1 /* 2 * vfio based device assignment support 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include "qemu/osdep.h" 22 #include CONFIG_DEVICES /* CONFIG_IOMMUFD */ 23 #include <linux/vfio.h> 24 #include <sys/ioctl.h> 25 26 #include "hw/hw.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/pci/pci_bridge.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/qdev-properties-system.h" 32 #include "migration/vmstate.h" 33 #include "qobject/qdict.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/module.h" 37 #include "qemu/range.h" 38 #include "qemu/units.h" 39 #include "system/kvm.h" 40 #include "system/runstate.h" 41 #include "pci.h" 42 #include "trace.h" 43 #include "qapi/error.h" 44 #include "migration/blocker.h" 45 #include "migration/qemu-file.h" 46 #include "system/iommufd.h" 47 #include "vfio-migration-internal.h" 48 49 #define TYPE_VFIO_PCI_NOHOTPLUG "vfio-pci-nohotplug" 50 51 /* Protected by BQL */ 52 static KVMRouteChange vfio_route_change; 53 54 static void vfio_disable_interrupts(VFIOPCIDevice *vdev); 55 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled); 56 static void vfio_msi_disable_common(VFIOPCIDevice *vdev); 57 58 /* 59 * Disabling BAR mmaping can be slow, but toggling it around INTx can 60 * also be a huge overhead. We try to get the best of both worlds by 61 * waiting until an interrupt to disable mmaps (subsequent transitions 62 * to the same state are effectively no overhead). If the interrupt has 63 * been serviced and the time gap is long enough, we re-enable mmaps for 64 * performance. This works well for things like graphics cards, which 65 * may not use their interrupt at all and are penalized to an unusable 66 * level by read/write BAR traps. Other devices, like NICs, have more 67 * regular interrupts and see much better latency by staying in non-mmap 68 * mode. We therefore set the default mmap_timeout such that a ping 69 * is just enough to keep the mmap disabled. Users can experiment with 70 * other options with the x-intx-mmap-timeout-ms parameter (a value of 71 * zero disables the timer). 72 */ 73 static void vfio_intx_mmap_enable(void *opaque) 74 { 75 VFIOPCIDevice *vdev = opaque; 76 77 if (vdev->intx.pending) { 78 timer_mod(vdev->intx.mmap_timer, 79 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); 80 return; 81 } 82 83 vfio_mmap_set_enabled(vdev, true); 84 } 85 86 static void vfio_intx_interrupt(void *opaque) 87 { 88 VFIOPCIDevice *vdev = opaque; 89 90 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { 91 return; 92 } 93 94 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin); 95 96 vdev->intx.pending = true; 97 pci_irq_assert(&vdev->pdev); 98 vfio_mmap_set_enabled(vdev, false); 99 if (vdev->intx.mmap_timeout) { 100 timer_mod(vdev->intx.mmap_timer, 101 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); 102 } 103 } 104 105 static void vfio_intx_eoi(VFIODevice *vbasedev) 106 { 107 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 108 109 if (!vdev->intx.pending) { 110 return; 111 } 112 113 trace_vfio_intx_eoi(vbasedev->name); 114 115 vdev->intx.pending = false; 116 pci_irq_deassert(&vdev->pdev); 117 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 118 } 119 120 static bool vfio_intx_enable_kvm(VFIOPCIDevice *vdev, Error **errp) 121 { 122 #ifdef CONFIG_KVM 123 int irq_fd = event_notifier_get_fd(&vdev->intx.interrupt); 124 125 if (vdev->no_kvm_intx || !kvm_irqfds_enabled() || 126 vdev->intx.route.mode != PCI_INTX_ENABLED || 127 !kvm_resamplefds_enabled()) { 128 return true; 129 } 130 131 /* Get to a known interrupt state */ 132 qemu_set_fd_handler(irq_fd, NULL, NULL, vdev); 133 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 134 vdev->intx.pending = false; 135 pci_irq_deassert(&vdev->pdev); 136 137 /* Get an eventfd for resample/unmask */ 138 if (event_notifier_init(&vdev->intx.unmask, 0)) { 139 error_setg(errp, "event_notifier_init failed eoi"); 140 goto fail; 141 } 142 143 if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, 