Originally this was coded to return the virtual BAR 1387 * address only if the physical register read returns the actual BAR address, 1388 * but users have reported greater success if we return the virtual address 1389 * unconditionally. 1390 */ 1391 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 1392 hwaddr addr, unsigned size) 1393 { 1394 VFIOQuirk *quirk = opaque; 1395 VFIOPCIDevice *vdev = quirk->vdev; 1396 uint64_t data = vfio_pci_read_config(&vdev->pdev, 1397 PCI_BASE_ADDRESS_0 + (4 * 4) + 1, 1398 size); 1399 trace_vfio_ati_3c3_quirk_read(data); 1400 1401 return data; 1402 } 1403 1404 static const MemoryRegionOps vfio_ati_3c3_quirk = { 1405 .read = vfio_ati_3c3_quirk_read, 1406 .endianness = DEVICE_LITTLE_ENDIAN, 1407 }; 1408 1409 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 1410 { 1411 PCIDevice *pdev = &vdev->pdev; 1412 VFIOQuirk *quirk; 1413 1414 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1415 return; 1416 } 1417 1418 /* 1419 * As long as the BAR is >= 256 bytes it will be aligned such that the 1420 * lower byte is always zero. Filter out anything else, if it exists. 1421 */ 1422 if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 1423 return; 1424 } 1425 1426 quirk = g_malloc0(sizeof(*quirk)); 1427 quirk->vdev = vdev; 1428 1429 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk, 1430 "vfio-ati-3c3-quirk", 1); 1431 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 1432 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem); 1433 1434 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, 1435 quirk, next); 1436 1437 trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name); 1438 } 1439 1440 /* 1441 * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI 1442 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 1443 * the MMIO space directly, but a window to this space is provided through 1444 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 1445 * data register. When the address is programmed to a range of 0x4000-0x4fff 1446 * PCI configuration space is available. Experimentation seems to indicate 1447 * that only read-only access is provided, but we drop writes when the window 1448 * is enabled to config space nonetheless. 1449 */ 1450 static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr) 1451 { 1452 PCIDevice *pdev = &vdev->pdev; 1453 VFIOQuirk *quirk; 1454 1455 if (!vdev->has_vga || nr != 4 || 1456 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1457 return; 1458 } 1459 1460 quirk = g_malloc0(sizeof(*quirk)); 1461 quirk->vdev = vdev; 1462 quirk->data.address_size = 4; 1463 quirk->data.data_offset = 4; 1464 quirk->data.data_size = 4; 1465 quirk->data.address_match = 0x4000; 1466 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1467 quirk->data.bar = nr; 1468 quirk->data.read_flags = quirk->data.write_flags = 1; 1469 1470 memory_region_init_io(&quirk->mem, OBJECT(vdev), 1471 &vfio_generic_window_quirk, quirk, 1472 "vfio-ati-bar4-window-quirk", 8); 1473 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1474 quirk->data.base_offset, &quirk->mem, 1); 1475 1476 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1477 1478 trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name); 1479 } 1480 1481 #define PCI_VENDOR_ID_REALTEK 0x10ec 1482 1483 /* 1484 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 1485 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 1486 * register. According to the Linux r8169 driver, the MSI-X table is addressed 1487 * when the "type" portion of the address register is set to 0x1. This appears 1488 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 1489 * "address latched" indicator. Bits 12:15 are a mask field, which we can 1490 * ignore because the MSI-X table should always be accessed as a dword (full 1491 * mask). Bits 0:11 is offset within the type. 1492 * 1493 * Example trace: 1494 * 1495 * Read from MSI-X table offset 0 1496 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 1497 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 1498 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 1499 * 1500 * Write 0xfee00000 to MSI-X table offset 0 1501 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 1502 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 1503 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 1504 */ 1505 1506 static uint64_t vfio_rtl8168_window_quirk_read(void *opaque, 1507 hwaddr addr, unsigned size) 1508 { 1509 VFIOQuirk *quirk = opaque; 1510 VFIOPCIDevice *vdev = quirk->vdev; 1511 1512 switch (addr) { 1513 case 4: /* address */ 1514 if (quirk->data.flags) { 1515 trace_vfio_rtl8168_window_quirk_read_fake( 1516 memory_region_name(&quirk->mem), 1517 vdev->vbasedev.name); 1518 1519 return quirk->data.address_match ^ 0x10000000U; 1520 } 1521 break; 1522 case 0: /* data */ 1523 if (quirk->data.flags) { 1524 uint64_t val; 1525 1526 trace_vfio_rtl8168_window_quirk_read_table( 1527 memory_region_name(&quirk->mem), 1528 vdev->vbasedev.name); 1529 1530 if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 1531 return 0; 1532 } 1533 1534 io_mem_read(&vdev->pdev.msix_table_mmio, 1535 (hwaddr)(quirk->data.address_match & 0xfff), 1536 &val, size); 1537 return val; 1538 } 1539 } 1540 1541 trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem), 1542 vdev->vbasedev.name); 1543 1544 return vfio_region_read(&vdev->bars[quirk->data.bar].region, 1545 addr + 0x70, size); 1546 } 1547 1548 static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr, 1549 uint64_t data, unsigned size) 1550 { 1551 VFIOQuirk *quirk = opaque; 1552 VFIOPCIDevice *vdev = quirk->vdev; 1553 1554 switch (addr) { 1555 case 4: /* address */ 1556 if ((data & 0x7fff0000) == 0x10000) { 1557 if (data & 0x10000000U && 1558 vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 1559 1560 trace_vfio_rtl8168_window_quirk_write_table( 1561 memory_region_name(&quirk->mem), 1562 vdev->vbasedev.name); 1563 1564 io_mem_write(&vdev->pdev.msix_table_mmio, 1565 (hwaddr)(quirk->data.address_match & 0xfff), 1566 data, size); 1567 } 1568 1569 quirk->data.flags = 1; 1570 quirk->data.address_match = data; 1571 1572 return; 1573 } 1574 quirk->data.flags = 0; 1575 break; 1576 case 0: /* data */ 1577 quirk->data.address_mask = data; 1578 break; 1579 } 1580 1581 trace_vfio_rtl8168_window_quirk_write_direct( 1582 memory_region_name(&quirk->mem), 1583 vdev->vbasedev.name); 1584 1585 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1586 addr + 0x70, data, size); 1587 } 1588 1589 static const MemoryRegionOps vfio_rtl8168_window_quirk = { 1590 .read = vfio_rtl8168_window_quirk_read, 1591 .write = vfio_rtl8168_window_quirk_write, 1592 .valid = { 1593 .min_access_size = 4, 1594 .max_access_size = 4, 1595 .unaligned = false, 1596 }, 1597 .endianness = DEVICE_LITTLE_ENDIAN, 1598 }; 1599 1600 static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr) 1601 { 1602 PCIDevice *pdev = &vdev->pdev; 1603 VFIOQuirk *quirk; 1604 1605 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK || 1606 pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) { 1607 return; 1608 } 1609 1610 quirk = g_malloc0(sizeof(*quirk)); 1611 quirk->vdev = vdev; 1612 quirk->data.bar = nr; 1613 1614 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk, 1615 quirk, "vfio-rtl8168-window-quirk", 8); 1616 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1617 0x70, &quirk->mem, 1); 1618 1619 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1620 1621 trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name); 1622 } 1623 /* 1624 * Trap the BAR2 MMIO window to config space as well. 1625 */ 1626 static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr) 1627 { 1628 PCIDevice *pdev = &vdev->pdev; 1629 VFIOQuirk *quirk; 1630 1631 /* Only enable on newer devices where BAR2 is 64bit */ 1632 if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 || 1633 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1634 return; 1635 } 1636 1637 quirk = g_malloc0(sizeof(*quirk)); 1638 quirk->vdev = vdev; 1639 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1640 quirk->data.address_match = 0x4000; 1641 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1642 quirk->data.bar = nr; 1643 1644 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, 1645 "vfio-ati-bar2-4000-quirk", 1646 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1647 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1648 quirk->data.address_match & TARGET_PAGE_MASK, 1649 &quirk->mem, 1); 1650 1651 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1652 1653 trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name); 1654 } 1655 1656 /* 1657 * Older ATI/AMD cards like the X550 have a similar window to that above. 