144 &vdev->intx.interrupt, 145 &vdev->intx.unmask, 146 vdev->intx.route.irq)) { 147 error_setg_errno(errp, errno, "failed to setup resample irqfd"); 148 goto fail_irqfd; 149 } 150 151 if (!vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX, 0, 152 VFIO_IRQ_SET_ACTION_UNMASK, 153 event_notifier_get_fd(&vdev->intx.unmask), 154 errp)) { 155 goto fail_vfio; 156 } 157 158 /* Let'em rip */ 159 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 160 161 vdev->intx.kvm_accel = true; 162 163 trace_vfio_intx_enable_kvm(vdev->vbasedev.name); 164 165 return true; 166 167 fail_vfio: 168 kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vdev->intx.interrupt, 169 vdev->intx.route.irq); 170 fail_irqfd: 171 event_notifier_cleanup(&vdev->intx.unmask); 172 fail: 173 qemu_set_fd_handler(irq_fd, vfio_intx_interrupt, NULL, vdev); 174 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 175 return false; 176 #else 177 return true; 178 #endif 179 } 180 181 static void vfio_intx_disable_kvm(VFIOPCIDevice *vdev) 182 { 183 #ifdef CONFIG_KVM 184 if (!vdev->intx.kvm_accel) { 185 return; 186 } 187 188 /* 189 * Get to a known state, hardware masked, QEMU ready to accept new 190 * interrupts, QEMU IRQ de-asserted. 191 */ 192 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 193 vdev->intx.pending = false; 194 pci_irq_deassert(&vdev->pdev); 195 196 /* Tell KVM to stop listening for an INTx irqfd */ 197 if (kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vdev->intx.interrupt, 198 vdev->intx.route.irq)) { 199 error_report("vfio: Error: Failed to disable INTx irqfd: %m"); 200 } 201 202 /* We only need to close the eventfd for VFIO to cleanup the kernel side */ 203 event_notifier_cleanup(&vdev->intx.unmask); 204 205 /* QEMU starts listening for interrupt events. */ 206 qemu_set_fd_handler(event_notifier_get_fd(&vdev->intx.interrupt), 207 vfio_intx_interrupt, NULL, vdev); 208 209 vdev->intx.kvm_accel = false; 210 211 /* If we've missed an event, let it re-fire through QEMU */ 212 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 213 214 trace_vfio_intx_disable_kvm(vdev->vbasedev.name); 215 #endif 216 } 217 218 static void vfio_intx_update(VFIOPCIDevice *vdev, PCIINTxRoute *route) 219 { 220 Error *err = NULL; 221 222 trace_vfio_intx_update(vdev->vbasedev.name, 223 vdev->intx.route.irq, route->irq); 224 225 vfio_intx_disable_kvm(vdev); 226 227 vdev->intx.route = *route; 228 229 if (route->mode != PCI_INTX_ENABLED) { 230 return; 231 } 232 233 if (!vfio_intx_enable_kvm(vdev, &err)) { 234 warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 235 } 236 237 /* Re-enable the interrupt in cased we missed an EOI */ 238 vfio_intx_eoi(&vdev->vbasedev); 239 } 240 241 static void vfio_intx_routing_notifier(PCIDevice *pdev) 242 { 243 VFIOPCIDevice *vdev = VFIO_PCI(pdev); 244 PCIINTxRoute route; 245 246 if (vdev->interrupt != VFIO_INT_INTx) { 247 return; 248 } 249 250 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); 251 252 if (pci_intx_route_changed(&vdev->intx.route, &route)) { 253 vfio_intx_update(vdev, &route); 254 } 255 } 256 257 static void vfio_irqchip_change(Notifier *notify, void *data) 258 { 259 VFIOPCIDevice *vdev = container_of(notify, VFIOPCIDevice, 260 irqchip_change_notifier); 261 262 vfio_intx_update(vdev, &vdev->intx.route); 263 } 264 265 static bool vfio_intx_enable(VFIOPCIDevice *vdev, Error **errp) 266 { 267 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); 268 Error *err = NULL; 269 int32_t fd; 270 int ret; 271 272 273 if (!pin) { 274 return true; 275 } 276 277 vfio_disable_interrupts(vdev); 278 279 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ 280 pci_config_set_interrupt_pin(vdev->pdev.config, pin); 281 282 #ifdef CONFIG_KVM 283 /* 284 * Only conditional to avoid generating error messages on platforms 285 * where we won't actually use the result anyway. 286 */ 287 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) { 288 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, 289 vdev->intx.pin); 290 } 291 #endif 292 293 ret = event_notifier_init(&vdev->intx.interrupt, 0); 294 if (ret) { 295 error_setg_errno(errp, -ret, "event_notifier_init failed"); 296 return false; 297 } 298 fd = event_notifier_get_fd(&vdev->intx.interrupt); 299 qemu_set_fd_handler(fd, vfio_intx_interrupt, NULL, vdev); 300 301 if (!vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX, 0, 302 VFIO_IRQ_SET_ACTION_TRIGGER, fd, errp)) { 303 qemu_set_fd_handler(fd, NULL, NULL, vdev); 304 event_notifier_cleanup(&vdev->intx.interrupt); 305 return false; 306 } 307 308 if (!vfio_intx_enable_kvm(vdev, &err)) { 309 warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 310 } 311 312 vdev->interrupt = VFIO_INT_INTx; 313 314 trace_vfio_intx_enable(vdev->vbasedev.name); 315 return true; 316 } 317 318 static void vfio_intx_disable(VFIOPCIDevice *vdev) 319 { 320 int fd; 321 322 timer_del(vdev->intx.mmap_timer); 323 vfio_intx_disable_kvm(vdev); 324 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 325 vdev->intx.pending = false; 326 pci_irq_deassert(&vdev->pdev); 327 vfio_mmap_set_enabled(vdev, true); 328 329 fd = event_notifier_get_fd(&vdev->intx.interrupt); 330 qemu_set_fd_handler(fd, NULL, NULL, vdev); 331 event_notifier_cleanup(&vdev->intx.interrupt); 332 333 vdev->interrupt = VFIO_INT_NONE; 334 335 trace_vfio_intx_disable(vdev->vbasedev.name); 336 } 337 338 /* 339 * MSI/X 340 */ 341 static void vfio_msi_interrupt(void *opaque) 342 { 343 VFIOMSIVector *vector = opaque; 344 VFIOPCIDevice *vdev = vector->vdev; 345 MSIMessage (*get_msg)(PCIDevice *dev, unsigned vector); 346 void (*notify)(PCIDevice *dev, unsigned vector); 347 MSIMessage msg; 348 int nr = vector - vdev->msi_vectors; 349 350 if (!event_notifier_test_and_clear(&vector->interrupt)) { 351 return; 352 } 353 354 if (vdev->interrupt == VFIO_INT_MSIX) { 355 get_msg = msix_get_message; 356 notify = msix_notify; 357 358 /* A masked vector firing needs to use the PBA, enable it */ 359 if (msix_is_masked(&vdev->pdev, nr)) { 360 set_bit(nr, vdev->msix->pending); 361 memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, true); 362 trace_vfio_msix_pba_enable(vdev->vbasedev.name); 363 } 364 } else if (vdev->interrupt == VFIO_INT_MSI) { 365 get_msg = msi_get_message; 366 notify = msi_notify; 367 } else { 368 abort(); 369 } 370 371 msg = get_msg(&vdev->pdev, nr); 372 trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data); 373 notify(&vdev->pdev, nr); 374 } 375 376 /* 377 * Get MSI-X enabled, but no vector enabled, by setting vector 0 with an invalid 378 * fd to kernel. 379 */ 380 static int vfio_enable_msix_no_vec(VFIOPCIDevice *vdev) 381 { 382 g_autofree struct vfio_irq_set *irq_set = NULL; 383 int ret = 0, argsz; 384 int32_t *fd; 385 386 argsz = sizeof(*irq_set) + sizeof(*fd); 387 388 irq_set = g_malloc0(argsz); 389 irq_set->argsz = argsz; 390 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 391 VFIO_IRQ_SET_ACTION_TRIGGER; 392 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; 393 irq_set->start = 0; 394 irq_set->count = 1; 395 fd = (int32_t *)&irq_set->data; 396 *fd = -1; 397 398 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 399 400 return ret; 401 } 402 403 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix) 404 { 405 struct vfio_irq_set *irq_set; 406 int ret = 0, i, argsz; 407 int32_t *fds; 408 409 /* 410 * If dynamic MSI-X allocation is supported, the vectors to be allocated 411 * and enabled can be scattered. Before kernel enabling MSI-X, setting 412 * nr_vectors causes all these vectors to be allocated on host. 413 * 414 * To keep allocation as needed, use vector 0 with an invalid fd to get 415 * MSI-X enabled first, then set vectors with a potentially sparse set of 416 * eventfds to enable interrupts only when enabled in guest. 