1658 * I/O port BAR1 provides a window to a mirror of PCI config space located 1659 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 1660 * note it for future reference. 1661 */ 1662 1663 #define PCI_VENDOR_ID_NVIDIA 0x10de 1664 1665 /* 1666 * Nvidia has several different methods to get to config space, the 1667 * nouveu project has several of these documented here: 1668 * https://github.com/pathscale/envytools/tree/master/hwdocs 1669 * 1670 * The first quirk is actually not documented in envytools and is found 1671 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 1672 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 1673 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 1674 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 1675 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 1676 * is written for a write to 0x3d4. The BAR0 offset is then accessible 1677 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 1678 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 1679 */ 1680 enum { 1681 NV_3D0_NONE = 0, 1682 NV_3D0_SELECT, 1683 NV_3D0_WINDOW, 1684 NV_3D0_READ, 1685 NV_3D0_WRITE, 1686 }; 1687 1688 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 1689 hwaddr addr, unsigned size) 1690 { 1691 VFIOQuirk *quirk = opaque; 1692 VFIOPCIDevice *vdev = quirk->vdev; 1693 PCIDevice *pdev = &vdev->pdev; 1694 uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], 1695 addr + quirk->data.base_offset, size); 1696 1697 if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) { 1698 data = vfio_pci_read_config(pdev, quirk->data.address_val, size); 1699 trace_vfio_nvidia_3d0_quirk_read(size, data); 1700 } 1701 1702 quirk->data.flags = NV_3D0_NONE; 1703 1704 return data; 1705 } 1706 1707 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 1708 uint64_t data, unsigned size) 1709 { 1710 VFIOQuirk *quirk = opaque; 1711 VFIOPCIDevice *vdev = quirk->vdev; 1712 PCIDevice *pdev = &vdev->pdev; 1713 1714 switch (quirk->data.flags) { 1715 case NV_3D0_NONE: 1716 if (addr == quirk->data.address_offset && data == 0x338) { 1717 quirk->data.flags = NV_3D0_SELECT; 1718 } 1719 break; 1720 case NV_3D0_SELECT: 1721 quirk->data.flags = NV_3D0_NONE; 1722 if (addr == quirk->data.data_offset && 1723 (data & ~quirk->data.address_mask) == quirk->data.address_match) { 1724 quirk->data.flags = NV_3D0_WINDOW; 1725 quirk->data.address_val = data & quirk->data.address_mask; 1726 } 1727 break; 1728 case NV_3D0_WINDOW: 1729 quirk->data.flags = NV_3D0_NONE; 1730 if (addr == quirk->data.address_offset) { 1731 if (data == 0x538) { 1732 quirk->data.flags = NV_3D0_READ; 1733 } else if (data == 0x738) { 1734 quirk->data.flags = NV_3D0_WRITE; 1735 } 1736 } 1737 break; 1738 case NV_3D0_WRITE: 1739 quirk->data.flags = NV_3D0_NONE; 1740 if (addr == quirk->data.data_offset) { 1741 vfio_pci_write_config(pdev, quirk->data.address_val, data, size); 1742 trace_vfio_nvidia_3d0_quirk_write(data, size); 1743 return; 1744 } 1745 break; 1746 } 1747 1748 vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], 1749 addr + quirk->data.base_offset, data, size); 1750 } 1751 1752 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 1753 .read = vfio_nvidia_3d0_quirk_read, 1754 .write = vfio_nvidia_3d0_quirk_write, 1755 .endianness = DEVICE_LITTLE_ENDIAN, 1756 }; 1757 1758 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 1759 { 1760 PCIDevice *pdev = &vdev->pdev; 1761 VFIOQuirk *quirk; 1762 1763 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA || 1764 !vdev->bars[1].region.size) { 1765 return; 1766 } 1767 1768 quirk = g_malloc0(sizeof(*quirk)); 1769 quirk->vdev = vdev; 1770 quirk->data.base_offset = 0x10; 1771 quirk->data.address_offset = 4; 1772 quirk->data.address_size = 2; 1773 quirk->data.address_match = 0x1800; 1774 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; 1775 quirk->data.data_offset = 0; 1776 quirk->data.data_size = 4; 1777 1778 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk, 1779 quirk, "vfio-nvidia-3d0-quirk", 6); 1780 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 1781 quirk->data.base_offset, &quirk->mem); 1782 1783 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, 1784 quirk, next); 1785 1786 trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name); 1787 } 1788 1789 /* 1790 * The second quirk is documented in envytools. The I/O port BAR5 is just 1791 * a set of address/data ports to the MMIO BARs. The BAR we care about is 1792 * again BAR0. This backdoor is apparently a bit newer than the one above 1793 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 1794 * space, including extended space is available at the 4k @0x88000. 1795 */ 1796 enum { 1797 NV_BAR5_ADDRESS = 0x1, 1798 NV_BAR5_ENABLE = 0x2, 1799 NV_BAR5_MASTER = 0x4, 1800 NV_BAR5_VALID = 0x7, 1801 }; 1802 1803 static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr, 1804 uint64_t data, unsigned size) 1805 { 1806 VFIOQuirk *quirk = opaque; 1807 1808 switch (addr) { 1809 case 0x0: 1810 if (data & 0x1) { 1811 quirk->data.flags |= NV_BAR5_MASTER; 1812 } else { 1813 quirk->data.flags &= ~NV_BAR5_MASTER; 1814 } 1815 break; 1816 case 0x4: 1817 if (data & 0x1) { 1818 quirk->data.flags |= NV_BAR5_ENABLE; 1819 } else { 1820 quirk->data.flags &= ~NV_BAR5_ENABLE; 1821 } 1822 break; 1823 case 0x8: 1824 if (quirk->data.flags & NV_BAR5_MASTER) { 1825 if ((data & ~0xfff) == 0x88000) { 1826 quirk->data.flags |= NV_BAR5_ADDRESS; 1827 quirk->data.address_val = data & 0xfff; 1828 } else if ((data & ~0xff) == 0x1800) { 1829 quirk->data.flags |= NV_BAR5_ADDRESS; 1830 quirk->data.address_val = data & 0xff; 1831 } else { 1832 quirk->data.flags &= ~NV_BAR5_ADDRESS; 1833 } 1834 } 1835 break; 1836 } 1837 1838 vfio_generic_window_quirk_write(opaque, addr, data, size); 1839 } 1840 1841 static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = { 1842 .read = vfio_generic_window_quirk_read, 1843 .write = vfio_nvidia_bar5_window_quirk_write, 1844 .valid.min_access_size = 4, 1845 .endianness = DEVICE_LITTLE_ENDIAN, 1846 }; 1847 1848 static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr) 1849 { 1850 PCIDevice *pdev = &vdev->pdev; 1851 VFIOQuirk *quirk; 1852 1853 if (!vdev->has_vga || nr != 5 || 1854 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { 1855 return; 1856 } 1857 1858 quirk = g_malloc0(sizeof(*quirk)); 1859 quirk->vdev = vdev; 1860 quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID; 1861 quirk->data.address_offset = 0x8; 1862 quirk->data.address_size = 0; /* actually 4, but avoids generic code */ 1863 quirk->data.data_offset = 0xc; 1864 quirk->data.data_size = 4; 1865 quirk->data.bar = nr; 1866 1867 memory_region_init_io(&quirk->mem, OBJECT(vdev), 1868 &vfio_nvidia_bar5_window_quirk, quirk, 1869 "vfio-nvidia-bar5-window-quirk", 16); 1870 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1871 0, &quirk->mem, 1); 1872 1873 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1874 1875 trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name); 1876 } 1877 1878 static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr, 1879 uint64_t data, unsigned size) 1880 { 1881 VFIOQuirk *quirk = opaque; 1882 VFIOPCIDevice *vdev = quirk->vdev; 1883 PCIDevice *pdev = &vdev->pdev; 1884 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1885 1886 vfio_generic_quirk_write(opaque, addr, data, size); 1887 1888 /* 1889 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 1890 * MSI capability ID register. Both the ID and next register are 1891 * read-only, so we allow writes covering either of those to real hw. 1892 * NB - only fixed for the 0x88000 MMIO window. 1893 */ 1894 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 1895 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 1896 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1897 addr + base, data, size); 1898 } 1899 } 1900 1901 static const MemoryRegionOps vfio_nvidia_88000_quirk = { 1902 .read = vfio_generic_quirk_read, 1903 .write = vfio_nvidia_88000_quirk_write, 1904 .endianness = DEVICE_LITTLE_ENDIAN, 1905 }; 1906 1907 /* 1908 * Finally, BAR0 itself. We want to redirect any accesses to either 1909 * 0x1800 or 0x88000 through the PCI config space access functions. 1910 * 1911 * NB - quirk at a page granularity or else they don't seem to work when 1912 * BARs are mmap'd 1913 * 1914 * Here's offset 0x88000... 