417 */ 418 if (msix && !vdev->msix->noresize) { 419 ret = vfio_enable_msix_no_vec(vdev); 420 421 if (ret) { 422 return ret; 423 } 424 } 425 426 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); 427 428 irq_set = g_malloc0(argsz); 429 irq_set->argsz = argsz; 430 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; 431 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; 432 irq_set->start = 0; 433 irq_set->count = vdev->nr_vectors; 434 fds = (int32_t *)&irq_set->data; 435 436 for (i = 0; i < vdev->nr_vectors; i++) { 437 int fd = -1; 438 439 /* 440 * MSI vs MSI-X - The guest has direct access to MSI mask and pending 441 * bits, therefore we always use the KVM signaling path when setup. 442 * MSI-X mask and pending bits are emulated, so we want to use the 443 * KVM signaling path only when configured and unmasked. 444 */ 445 if (vdev->msi_vectors[i].use) { 446 if (vdev->msi_vectors[i].virq < 0 || 447 (msix && msix_is_masked(&vdev->pdev, i))) { 448 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); 449 } else { 450 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); 451 } 452 } 453 454 fds[i] = fd; 455 } 456 457 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 458 459 g_free(irq_set); 460 461 return ret; 462 } 463 464 static void vfio_add_kvm_msi_virq(VFIOPCIDevice *vdev, VFIOMSIVector *vector, 465 int vector_n, bool msix) 466 { 467 if ((msix && vdev->no_kvm_msix) || (!msix && vdev->no_kvm_msi)) { 468 return; 469 } 470 471 vector->virq = kvm_irqchip_add_msi_route(&vfio_route_change, 472 vector_n, &vdev->pdev); 473 } 474 475 static void vfio_connect_kvm_msi_virq(VFIOMSIVector *vector) 476 { 477 if (vector->virq < 0) { 478 return; 479 } 480 481 if (event_notifier_init(&vector->kvm_interrupt, 0)) { 482 goto fail_notifier; 483 } 484 485 if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt, 486 NULL, vector->virq) < 0) { 487 goto fail_kvm; 488 } 489 490 return; 491 492 fail_kvm: 493 event_notifier_cleanup(&vector->kvm_interrupt); 494 fail_notifier: 495 kvm_irqchip_release_virq(kvm_state, vector->virq); 496 vector->virq = -1; 497 } 498 499 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) 500 { 501 kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt, 502 vector->virq); 503 kvm_irqchip_release_virq(kvm_state, vector->virq); 504 vector->virq = -1; 505 event_notifier_cleanup(&vector->kvm_interrupt); 506 } 507 508 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg, 509 PCIDevice *pdev) 510 { 511 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg, pdev); 512 kvm_irqchip_commit_routes(kvm_state); 513 } 514 515 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, 516 MSIMessage *msg, IOHandler *handler) 517 { 518 VFIOPCIDevice *vdev = VFIO_PCI(pdev); 519 VFIOMSIVector *vector; 520 int ret; 521 bool resizing = !!(vdev->nr_vectors < nr + 1); 522 523 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr); 524 525 vector = &vdev->msi_vectors[nr]; 526 527 if (!vector->use) { 528 vector->vdev = vdev; 529 vector->virq = -1; 530 if (event_notifier_init(&vector->interrupt, 0)) { 531 error_report("vfio: Error: event_notifier_init failed"); 532 } 533 vector->use = true; 534 msix_vector_use(pdev, nr); 535 } 536 537 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 538 handler, NULL, vector); 539 540 /* 541 * Attempt to enable route through KVM irqchip, 542 * default to userspace handling if unavailable. 543 */ 544 if (vector->virq >= 0) { 545 if (!msg) { 546 vfio_remove_kvm_msi_virq(vector); 547 } else { 548 vfio_update_kvm_msi_virq(vector, *msg, pdev); 549 } 550 } else { 551 if (msg) { 552 if (vdev->defer_kvm_irq_routing) { 553 vfio_add_kvm_msi_virq(vdev, vector, nr, true); 554 } else { 555 vfio_route_change = kvm_irqchip_begin_route_changes(kvm_state); 556 vfio_add_kvm_msi_virq(vdev, vector, nr, true); 557 kvm_irqchip_commit_route_changes(&vfio_route_change); 558 vfio_connect_kvm_msi_virq(vector); 559 } 560 } 561 } 562 563 /* 564 * When dynamic allocation is not supported, we don't want to have the 565 * host allocate all possible MSI vectors for a device if they're not 566 * in use, so we shutdown and incrementally increase them as needed. 567 * nr_vectors represents the total number of vectors allocated. 568 * 569 * When dynamic allocation is supported, let the host only allocate 570 * and enable a vector when it is in use in guest. nr_vectors represents 571 * the upper bound of vectors being enabled (but not all of the ranges 572 * is allocated or enabled). 573 */ 574 if (resizing) { 575 vdev->nr_vectors = nr + 1; 576 } 577 578 if (!vdev->defer_kvm_irq_routing) { 579 if (vdev->msix->noresize && resizing) { 580 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); 581 ret = vfio_enable_vectors(vdev, true); 582 if (ret) { 583 error_report("vfio: failed to enable vectors, %d", ret); 584 } 585 } else { 586 Error *err = NULL; 587 int32_t fd; 588 589 if (vector->virq >= 0) { 590 fd = event_notifier_get_fd(&vector->kvm_interrupt); 591 } else { 592 fd = event_notifier_get_fd(&vector->interrupt); 593 } 594 595 if (!vfio_set_irq_signaling(&vdev->vbasedev, 596 VFIO_PCI_MSIX_IRQ_INDEX, nr, 597 VFIO_IRQ_SET_ACTION_TRIGGER, fd, 598 &err)) { 599 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 600 } 601 } 602 } 603 604 /* Disable PBA emulation when nothing more is pending. */ 605 clear_bit(nr, vdev->msix->pending); 606 if (find_first_bit(vdev->msix->pending, 607 vdev->nr_vectors) == vdev->nr_vectors) { 608 memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false); 609 trace_vfio_msix_pba_disable(vdev->vbasedev.name); 610 } 611 612 return 0; 613 } 614 615 static int vfio_msix_vector_use(PCIDevice *pdev, 616 unsigned int nr, MSIMessage msg) 617 { 618 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); 619 } 620 621 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) 622 { 623 VFIOPCIDevice *vdev = VFIO_PCI(pdev); 624 VFIOMSIVector *vector = &vdev->msi_vectors[nr]; 625 626 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr); 627 628 /* 629 * There are still old guests that mask and unmask vectors on every 630 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of 631 * the KVM setup in place, simply switch VFIO to use the non-bypass 632 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X 633 * core will mask the interrupt and set pending bits, allowing it to 634 * be re-asserted on unmask. Nothing to do if already using QEMU mode. 635 */ 636 if (vector->virq >= 0) { 637 int32_t fd = event_notifier_get_fd(&vector->interrupt); 638 Error *err = NULL; 639 640 if (!vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX, 641 nr, VFIO_IRQ_SET_ACTION_TRIGGER, fd, 642 &err)) { 643 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 644 } 645 } 646 } 647 648 static void vfio_prepare_kvm_msi_virq_batch(VFIOPCIDevice *vdev) 649 { 650 assert(!vdev->defer_kvm_irq_routing); 651 vdev->defer_kvm_irq_routing = true; 652 vfio_route_change = kvm_irqchip_begin_route_changes(kvm_state); 653 } 654 655 static void vfio_commit_kvm_msi_virq_batch(VFIOPCIDevice *vdev) 656 { 657 int i; 658 659 assert(vdev->defer_kvm_irq_routing); 660 vdev->defer_kvm_irq_routing = false; 661 662 kvm_irqchip_commit_route_changes(&vfio_route_change); 663 664 for (i = 0; i < vdev->nr_vectors; i++) { 665 vfio_connect_kvm_msi_virq(&vdev->msi_vectors[i]); 666 } 667 } 668 669 static void vfio_msix_enable(VFIOPCIDevice *vdev) 670 { 671 int ret; 672 673 vfio_disable_interrupts(vdev); 674 675 vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->msix->entries); 676 677 vdev->interrupt = VFIO_INT_MSIX; 678 679 /* 680 * Setting vector notifiers triggers synchronous vector-use 681 * callbacks for each active vector. Deferring to commit the KVM 682 * routes once rather than per vector provides a substantial 683 * performance improvement. 