1915 */ 1916 static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr) 1917 { 1918 PCIDevice *pdev = &vdev->pdev; 1919 VFIOQuirk *quirk; 1920 uint16_t vendor, class; 1921 1922 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID); 1923 class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 1924 1925 if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA || 1926 class != PCI_CLASS_DISPLAY_VGA) { 1927 return; 1928 } 1929 1930 quirk = g_malloc0(sizeof(*quirk)); 1931 quirk->vdev = vdev; 1932 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1933 quirk->data.address_match = 0x88000; 1934 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1935 quirk->data.bar = nr; 1936 1937 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk, 1938 quirk, "vfio-nvidia-bar0-88000-quirk", 1939 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1940 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1941 quirk->data.address_match & TARGET_PAGE_MASK, 1942 &quirk->mem, 1); 1943 1944 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1945 1946 trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name); 1947 } 1948 1949 /* 1950 * And here's the same for BAR0 offset 0x1800... 1951 */ 1952 static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr) 1953 { 1954 PCIDevice *pdev = &vdev->pdev; 1955 VFIOQuirk *quirk; 1956 1957 if (!vdev->has_vga || nr != 0 || 1958 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { 1959 return; 1960 } 1961 1962 /* Log the chipset ID */ 1963 trace_vfio_probe_nvidia_bar0_1800_quirk_id( 1964 (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20) 1965 & 0xff); 1966 1967 quirk = g_malloc0(sizeof(*quirk)); 1968 quirk->vdev = vdev; 1969 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1970 quirk->data.address_match = 0x1800; 1971 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; 1972 quirk->data.bar = nr; 1973 1974 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, 1975 "vfio-nvidia-bar0-1800-quirk", 1976 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1977 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1978 quirk->data.address_match & TARGET_PAGE_MASK, 1979 &quirk->mem, 1); 1980 1981 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1982 1983 trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name); 1984 } 1985 1986 /* 1987 * TODO - Some Nvidia devices provide config access to their companion HDA 1988 * device and even to their parent bridge via these config space mirrors. 1989 * Add quirks for those regions. 1990 */ 1991 1992 /* 1993 * Common quirk probe entry points. 1994 */ 1995 static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 1996 { 1997 vfio_vga_probe_ati_3c3_quirk(vdev); 1998 vfio_vga_probe_nvidia_3d0_quirk(vdev); 1999 } 2000 2001 static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev) 2002 { 2003 VFIOQuirk *quirk; 2004 int i; 2005 2006 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { 2007 QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) { 2008 memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem); 2009 } 2010 } 2011 } 2012 2013 static void vfio_vga_quirk_free(VFIOPCIDevice *vdev) 2014 { 2015 int i; 2016 2017 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { 2018 while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) { 2019 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks); 2020 object_unparent(OBJECT(&quirk->mem)); 2021 QLIST_REMOVE(quirk, next); 2022 g_free(quirk); 2023 } 2024 } 2025 } 2026 2027 static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 2028 { 2029 vfio_probe_ati_bar4_window_quirk(vdev, nr); 2030 vfio_probe_ati_bar2_4000_quirk(vdev, nr); 2031 vfio_probe_nvidia_bar5_window_quirk(vdev, nr); 2032 vfio_probe_nvidia_bar0_88000_quirk(vdev, nr); 2033 vfio_probe_nvidia_bar0_1800_quirk(vdev, nr); 2034 vfio_probe_rtl8168_bar2_window_quirk(vdev, nr); 2035 } 2036 2037 static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr) 2038 { 2039 VFIOBAR *bar = &vdev->bars[nr]; 2040 VFIOQuirk *quirk; 2041 2042 QLIST_FOREACH(quirk, &bar->quirks, next) { 2043 memory_region_del_subregion(&bar->region.mem, &quirk->mem); 2044 } 2045 } 2046 2047 static void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr) 2048 { 2049 VFIOBAR *bar = &vdev->bars[nr]; 2050 2051 while (!QLIST_EMPTY(&bar->quirks)) { 2052 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 2053 object_unparent(OBJECT(&quirk->mem)); 2054 QLIST_REMOVE(quirk, next); 2055 g_free(quirk); 2056 } 2057 } 2058 2059 /* 2060 * PCI config space 2061 */ 2062 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) 2063 { 2064 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 2065 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; 2066 2067 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); 2068 emu_bits = le32_to_cpu(emu_bits); 2069 2070 if (emu_bits) { 2071 emu_val = pci_default_read_config(pdev, addr, len); 2072 } 2073 2074 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { 2075 ssize_t ret; 2076 2077 ret = pread(vdev->vbasedev.fd, &phys_val, len, 2078 vdev->config_offset + addr); 2079 if (ret != len) { 2080 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m", 2081 __func__, vdev->host.domain, vdev->host.bus, 2082 vdev->host.slot, vdev->host.function, addr, len); 2083 return -errno; 2084 } 2085 phys_val = le32_to_cpu(phys_val); 2086 } 2087 2088 val = (emu_val & emu_bits) | (phys_val & ~emu_bits); 2089 2090 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val); 2091 2092 return val; 2093 } 2094 2095 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, 2096 uint32_t val, int len) 2097 { 2098 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 2099 uint32_t val_le = cpu_to_le32(val); 2100 2101 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len); 2102 2103 /* Write everything to VFIO, let it filter out what we can't write */ 2104 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr) 2105 != len) { 2106 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m", 2107 __func__, vdev->host.domain, vdev->host.bus, 2108 vdev->host.slot, vdev->host.function, addr, val, len); 2109 } 2110 2111 /* MSI/MSI-X Enabling/Disabling */ 2112 if (pdev->cap_present & QEMU_PCI_CAP_MSI && 2113 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { 2114 int is_enabled, was_enabled = msi_enabled(pdev); 2115 2116 pci_default_write_config(pdev, addr, val, len); 2117 2118 is_enabled = msi_enabled(pdev); 2119 2120 if (!was_enabled) { 2121 if (is_enabled) { 2122 vfio_enable_msi(vdev); 2123 } 2124 } else { 2125 if (!is_enabled) { 2126 vfio_disable_msi(vdev); 2127 } else { 2128 vfio_update_msi(vdev); 2129 } 2130 } 2131 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && 2132 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { 2133 int is_enabled, was_enabled = msix_enabled(pdev); 2134 2135 pci_default_write_config(pdev, addr, val, len); 2136 2137 is_enabled = msix_enabled(pdev); 2138 2139 if (!was_enabled && is_enabled) { 2140 vfio_enable_msix(vdev); 2141 } else if (was_enabled && !is_enabled) { 2142 vfio_disable_msix(vdev); 2143 } 2144 } else { 2145 /* Write everything to QEMU to keep emulated bits correct */ 2146 pci_default_write_config(pdev, addr, val, len); 2147 } 2148 } 2149 2150 /* 2151 * Interrupt setup 2152 */ 2153 static void vfio_disable_interrupts(VFIOPCIDevice *vdev) 2154 { 2155 /* 2156 * More complicated than it looks. Disabling MSI/X transitions the 2157 * device to INTx mode (if supported). Therefore we need to first 2158 * disable MSI/X and then cleanup by disabling INTx. 2159 */ 2160 if (vdev->interrupt == VFIO_INT_MSIX) { 2161 vfio_disable_msix(vdev); 2162 } else if (vdev->interrupt == VFIO_INT_MSI) { 2163 vfio_disable_msi(vdev); 2164 } 2165 2166 if (vdev->interrupt == VFIO_INT_INTx) { 2167 vfio_disable_intx(vdev); 2168 } 2169 } 2170 2171 static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos) 2172 { 2173 uint16_t ctrl; 2174 bool msi_64bit, msi_maskbit; 2175 int ret, entries; 2176 2177 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), 2178 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { 2179 return -errno; 2180 } 2181 ctrl = le16_to_cpu(ctrl); 2182 2183 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); 2184 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); 2185 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); 2186 2187 trace_vfio_setup_msi(vdev->vbasedev.name, pos); 2188 2189 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit); 2190 if (ret < 0) { 2191 if (ret == -ENOTSUP) { 2192 return 0; 2193 } 2194 error_report("vfio: msi_init failed"); 2195 return ret; 2196 } 2197 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); 2198 2199 return 0; 2200 } 2201 2202 /* 2203 * We don't have any control over how pci_add_capability() inserts 2204 * capabilities into the chain. In order to setup MSI-X we need a 2205 * MemoryRegion for the BAR. In order to setup the BAR and not 2206 * attempt to mmap the MSI-X table area, which VFIO won't allow, we 2207 * need to first look for where the MSI-X table lives. So we 2208 * unfortunately split MSI-X setup across two functions. 2209 */ 2210 static int vfio_early_setup_msix(VFIOPCIDevice *vdev) 2211 { 2212 uint8_t pos; 2213 uint16_t ctrl; 2214 uint32_t table, pba; 2215 int fd = vdev->vbasedev.fd; 2216 2217 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); 2218 if (!pos) { 2219 return 0; 2220 } 2221 2222 if (pread(fd, &ctrl, sizeof(ctrl), 2223 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { 2224 return -errno; 2225 } 2226 2227 if (pread(fd, &table, sizeof(table), 2228 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { 2229 return -errno; 2230 } 2231 2232 if (pread(fd, &pba, sizeof(pba), 2233 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { 2234 return -errno; 2235 } 2236 2237 ctrl = le16_to_cpu(ctrl); 2238 table = le32_to_cpu(table); 2239 pba = le32_to_cpu(pba); 2240 2241 vdev->msix = g_malloc0(sizeof(*(vdev->msix))); 2242 vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; 2243 vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; 2244 vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; 2245 vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; 2246 vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 2247 2248 trace_vfio_early_setup_msix(vdev->vbasedev.name, pos, 2249 vdev->msix->table_bar, 2250 vdev->msix->table_offset, 2251 vdev->msix->entries); 2252 2253 return 0; 2254 } 2255 2256 static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos) 2257 { 2258 int ret; 2259 2260 ret = msix_init(&vdev->pdev, vdev->msix->entries, 2261 &vdev->bars[vdev->msix->table_bar].region.mem, 2262 vdev->msix->table_bar, vdev->msix->table_offset, 2263 &vdev->bars[vdev->msix->pba_bar].region.mem, 2264 vdev->msix->pba_bar, vdev->msix->pba_offset, pos); 2265 if (ret < 0) { 2266 if (ret == -ENOTSUP) { 2267 return 0; 2268 } 2269 error_report("vfio: msix_init failed"); 2270 return ret; 2271 } 2272 2273 return 0; 2274 } 2275 2276 static void vfio_teardown_msi(VFIOPCIDevice *vdev) 2277 { 2278 msi_uninit(&vdev->pdev); 2279 2280 if (vdev->msix) { 2281 msix_uninit(&vdev->pdev, 2282 &vdev->bars[vdev->msix->table_bar].region.mem, 2283 &vdev->bars[vdev->msix->pba_bar].region.mem); 2284 } 2285 } 2286 2287 /* 2288 * Resource setup 2289 */ 2290 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled) 2291 { 2292 int i; 2293 2294 for (i = 0; i < PCI_ROM_SLOT; i++) { 2295 VFIOBAR *bar = &vdev->bars[i]; 2296 2297 if (!bar->region.size) { 2298 continue; 2299 } 2300 2301 memory_region_set_enabled(&bar->region.mmap_mem, enabled); 2302 if (vdev->msix && vdev->msix->table_bar == i) { 2303 memory_region_set_enabled(&vdev->msix->mmap_mem, enabled); 2304 } 2305 } 2306 } 2307 2308 static void vfio_unregister_bar(VFIOPCIDevice *vdev, int nr) 2309 { 2310 VFIOBAR *bar = &vdev->bars[nr]; 2311 2312 if (!bar->region.size) { 2313 return; 2314 } 2315 2316 vfio_bar_quirk_teardown(vdev, nr); 2317 2318 memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem); 2319 2320 if (vdev->msix && vdev->msix->table_bar == nr) { 2321 memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem); 2322 } 2323 } 2324 2325 static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr) 2326 { 2327 VFIOBAR *bar = &vdev->bars[nr]; 2328 2329 if (!bar->region.size) { 2330 return; 2331 } 2332 2333 vfio_bar_quirk_free(vdev, nr); 2334 2335 munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem)); 2336 2337 if (vdev->msix && vdev->msix->table_bar == nr) { 2338 munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem)); 2339 } 2340 } 2341 2342 static void vfio_map_bar(VFIOPCIDevice *vdev, int nr) 2343 { 2344 VFIOBAR *bar = &vdev->bars[nr]; 2345 uint64_t size = bar->region.size; 2346 char name[64]; 2347 uint32_t pci_bar; 2348 uint8_t type; 2349 int ret; 2350 2351 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ 2352 if (!size) { 2353 return; 2354 } 2355 2356 snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d", 2357 vdev->host.domain, vdev->host.bus, vdev->host.slot, 2358 vdev->host.function, nr); 2359 2360 /* Determine what type of BAR this is for registration */ 2361 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar), 2362 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); 2363 if (ret != sizeof(pci_bar)) { 2364 error_report("vfio: Failed to read BAR %d (%m)", nr); 2365 return; 2366 } 2367 2368 pci_bar = le32_to_cpu(pci_bar); 2369 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO); 2370 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64); 2371 type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK : 2372 ~PCI_BASE_ADDRESS_MEM_MASK); 2373 2374 /* A "slow" read/write mapping underlies all BARs */ 2375 memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops, 2376 bar, name, size); 2377 pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem); 2378 2379 /* 2380 * We can't mmap areas overlapping the MSIX vector table, so we 2381 * potentially insert a direct-mapped subregion before and after it. 2382 */ 2383 if (vdev->msix && vdev->msix->table_bar == nr) { 2384 size = vdev->msix->table_offset & qemu_host_page_mask; 2385 } 2386 2387 strncat(name, " mmap", sizeof(name) - strlen(name) - 1); 2388 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem, 2389 &bar->region.mmap_mem, &bar->region.mmap, 2390 size, 0, name)) { 2391 error_report("%s unsupported. Performance may be slow", name); 2392 } 2393 2394 if (vdev->msix && vdev->msix->table_bar == nr) { 2395 uint64_t start; 2396 2397 start = HOST_PAGE_ALIGN(vdev->msix->table_offset + 2398 (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); 2399 2400 size = start < bar->region.size ? bar->region.size - start : 0; 2401 strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1); 2402 /* VFIOMSIXInfo contains another MemoryRegion for this mapping */ 2403 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem, 2404 &vdev->msix->mmap_mem, 2405 &vdev->msix->mmap, size, start, name)) { 2406 error_report("%s unsupported. Performance may be slow", name); 2407 } 2408 } 2409 2410 vfio_bar_quirk_setup(vdev, nr); 2411 } 2412 2413 static void vfio_map_bars(VFIOPCIDevice *vdev) 2414 { 2415 int i; 2416 2417 for (i = 0; i < PCI_ROM_SLOT; i++) { 2418 vfio_map_bar(vdev, i); 2419 } 2420 2421 if (vdev->has_vga) { 2422 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem, 2423 OBJECT(vdev), &vfio_vga_ops, 2424 &vdev->vga.region[QEMU_PCI_VGA_MEM], 2425 "vfio-vga-mmio@0xa0000", 2426 QEMU_PCI_VGA_MEM_SIZE); 2427 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, 2428 OBJECT(vdev), &vfio_vga_ops, 2429 &vdev->vga.region[QEMU_PCI_VGA_IO_LO], 2430 "vfio-vga-io@0x3b0", 2431 QEMU_PCI_VGA_IO_LO_SIZE); 2432 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 2433 OBJECT(vdev), &vfio_vga_ops, 2434 &vdev->vga.region[QEMU_PCI_VGA_IO_HI], 2435 "vfio-vga-io@0x3c0", 2436 QEMU_PCI_VGA_IO_HI_SIZE); 2437 2438 pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem, 2439 &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, 2440 &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem); 2441 vfio_vga_quirk_setup(vdev); 2442 } 2443 } 2444 2445 static void vfio_unregister_bars(VFIOPCIDevice *vdev) 2446 { 2447 int i; 2448 2449 for (i = 0; i < PCI_ROM_SLOT; i++) { 2450 vfio_unregister_bar(vdev, i); 2451 } 2452 2453 if (vdev->has_vga) { 2454 vfio_vga_quirk_teardown(vdev); 2455 pci_unregister_vga(&vdev->pdev); 2456 } 2457 } 2458 2459 static void vfio_unmap_bars(VFIOPCIDevice *vdev) 2460 { 2461 int i; 2462 2463 for (i = 0; i < PCI_ROM_SLOT; i++) { 2464 vfio_unmap_bar(vdev, i); 2465 } 2466 2467 if (vdev->has_vga) { 2468 vfio_vga_quirk_free(vdev); 2469 } 2470 } 2471 2472 /* 2473 * General setup 2474 */ 2475 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) 2476 { 2477 uint8_t tmp, next = 0xff; 2478 2479 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; 2480 tmp = pdev->config[tmp + 1]) { 2481 if (tmp > pos && tmp < next) { 2482 next = tmp; 2483 } 2484 } 2485 2486 return next - pos; 2487 } 2488 2489 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) 2490 { 2491 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); 2492 } 2493 2494 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos, 2495 uint16_t val, uint16_t mask) 2496 { 2497 vfio_set_word_bits(vdev->pdev.config + pos, val, mask); 2498 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); 2499 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); 2500 } 2501 2502 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) 2503 { 2504 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); 2505 } 2506 2507 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos, 2508 uint32_t val, uint32_t mask) 2509 { 2510 vfio_set_long_bits(vdev->pdev.config + pos, val, mask); 2511 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); 2512 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); 2513 } 2514 2515 static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size) 2516 { 2517 uint16_t flags; 2518 uint8_t type; 2519 2520 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); 2521 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; 2522 2523 if (type != PCI_EXP_TYPE_ENDPOINT && 2524 type != PCI_EXP_TYPE_LEG_END && 2525 type != PCI_EXP_TYPE_RC_END) { 2526 2527 error_report("vfio: Assignment of PCIe type 0x%x " 2528 "devices is not currently supported", type); 2529 return -EINVAL; 2530 } 2531 2532 if (!pci_bus_is_express(vdev->pdev.bus)) { 2533 /* 2534 * Use express capability as-is on PCI bus. It doesn't make much 2535 * sense to even expose, but some drivers (ex. tg3) depend on it 2536 * and guests don't seem to be particular about it. We'll need 2537 * to revist this or force express devices to express buses if we 2538 * ever expose an IOMMU to the guest. 