684 */ 685 vfio_prepare_kvm_msi_virq_batch(vdev); 686 687 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, 688 vfio_msix_vector_release, NULL)) { 689 error_report("vfio: msix_set_vector_notifiers failed"); 690 } 691 692 vfio_commit_kvm_msi_virq_batch(vdev); 693 694 if (vdev->nr_vectors) { 695 ret = vfio_enable_vectors(vdev, true); 696 if (ret) { 697 error_report("vfio: failed to enable vectors, %d", ret); 698 } 699 } else { 700 /* 701 * Some communication channels between VF & PF or PF & fw rely on the 702 * physical state of the device and expect that enabling MSI-X from the 703 * guest enables the same on the host. When our guest is Linux, the 704 * guest driver call to pci_enable_msix() sets the enabling bit in the 705 * MSI-X capability, but leaves the vector table masked. We therefore 706 * can't rely on a vector_use callback (from request_irq() in the guest) 707 * to switch the physical device into MSI-X mode because that may come a 708 * long time after pci_enable_msix(). This code sets vector 0 with an 709 * invalid fd to make the physical device MSI-X enabled, but with no 710 * vectors enabled, just like the guest view. 711 */ 712 ret = vfio_enable_msix_no_vec(vdev); 713 if (ret) { 714 error_report("vfio: failed to enable MSI-X, %d", ret); 715 } 716 } 717 718 trace_vfio_msix_enable(vdev->vbasedev.name); 719 } 720 721 static void vfio_msi_enable(VFIOPCIDevice *vdev) 722 { 723 int ret, i; 724 725 vfio_disable_interrupts(vdev); 726 727 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); 728 retry: 729 /* 730 * Setting vector notifiers needs to enable route for each vector. 731 * Deferring to commit the KVM routes once rather than per vector 732 * provides a substantial performance improvement. 733 */ 734 vfio_prepare_kvm_msi_virq_batch(vdev); 735 736 vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->nr_vectors); 737 738 for (i = 0; i < vdev->nr_vectors; i++) { 739 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 740 741 vector->vdev = vdev; 742 vector->virq = -1; 743 vector->use = true; 744 745 if (event_notifier_init(&vector->interrupt, 0)) { 746 error_report("vfio: Error: event_notifier_init failed"); 747 } 748 749 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 750 vfio_msi_interrupt, NULL, vector); 751 752 /* 753 * Attempt to enable route through KVM irqchip, 754 * default to userspace handling if unavailable. 755 */ 756 vfio_add_kvm_msi_virq(vdev, vector, i, false); 757 } 758 759 vfio_commit_kvm_msi_virq_batch(vdev); 760 761 /* Set interrupt type prior to possible interrupts */ 762 vdev->interrupt = VFIO_INT_MSI; 763 764 ret = vfio_enable_vectors(vdev, false); 765 if (ret) { 766 if (ret < 0) { 767 error_report("vfio: Error: Failed to setup MSI fds: %m"); 768 } else { 769 error_report("vfio: Error: Failed to enable %d " 770 "MSI vectors, retry with %d", vdev->nr_vectors, ret); 771 } 772 773 vfio_msi_disable_common(vdev); 774 775 if (ret > 0) { 776 vdev->nr_vectors = ret; 777 goto retry; 778 } 779 780 /* 781 * Failing to setup MSI doesn't really fall within any specification. 782 * Let's try leaving interrupts disabled and hope the guest figures 783 * out to fall back to INTx for this device. 784 */ 785 error_report("vfio: Error: Failed to enable MSI"); 786 787 return; 788 } 789 790 trace_vfio_msi_enable(vdev->vbasedev.name, vdev->nr_vectors); 791 } 792 793 static void vfio_msi_disable_common(VFIOPCIDevice *vdev) 794 { 795 int i; 796 797 for (i = 0; i < vdev->nr_vectors; i++) { 798 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 799 if (vdev->msi_vectors[i].use) { 800 if (vector->virq >= 0) { 801 vfio_remove_kvm_msi_virq(vector); 802 } 803 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 804 NULL, NULL, NULL); 805 event_notifier_cleanup(&vector->interrupt); 806 } 807 } 808 809 g_free(vdev->msi_vectors); 810 vdev->msi_vectors = NULL; 811 vdev->nr_vectors = 0; 812 vdev->interrupt = VFIO_INT_NONE; 813 } 814 815 static void vfio_msix_disable(VFIOPCIDevice *vdev) 816 { 817 Error *err = NULL; 818 int i; 819 820 msix_unset_vector_notifiers(&vdev->pdev); 821 822 /* 823 * MSI-X will only release vectors if MSI-X is still enabled on the 824 * device, check through the rest and release it ourselves if necessary. 