2539 */ 2540 } else if (pci_bus_is_root(vdev->pdev.bus)) { 2541 /* 2542 * On a Root Complex bus Endpoints become Root Complex Integrated 2543 * Endpoints, which changes the type and clears the LNK & LNK2 fields. 2544 */ 2545 if (type == PCI_EXP_TYPE_ENDPOINT) { 2546 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2547 PCI_EXP_TYPE_RC_END << 4, 2548 PCI_EXP_FLAGS_TYPE); 2549 2550 /* Link Capabilities, Status, and Control goes away */ 2551 if (size > PCI_EXP_LNKCTL) { 2552 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); 2553 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); 2554 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); 2555 2556 #ifndef PCI_EXP_LNKCAP2 2557 #define PCI_EXP_LNKCAP2 44 2558 #endif 2559 #ifndef PCI_EXP_LNKSTA2 2560 #define PCI_EXP_LNKSTA2 50 2561 #endif 2562 /* Link 2 Capabilities, Status, and Control goes away */ 2563 if (size > PCI_EXP_LNKCAP2) { 2564 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); 2565 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); 2566 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); 2567 } 2568 } 2569 2570 } else if (type == PCI_EXP_TYPE_LEG_END) { 2571 /* 2572 * Legacy endpoints don't belong on the root complex. Windows 2573 * seems to be happier with devices if we skip the capability. 2574 */ 2575 return 0; 2576 } 2577 2578 } else { 2579 /* 2580 * Convert Root Complex Integrated Endpoints to regular endpoints. 2581 * These devices don't support LNK/LNK2 capabilities, so make them up. 2582 */ 2583 if (type == PCI_EXP_TYPE_RC_END) { 2584 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2585 PCI_EXP_TYPE_ENDPOINT << 4, 2586 PCI_EXP_FLAGS_TYPE); 2587 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 2588 PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0); 2589 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); 2590 } 2591 2592 /* Mark the Link Status bits as emulated to allow virtual negotiation */ 2593 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 2594 pci_get_word(vdev->pdev.config + pos + 2595 PCI_EXP_LNKSTA), 2596 PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS); 2597 } 2598 2599 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size); 2600 if (pos >= 0) { 2601 vdev->pdev.exp.exp_cap = pos; 2602 } 2603 2604 return pos; 2605 } 2606 2607 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos) 2608 { 2609 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP); 2610 2611 if (cap & PCI_EXP_DEVCAP_FLR) { 2612 trace_vfio_check_pcie_flr(vdev->vbasedev.name); 2613 vdev->has_flr = true; 2614 } 2615 } 2616 2617 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos) 2618 { 2619 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL); 2620 2621 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) { 2622 trace_vfio_check_pm_reset(vdev->vbasedev.name); 2623 vdev->has_pm_reset = true; 2624 } 2625 } 2626 2627 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos) 2628 { 2629 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP); 2630 2631 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) { 2632 trace_vfio_check_af_flr(vdev->vbasedev.name); 2633 vdev->has_flr = true; 2634 } 2635 } 2636 2637 static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos) 2638 { 2639 PCIDevice *pdev = &vdev->pdev; 2640 uint8_t cap_id, next, size; 2641 int ret; 2642 2643 cap_id = pdev->config[pos]; 2644 next = pdev->config[pos + 1]; 2645 2646 /* 2647 * If it becomes important to configure capabilities to their actual 2648 * size, use this as the default when it's something we don't recognize. 2649 * Since QEMU doesn't actually handle many of the config accesses, 2650 * exact size doesn't seem worthwhile. 2651 */ 2652 size = vfio_std_cap_max_size(pdev, pos); 2653 2654 /* 2655 * pci_add_capability always inserts the new capability at the head 2656 * of the chain. Therefore to end up with a chain that matches the 2657 * physical device, we insert from the end by making this recursive. 2658 * This is also why we pre-caclulate size above as cached config space 2659 * will be changed as we unwind the stack. 2660 */ 2661 if (next) { 2662 ret = vfio_add_std_cap(vdev, next); 2663 if (ret) { 2664 return ret; 2665 } 2666 } else { 2667 /* Begin the rebuild, use QEMU emulated list bits */ 2668 pdev->config[PCI_CAPABILITY_LIST] = 0; 2669 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; 2670 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; 2671 } 2672 2673 /* Use emulated next pointer to allow dropping caps */ 2674 pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff); 2675 2676 switch (cap_id) { 2677 case PCI_CAP_ID_MSI: 2678 ret = vfio_setup_msi(vdev, pos); 2679 break; 2680 case PCI_CAP_ID_EXP: 2681 vfio_check_pcie_flr(vdev, pos); 2682 ret = vfio_setup_pcie_cap(vdev, pos, size); 2683 break; 2684 case PCI_CAP_ID_MSIX: 2685 ret = vfio_setup_msix(vdev, pos); 2686 break; 2687 case PCI_CAP_ID_PM: 2688 vfio_check_pm_reset(vdev, pos); 2689 vdev->pm_cap = pos; 2690 ret = pci_add_capability(pdev, cap_id, pos, size); 2691 break; 2692 case PCI_CAP_ID_AF: 2693 vfio_check_af_flr(vdev, pos); 2694 ret = pci_add_capability(pdev, cap_id, pos, size); 2695 break; 2696 default: 2697 ret = pci_add_capability(pdev, cap_id, pos, size); 2698 break; 2699 } 2700 2701 if (ret < 0) { 2702 error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability " 2703 "0x%x[0x%x]@0x%x: %d", vdev->host.domain, 2704 vdev->host.bus, vdev->host.slot, vdev->host.function, 2705 cap_id, size, pos, ret); 2706 return ret; 2707 } 2708 2709 return 0; 2710 } 2711 2712 static int vfio_add_capabilities(VFIOPCIDevice *vdev) 2713 { 2714 PCIDevice *pdev = &vdev->pdev; 2715 2716 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || 2717 !pdev->config[PCI_CAPABILITY_LIST]) { 2718 return 0; /* Nothing to add */ 2719 } 2720 2721 return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]); 2722 } 2723 2724 static void vfio_pci_pre_reset(VFIOPCIDevice *vdev) 2725 { 2726 PCIDevice *pdev = &vdev->pdev; 2727 uint16_t cmd; 2728 2729 vfio_disable_interrupts(vdev); 2730 2731 /* Make sure the device is in D0 */ 2732 if (vdev->pm_cap) { 2733 uint16_t pmcsr; 2734 uint8_t state; 2735 2736 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); 2737 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 2738 if (state) { 2739 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 2740 vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); 2741 /* vfio handles the necessary delay here */ 2742 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); 2743 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 2744 if (state) { 2745 error_report("vfio: Unable to power on device, stuck in D%d", 2746 state); 2747 } 2748 } 2749 } 2750 2751 /* 2752 * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master. 2753 * Also put INTx Disable in known state. 2754 */ 2755 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); 2756 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | 2757 PCI_COMMAND_INTX_DISABLE); 2758 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); 2759 } 2760 2761 static void vfio_pci_post_reset(VFIOPCIDevice *vdev) 2762 { 2763 vfio_enable_intx(vdev); 2764 } 2765 2766 static bool vfio_pci_host_match(PCIHostDeviceAddress *host1, 2767 PCIHostDeviceAddress *host2) 2768 { 2769 return (host1->domain == host2->domain && host1->bus == host2->bus && 2770 host1->slot == host2->slot && host1->function == host2->function); 2771 } 2772 2773 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single) 2774 { 2775 VFIOGroup *group; 2776 struct vfio_pci_hot_reset_info *info; 2777 struct vfio_pci_dependent_device *devices; 2778 struct vfio_pci_hot_reset *reset; 2779 int32_t *fds; 2780 int ret, i, count; 2781 bool multi = false; 2782 2783 trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi"); 2784 2785 vfio_pci_pre_reset(vdev); 2786 vdev->vbasedev.needs_reset = false; 2787 2788 info = g_malloc0(sizeof(*info)); 2789 info->argsz = sizeof(*info); 2790 2791 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); 2792 if (ret && errno != ENOSPC) { 2793 ret = -errno; 2794 if (!vdev->has_pm_reset) { 2795 error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, " 2796 "no available reset mechanism.", vdev->host.domain, 2797 vdev->host.bus, vdev->host.slot, vdev->host.function); 2798 } 2799 goto out_single; 2800 } 2801 2802 count = info->count; 2803 info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices))); 2804 info->argsz = sizeof(*info) + (count * sizeof(*devices)); 2805 devices = &info->devices[0]; 2806 2807 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); 2808 if (ret) { 2809 ret = -errno; 2810 error_report("vfio: hot reset info failed: %m"); 2811 goto out_single; 2812 } 2813 2814 trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name); 2815 2816 /* Verify that we have all the groups required */ 2817 for (i = 0; i < info->count; i++) { 2818 PCIHostDeviceAddress host; 2819 VFIOPCIDevice *tmp; 2820 VFIODevice *vbasedev_iter; 2821 2822 host.domain = devices[i].segment; 2823 host.bus = devices[i].bus; 2824 host.slot = PCI_SLOT(devices[i].devfn); 2825 host.function = PCI_FUNC(devices[i].devfn); 2826 2827 trace_vfio_pci_hot_reset_dep_devices(host.domain, 2828 host.bus, host.slot, host.function, devices[i].group_id); 2829 2830 if (vfio_pci_host_match(&host, &vdev->host)) { 2831 continue; 2832 } 2833 2834 QLIST_FOREACH(group, &vfio_group_list, next) { 2835 if (group->groupid == devices[i].group_id) { 2836 break; 2837 } 2838 } 2839 2840 if (!group) { 2841 if (!vdev->has_pm_reset) { 2842 error_report("vfio: Cannot reset device %s, " 2843 "depends on group %d which is not owned.", 2844 vdev->vbasedev.name, devices[i].group_id); 2845 } 2846 ret = -EPERM; 2847 goto out; 2848 } 2849 2850 /* Prep dependent devices for reset and clear our marker. */ 2851 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 2852 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { 2853 continue; 2854 } 2855 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); 2856 if (vfio_pci_host_match(&host, &tmp->host)) { 2857 if (single) { 2858 ret = -EINVAL; 2859 goto out_single; 2860 } 2861 vfio_pci_pre_reset(tmp); 2862 tmp->vbasedev.needs_reset = false; 2863 multi = true; 2864 break; 2865 } 2866 } 2867 } 2868 2869 if (!single && !multi) { 2870 ret = -EINVAL; 2871 goto out_single; 2872 } 2873 2874 /* Determine how many group fds need to be passed */ 2875 count = 0; 2876 QLIST_FOREACH(group, &vfio_group_list, next) { 2877 for (i = 0; i < info->count; i++) { 2878 if (group->groupid == devices[i].group_id) { 2879 count++; 2880 break; 2881 } 2882 } 2883 } 2884 2885 reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds))); 2886 reset->argsz = sizeof(*reset) + (count * sizeof(*fds)); 2887 fds = &reset->group_fds[0]; 2888 2889 /* Fill in group fds */ 2890 QLIST_FOREACH(group, &vfio_group_list, next) { 2891 for (i = 0; i < info->count; i++) { 2892 if (group->groupid == devices[i].group_id) { 2893 fds[reset->count++] = group->fd; 2894 break; 2895 } 2896 } 2897 } 2898 2899 /* Bus reset! */ 2900 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset); 2901 g_free(reset); 2902 2903 trace_vfio_pci_hot_reset_result(vdev->vbasedev.name, 2904 ret ? "%m" : "Success"); 2905 2906 out: 2907 /* Re-enable INTx on affected devices */ 2908 for (i = 0; i < info->count; i++) { 2909 PCIHostDeviceAddress host; 2910 VFIOPCIDevice *tmp; 2911 VFIODevice *vbasedev_iter; 2912 2913 host.domain = devices[i].segment; 2914 host.bus = devices[i].bus; 2915 host.slot = PCI_SLOT(devices[i].devfn); 2916 host.function = PCI_FUNC(devices[i].devfn); 2917 2918 if (vfio_pci_host_match(&host, &vdev->host)) { 2919 continue; 2920 } 2921 2922 QLIST_FOREACH(group, &vfio_group_list, next) { 2923 if (group->groupid == devices[i].group_id) { 2924 break; 2925 } 2926 } 2927 2928 if (!group) { 2929 break; 2930 } 2931 2932 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 2933 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { 2934 continue; 2935 } 2936 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); 2937 if (vfio_pci_host_match(&host, &tmp->host)) { 2938 vfio_pci_post_reset(tmp); 2939 break; 2940 } 2941 } 2942 } 2943 out_single: 2944 vfio_pci_post_reset(vdev); 2945 g_free(info); 2946 2947 return ret; 2948 } 2949 2950 /* 2951 * We want to differentiate hot reset of mulitple in-use devices vs hot reset 2952 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case 2953 * of doing hot resets when there is only a single device per bus. The in-use 2954 * here refers to how many VFIODevices are affected. A hot reset that affects 2955 * multiple devices, but only a single in-use device, means that we can call 2956 * it from our bus ->reset() callback since the extent is effectively a single 2957 * device. This allows us to make use of it in the hotplug path. When there 2958 * are multiple in-use devices, we can only trigger the hot reset during a 2959 * system reset and thus from our reset handler. We separate _one vs _multi 2960 * here so that we don't overlap and do a double reset on the system reset 2961 * path where both our reset handler and ->reset() callback are used. Calling 2962 * _one() will only do a hot reset for the one in-use devices case, calling 2963 * _multi() will do nothing if a _one() would have been sufficient. 2964 */ 2965 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev) 2966 { 2967 return vfio_pci_hot_reset(vdev, true); 2968 } 2969 2970 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev) 2971 { 2972 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2973 return vfio_pci_hot_reset(vdev, false); 2974 } 2975 2976 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev) 2977 { 2978 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2979 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { 2980 vbasedev->needs_reset = true; 2981 } 2982 } 2983 2984 static VFIODeviceOps vfio_pci_ops = { 2985 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset, 2986 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi, 2987 .vfio_eoi = vfio_eoi, 2988 }; 2989 2990 static int vfio_populate_device(VFIOPCIDevice *vdev) 2991 { 2992 VFIODevice *vbasedev = &vdev->vbasedev; 2993 struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) }; 2994 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; 2995 int i, ret = -1; 2996 2997 /* Sanity check device */ 2998 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) { 2999 error_report("vfio: Um, this isn't a PCI device"); 3000 goto error; 3001 } 3002 3003 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { 3004 error_report("vfio: unexpected number of io regions %u", 3005 vbasedev->num_regions); 3006 goto error; 3007 } 3008 3009 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { 3010 error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs); 3011 goto error; 3012 } 3013 3014 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { 3015 reg_info.index = i; 3016 3017 ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); 3018 if (ret) { 3019 error_report("vfio: Error getting region %d info: %m", i); 3020 goto error; 3021 } 3022 3023 trace_vfio_populate_device_region(vbasedev->name, i, 3024 (unsigned long)reg_info.size, 3025 (unsigned long)reg_info.offset, 3026 (unsigned long)reg_info.flags); 3027 3028 vdev->bars[i].region.vbasedev = vbasedev; 3029 vdev->bars[i].region.flags = reg_info.flags; 3030 vdev->bars[i].region.size = reg_info.size; 3031 vdev->bars[i].region.fd_offset = reg_info.offset; 3032 vdev->bars[i].region.nr = i; 3033 QLIST_INIT(&vdev->bars[i].quirks); 3034 } 3035 3036 reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX; 3037 3038 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); 3039 if (ret) { 3040 error_report("vfio: Error getting config info: %m"); 3041 goto error; 3042 } 3043 3044 trace_vfio_populate_device_config(vdev->vbasedev.name, 3045 (unsigned long)reg_info.size, 3046 (unsigned long)reg_info.offset, 3047 (unsigned long)reg_info.flags); 3048 3049 vdev->config_size = reg_info.size; 3050 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { 3051 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; 3052 } 3053 vdev->config_offset = reg_info.offset; 3054 3055 if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) && 3056 vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) { 3057 struct vfio_region_info vga_info = { 3058 .argsz = sizeof(vga_info), 3059 .index = VFIO_PCI_VGA_REGION_INDEX, 3060 }; 3061 3062 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info); 3063 if (ret) { 3064 error_report( 3065 "vfio: Device does not support requested feature x-vga"); 3066 goto error; 3067 } 3068 3069 if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) || 3070 !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) || 3071 vga_info.size < 0xbffff + 1) { 3072 error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx", 3073 (unsigned long)vga_info.flags, 3074 (unsigned long)vga_info.size); 3075 goto error; 3076 } 3077 3078 vdev->vga.fd_offset = vga_info.offset; 3079 vdev->vga.fd = vdev->vbasedev.fd; 3080 3081 vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; 3082 vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; 3083 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks); 3084 3085 vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; 3086 vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; 3087 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks); 3088 3089 vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; 3090 vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; 3091 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks); 3092 3093 vdev->has_vga = true; 3094 } 3095 3096 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX; 3097 3098 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); 3099 if (ret) { 3100 /* This can fail for an old kernel or legacy PCI dev */ 3101 trace_vfio_populate_device_get_irq_info_failure(); 3102 ret = 0; 3103 } else if (irq_info.count == 1) { 3104 vdev->pci_aer = true; 3105 } else { 3106 error_report("vfio: %s " 3107 "Could not enable error recovery for the device", 3108 vbasedev->name); 3109 } 3110 3111 error: 3112 return ret; 3113 } 3114 3115 static void vfio_put_device(VFIOPCIDevice *vdev) 3116 { 3117 g_free(vdev->vbasedev.name); 3118 if (vdev->msix) { 3119 object_unparent(OBJECT(&vdev->msix->mmap_mem)); 3120 g_free(vdev->msix); 3121 vdev->msix = NULL; 3122 } 3123 vfio_put_base_device(&vdev->vbasedev); 3124 } 3125 3126 static void vfio_err_notifier_handler(void *opaque) 3127 { 3128 VFIOPCIDevice *vdev = opaque; 3129 3130 if (!event_notifier_test_and_clear(&vdev->err_notifier)) { 3131 return; 3132 } 3133 3134 /* 3135 * TBD. Retrieve the error details and decide what action 3136 * needs to be taken. One of the actions could be to pass 3137 * the error to the guest and have the guest driver recover 3138 * from the error. This requires that PCIe capabilities be 3139 * exposed to the guest. For now, we just terminate the 3140 * guest to contain the error. 3141 */ 3142 3143 error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. " 3144 "Please collect any data possible and then kill the guest", 3145 __func__, vdev->host.domain, vdev->host.bus, 3146 vdev->host.slot, vdev->host.function); 3147 3148 vm_stop(RUN_STATE_INTERNAL_ERROR); 3149 } 3150 3151 /* 3152 * Registers error notifier for devices supporting error recovery. 3153 * If we encounter a failure in this function, we report an error 3154 * and continue after disabling error recovery support for the 3155 * device. 3156 */ 3157 static void vfio_register_err_notifier(VFIOPCIDevice *vdev) 3158 { 3159 int ret; 3160 int argsz; 3161 struct vfio_irq_set *irq_set; 3162 int32_t *pfd; 3163 3164 if (!vdev->pci_aer) { 3165 return; 3166 } 3167 3168 if (event_notifier_init(&vdev->err_notifier, 0)) { 3169 error_report("vfio: Unable to init event notifier for error detection"); 3170 vdev->pci_aer = false; 3171 return; 3172 } 3173 3174 argsz = sizeof(*irq_set) + sizeof(*pfd); 3175 3176 irq_set = g_malloc0(argsz); 3177 irq_set->argsz = argsz; 3178 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3179 VFIO_IRQ_SET_ACTION_TRIGGER; 3180 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; 3181 irq_set->start = 0; 3182 irq_set->count = 1; 3183 pfd = (int32_t *)&irq_set->data; 3184 3185 *pfd = event_notifier_get_fd(&vdev->err_notifier); 3186 qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev); 3187 3188 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 3189 if (ret) { 3190 error_report("vfio: Failed to set up error notification"); 3191 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 3192 event_notifier_cleanup(&vdev->err_notifier); 3193 vdev->pci_aer = false; 3194 } 3195 g_free(irq_set); 3196 } 3197 3198 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev) 3199 { 3200 int argsz; 3201 struct vfio_irq_set *irq_set; 3202 int32_t *pfd; 3203 int ret; 3204 3205 if (!vdev->pci_aer) { 3206 return; 3207 } 3208 3209 argsz = sizeof(*irq_set) + sizeof(*pfd); 3210 3211 irq_set = g_malloc0(argsz); 3212 irq_set->argsz = argsz; 3213 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3214 VFIO_IRQ_SET_ACTION_TRIGGER; 3215 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; 3216 irq_set->start = 0; 3217 irq_set->count = 1; 3218 pfd = (int32_t *)&irq_set->data; 3219 *pfd = -1; 3220 3221 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 3222 if (ret) { 3223 error_report("vfio: Failed to de-assign error fd: %m"); 3224 } 3225 g_free(irq_set); 3226 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier), 3227 NULL, NULL, vdev); 3228 event_notifier_cleanup(&vdev->err_notifier); 3229 } 3230 3231 static void vfio_req_notifier_handler(void *opaque) 3232 { 3233 VFIOPCIDevice *vdev = opaque; 3234 3235 if (!event_notifier_test_and_clear(&vdev->req_notifier)) { 3236 return; 3237 } 3238 3239 qdev_unplug(&vdev->pdev.qdev, NULL); 3240 } 3241 3242 static void vfio_register_req_notifier(VFIOPCIDevice *vdev) 3243 { 3244 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), 3245 .index = VFIO_PCI_REQ_IRQ_INDEX }; 3246 int argsz; 3247 struct vfio_irq_set *irq_set; 3248 int32_t *pfd; 3249 3250 if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) { 3251 return; 3252 } 3253 3254 if (ioctl(vdev->vbasedev.fd, 3255 VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) { 3256 return; 3257 } 3258 3259 if (event_notifier_init(&vdev->req_notifier, 0)) { 3260 error_report("vfio: Unable to init event notifier for device request"); 3261 return; 3262 } 3263 3264 argsz = sizeof(*irq_set) + sizeof(*pfd); 3265 3266 irq_set = g_malloc0(argsz); 3267 irq_set->argsz = argsz; 3268 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3269 VFIO_IRQ_SET_ACTION_TRIGGER; 3270 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; 3271 irq_set->start = 0; 3272 irq_set->count = 1; 3273 pfd = (int32_t *)&irq_set->data; 3274 3275 *pfd = event_notifier_get_fd(&vdev->req_notifier); 3276 qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev); 3277 3278 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 3279 error_report("vfio: Failed to set up device request notification"); 3280 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 3281 event_notifier_cleanup(&vdev->req_notifier); 3282 } else { 3283 vdev->req_enabled = true; 3284 } 3285 3286 g_free(irq_set); 3287 } 3288 3289 static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev) 3290 { 3291 int argsz; 3292 struct vfio_irq_set *irq_set; 3293 int32_t *pfd; 3294 3295 if (!vdev->req_enabled) { 3296 return; 3297 } 3298 3299 argsz = sizeof(*irq_set) + sizeof(*pfd); 3300 3301 irq_set = g_malloc0(argsz); 3302 irq_set->argsz = argsz; 3303 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3304 VFIO_IRQ_SET_ACTION_TRIGGER; 3305 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; 3306 irq_set->start = 0; 3307 irq_set->count = 1; 3308 pfd = (int32_t *)&irq_set->data; 3309 *pfd = -1; 3310 3311 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 3312 error_report("vfio: Failed to de-assign device request fd: %m"); 3313 } 3314 g_free(irq_set); 3315 qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier), 3316 NULL, NULL, vdev); 3317 event_notifier_cleanup(&vdev->req_notifier); 3318 3319 vdev->req_enabled = false; 3320 } 3321 3322 static int vfio_initfn(PCIDevice *pdev) 3323 { 3324 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3325 VFIODevice *vbasedev_iter; 3326 VFIOGroup *group; 3327 char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name; 3328 ssize_t len; 3329 struct stat st; 3330 int groupid; 3331 int ret; 3332 3333 /* Check that the host device exists */ 3334 snprintf(path, sizeof(path), 3335 "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/", 3336 vdev->host.domain, vdev->host.bus, vdev->host.slot, 3337 vdev->host.function); 3338 if (stat(path, &st) < 0) { 3339 error_report("vfio: error: no such host device: %s", path); 3340 return -errno; 3341 } 3342 3343 vdev->vbasedev.ops = &vfio_pci_ops; 3344 3345 vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI; 3346 vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x", 3347 vdev->host.domain, vdev->host.bus, 3348 vdev->host.slot, vdev->host.function); 3349 3350 strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1); 3351 3352 len = readlink(path, iommu_group_path, sizeof(path)); 3353 if (len <= 0 || len >= sizeof(path)) { 3354 error_report("vfio: error no iommu_group for device"); 3355 return len < 0 ? -errno : ENAMETOOLONG; 3356 } 3357 3358 iommu_group_path[len] = 0; 3359 group_name = basename(iommu_group_path); 3360 3361 if (sscanf(group_name, "%d", &groupid) != 1) { 3362 error_report("vfio: error reading %s: %m", path); 3363 return -errno; 3364 } 3365 3366 trace_vfio_initfn(vdev->vbasedev.name, groupid); 3367 3368 group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev)); 3369 if (!group) { 3370 error_report("vfio: failed to get group %d", groupid); 3371 return -ENOENT; 3372 } 3373 3374 snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x", 3375 vdev->host.domain, vdev->host.bus, vdev->host.slot, 3376 vdev->host.function); 3377 3378 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 3379 if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) { 3380 error_report("vfio: error: device %s is already attached", path); 3381 vfio_put_group(group); 3382 return -EBUSY; 3383 } 3384 } 3385 3386 ret = vfio_get_device(group, path, &vdev->vbasedev); 3387 if (ret) { 3388 error_report("vfio: failed to get device %s", path); 3389 vfio_put_group(group); 3390 return ret; 3391 } 3392 3393 ret = vfio_populate_device(vdev); 3394 if (ret) { 3395 return ret; 3396 } 3397 3398 /* Get a copy of config space */ 3399 ret = pread(vdev->vbasedev.fd, vdev->pdev.config, 3400 MIN(pci_config_size(&vdev->pdev), vdev->config_size), 3401 vdev->config_offset); 3402 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { 3403 ret = ret < 0 ? -errno : -EFAULT; 3404 error_report("vfio: Failed to read device config space"); 3405 return ret; 3406 } 3407 3408 /* vfio emulates a lot for us, but some bits need extra love */ 3409 vdev->emulated_config_bits = g_malloc0(vdev->config_size); 3410 3411 /* QEMU can choose to expose the ROM or not */ 3412 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); 3413 3414 /* QEMU can change multi-function devices to single function, or reverse */ 3415 vdev->emulated_config_bits[PCI_HEADER_TYPE] = 3416 PCI_HEADER_TYPE_MULTI_FUNCTION; 3417 3418 /* Restore or clear multifunction, this is always controlled by QEMU */ 3419 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 3420 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; 3421 } else { 3422 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; 3423 } 3424 3425 /* 3426 * Clear host resource mapping info. If we choose not to register a 3427 * BAR, such as might be the case with the option ROM, we can get 3428 * confusing, unwritable, residual addresses from the host here. 3429 */ 3430 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); 3431 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); 3432 3433 vfio_pci_size_rom(vdev); 3434 3435 ret = vfio_early_setup_msix(vdev); 3436 if (ret) { 3437 return ret; 3438 } 3439 3440 vfio_map_bars(vdev); 3441 3442 ret = vfio_add_capabilities(vdev); 3443 if (ret) { 3444 goto out_teardown; 3445 } 3446 3447 /* QEMU emulates all of MSI & MSIX */ 3448 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { 3449 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, 3450 MSIX_CAP_LENGTH); 3451 } 3452 3453 if (pdev->cap_present & QEMU_PCI_CAP_MSI) { 3454 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, 3455 vdev->msi_cap_size); 3456 } 3457 3458 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { 3459 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3460 vfio_intx_mmap_enable, vdev); 3461 pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq); 3462 ret = vfio_enable_intx(vdev); 3463 if (ret) { 3464 goto out_teardown; 3465 } 3466 } 3467 3468 vfio_register_err_notifier(vdev); 3469 vfio_register_req_notifier(vdev); 3470 3471 return 0; 3472 3473 out_teardown: 3474 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); 3475 vfio_teardown_msi(vdev); 3476 vfio_unregister_bars(vdev); 3477 return ret; 3478 } 3479 3480 static void vfio_instance_finalize(Object *obj) 3481 { 3482 PCIDevice *pci_dev = PCI_DEVICE(obj); 3483 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev); 3484 VFIOGroup *group = vdev->vbasedev.group; 3485 3486 vfio_unmap_bars(vdev); 3487 g_free(vdev->emulated_config_bits); 3488 g_free(vdev->rom); 3489 vfio_put_device(vdev); 3490 vfio_put_group(group); 3491 } 3492 3493 static void vfio_exitfn(PCIDevice *pdev) 3494 { 3495 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3496 3497 vfio_unregister_req_notifier(vdev); 3498 vfio_unregister_err_notifier(vdev); 3499 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); 3500 vfio_disable_interrupts(vdev); 3501 if (vdev->intx.mmap_timer) { 3502 timer_free(vdev->intx.mmap_timer); 3503 } 3504 vfio_teardown_msi(vdev); 3505 vfio_unregister_bars(vdev); 3506 } 3507 3508 static void vfio_pci_reset(DeviceState *dev) 3509 { 3510 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev); 3511 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3512 3513 trace_vfio_pci_reset(vdev->vbasedev.name); 3514 3515 vfio_pci_pre_reset(vdev); 3516 3517 if (vdev->vbasedev.reset_works && 3518 (vdev->has_flr || !vdev->has_pm_reset) && 3519 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { 3520 trace_vfio_pci_reset_flr(vdev->vbasedev.name); 3521 goto post_reset; 3522 } 3523 3524 /* See if we can do our own bus reset */ 3525 if (!vfio_pci_hot_reset_one(vdev)) { 3526 goto post_reset; 3527 } 3528 3529 /* If nothing else works and the device supports PM reset, use it */ 3530 if (vdev->vbasedev.reset_works && vdev->has_pm_reset && 3531 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { 3532 trace_vfio_pci_reset_pm(vdev->vbasedev.name); 3533 goto post_reset; 3534 } 3535 3536 post_reset: 3537 vfio_pci_post_reset(vdev); 3538 } 3539 3540 static void vfio_instance_init(Object *obj) 3541 { 3542 PCIDevice *pci_dev = PCI_DEVICE(obj); 3543 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj)); 3544 3545 device_add_bootindex_property(obj, &vdev->bootindex, 3546 "bootindex", NULL, 3547 &pci_dev->qdev, NULL); 3548 } 3549 3550 static Property vfio_pci_dev_properties[] = { 3551 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host), 3552 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice, 3553 intx.mmap_timeout, 1100), 3554 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features, 3555 VFIO_FEATURE_ENABLE_VGA_BIT, false), 3556 DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features, 3557 VFIO_FEATURE_ENABLE_REQ_BIT, true), 3558 DEFINE_PROP_INT32("bootindex", VFIOPCIDevice, bootindex, -1), 3559 DEFINE_PROP_BOOL("x-mmap", VFIOPCIDevice, vbasedev.allow_mmap, true), 3560 /* 3561 * TODO - support passed fds... is this necessary? 3562 * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name), 3563 * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name), 3564 */ 3565 DEFINE_PROP_END_OF_LIST(), 3566 }; 3567 3568 static const VMStateDescription vfio_pci_vmstate = { 3569 .name = "vfio-pci", 3570 .unmigratable = 1, 3571 }; 3572 3573 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) 3574 { 3575 DeviceClass *dc = DEVICE_CLASS(klass); 3576 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); 3577 3578 dc->reset = vfio_pci_reset; 3579 dc->props = vfio_pci_dev_properties; 3580 dc->vmsd = &vfio_pci_vmstate; 3581 dc->desc = "VFIO-based PCI device assignment"; 3582 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 3583 pdc->init = vfio_initfn; 3584 pdc->exit = vfio_exitfn; 3585 pdc->config_read = vfio_pci_read_config; 3586 pdc->config_write = vfio_pci_write_config; 3587 pdc->is_express = 1; /* We might be */ 3588 } 3589 3590 static const TypeInfo vfio_pci_dev_info = { 3591 .name = "vfio-pci", 3592 .parent = TYPE_PCI_DEVICE, 3593 .instance_size = sizeof(VFIOPCIDevice), 3594 .class_init = vfio_pci_dev_class_init, 3595 .instance_init = vfio_instance_init, 3596 .instance_finalize = vfio_instance_finalize, 3597 }; 3598 3599 static void register_vfio_pci_dev_type(void) 3600 { 3601 type_register_static(&vfio_pci_dev_info); 3602 } 3603 3604 type_init(register_vfio_pci_dev_type) 3605