825 */ 826 for (i = 0; i < vdev->nr_vectors; i++) { 827 if (vdev->msi_vectors[i].use) { 828 vfio_msix_vector_release(&vdev->pdev, i); 829 msix_vector_unuse(&vdev->pdev, i); 830 } 831 } 832 833 /* 834 * Always clear MSI-X IRQ index. A PF device could have enabled 835 * MSI-X with no vectors. See vfio_msix_enable(). 836 */ 837 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); 838 839 vfio_msi_disable_common(vdev); 840 if (!vfio_intx_enable(vdev, &err)) { 841 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 842 } 843 844 memset(vdev->msix->pending, 0, 845 BITS_TO_LONGS(vdev->msix->entries) * sizeof(unsigned long)); 846 847 trace_vfio_msix_disable(vdev->vbasedev.name); 848 } 849 850 static void vfio_msi_disable(VFIOPCIDevice *vdev) 851 { 852 Error *err = NULL; 853 854 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX); 855 vfio_msi_disable_common(vdev); 856 vfio_intx_enable(vdev, &err); 857 if (err) { 858 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 859 } 860 861 trace_vfio_msi_disable(vdev->vbasedev.name); 862 } 863 864 static void vfio_update_msi(VFIOPCIDevice *vdev) 865 { 866 int i; 867 868 for (i = 0; i < vdev->nr_vectors; i++) { 869 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 870 MSIMessage msg; 871 872 if (!vector->use || vector->virq < 0) { 873 continue; 874 } 875 876 msg = msi_get_message(&vdev->pdev, i); 877 vfio_update_kvm_msi_virq(vector, msg, &vdev->pdev); 878 } 879 } 880 881 static void vfio_pci_load_rom(VFIOPCIDevice *vdev) 882 { 883 g_autofree struct vfio_region_info *reg_info = NULL; 884 uint64_t size; 885 off_t off = 0; 886 ssize_t bytes; 887 888 if (vfio_get_region_info(&vdev->vbasedev, 889 VFIO_PCI_ROM_REGION_INDEX, ®_info)) { 890 error_report("vfio: Error getting ROM info: %m"); 891 return; 892 } 893 894 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info->size, 895 (unsigned long)reg_info->offset, 896 (unsigned long)reg_info->flags); 897 898 vdev->rom_size = size = reg_info->size; 899 vdev->rom_offset = reg_info->offset; 900 901 if (!vdev->rom_size) { 902 vdev->rom_read_failed = true; 903 error_report("vfio-pci: Cannot read device rom at " 904 "%s", vdev->vbasedev.name); 905 error_printf("Device option ROM contents are probably invalid " 906 "(check dmesg).\nSkip option ROM probe with rombar=0, " 907 "or load from file with romfile=\n"); 908 return; 909 } 910 911 vdev->rom = g_malloc(size); 912 memset(vdev->rom, 0xff, size); 913 914 while (size) { 915 bytes = pread(vdev->vbasedev.fd, vdev->rom + off, 916 size, vdev->rom_offset + off); 917 if (bytes == 0) { 918 break; 919 } else if (bytes > 0) { 920 off += bytes; 921 size -= bytes; 922 } else { 923 if (errno == EINTR || errno == EAGAIN) { 924 continue; 925 } 926 error_report("vfio: Error reading device ROM: %m"); 927 break; 928 } 929 } 930 931 /* 932 * Test the ROM signature against our device, if the vendor is correct 933 * but the device ID doesn't match, store the correct device ID and 934 * recompute the checksum. Intel IGD devices need this and are known 935 * to have bogus checksums so we can't simply adjust the checksum. 936 */ 937 if (pci_get_word(vdev->rom) == 0xaa55 && 938 pci_get_word(vdev->rom + 0x18) + 8 < vdev->rom_size && 939 !memcmp(vdev->rom + pci_get_word(vdev->rom + 0x18), "PCIR", 4)) { 940 uint16_t vid, did; 941 942 vid = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 4); 943 did = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6); 944 945 if (vid == vdev->vendor_id && did != vdev->device_id) { 946 int i; 947 uint8_t csum, *data = vdev->rom; 948 949 pci_set_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6, 950 vdev->device_id); 951 data[6] = 0; 952 953 for (csum = 0, i = 0; i < vdev->rom_size; i++) { 954 csum += data[i]; 955 } 956 957 data[6] = -csum; 958 } 959 } 960 } 961 962 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) 963 { 964 VFIOPCIDevice *vdev = opaque; 965 union { 966 uint8_t byte; 967 uint16_t word; 968 uint32_t dword; 969 uint64_t qword; 970 } val; 971 uint64_t data = 0; 972 973 /* Load the ROM lazily when the guest tries to read it */ 974 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { 975 vfio_pci_load_rom(vdev); 976 } 977 978 memcpy(&val, vdev->rom + addr, 979 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); 980 981 switch (size) { 982 case 1: 983 data = val.byte; 984 break; 985 case 2: 986 data = le16_to_cpu(val.word); 987 break; 988 case 4: 989 data = le32_to_cpu(val.dword); 990 break; 991 default: 992 hw_error("vfio: unsupported read size, %d bytes\n", size); 993 break; 994 } 995 996 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data); 997 998 return data; 999 } 1000 1001 static void vfio_rom_write(void *opaque, hwaddr addr, 1002 uint64_t data, unsigned size) 1003 { 1004 } 1005 1006 static const MemoryRegionOps vfio_rom_ops = { 1007 .read = vfio_rom_read, 1008 .write = vfio_rom_write, 1009 .endianness = DEVICE_LITTLE_ENDIAN, 1010 }; 1011 1012 static void vfio_pci_size_rom(VFIOPCIDevice *vdev) 1013 { 1014 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); 1015 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; 1016 char *name; 1017 int fd = vdev->vbasedev.fd; 1018 1019 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { 1020 /* Since pci handles romfile, just print a message and return */ 1021 if (vfio_opt_rom_in_denylist(vdev) && vdev->pdev.romfile) { 1022 warn_report("Device at %s is known to cause system instability" 1023 " issues during option rom execution", 1024 vdev->vbasedev.name); 1025 error_printf("Proceeding anyway since user specified romfile\n"); 1026 } 1027 return; 1028 } 1029 1030 /* 1031 * Use the same size ROM BAR as the physical device. The contents 1032 * will get filled in later when the guest tries to read it. 1033 */ 1034 if (pread(fd, &orig, 4, offset) != 4 || 1035 pwrite(fd, &size, 4, offset) != 4 || 1036 pread(fd, &size, 4, offset) != 4 || 1037 pwrite(fd, &orig, 4, offset) != 4) { 1038 error_report("%s(%s) failed: %m", __func__, vdev->vbasedev.name); 1039 return; 1040 } 1041 1042 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; 1043 1044 if (!size) { 1045 return; 1046 } 1047 1048 if (vfio_opt_rom_in_denylist(vdev)) { 1049 if (vdev->pdev.rom_bar > 0) { 1050 warn_report("Device at %s is known to cause system instability" 1051 " issues during option rom execution", 1052 vdev->vbasedev.name); 1053 error_printf("Proceeding anyway since user specified" 1054 " positive value for rombar\n"); 1055 } else { 1056 warn_report("Rom loading for device at %s has been disabled" 1057 " due to system instability issues", 1058 vdev->vbasedev.name); 1059 error_printf("Specify rombar=1 or romfile to force\n"); 1060 return; 1061 } 1062 } 1063 1064 trace_vfio_pci_size_rom(vdev->vbasedev.name, size); 1065 1066 name = g_strdup_printf("vfio[%s].rom", vdev->vbasedev.name); 1067 1068 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), 1069 &vfio_rom_ops, vdev, name, size); 1070 g_free(name); 1071 1072 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, 1073 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); 1074 1075 vdev->rom_read_failed = false; 1076 } 1077 1078 void vfio_vga_write(void *opaque, hwaddr addr, 1079 uint64_t data, unsigned size) 1080 { 1081 VFIOVGARegion *region = opaque; 1082 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); 1083 union { 1084 uint8_t byte; 1085 uint16_t word; 1086 uint32_t dword; 1087 uint64_t qword; 1088 } buf; 1089 off_t offset = vga->fd_offset + region->offset + addr; 1090 1091 switch (size) { 1092 case 1: 1093 buf.byte = data; 1094 break; 1095 case 2: 1096 buf.word = cpu_to_le16(data); 1097 break; 1098 case 4: 1099 buf.dword = cpu_to_le32(data); 1100 break; 1101 default: 1102 hw_error("vfio: unsupported write size, %d bytes", size); 1103 break; 1104 } 1105 1106 if (pwrite(vga->fd, &buf, size, offset) != size) { 1107 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", 1108 __func__, region->offset + addr, data, size); 1109 } 1110 1111 trace_vfio_vga_write(region->offset + addr, data, size); 1112 } 1113 1114 uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) 1115 { 1116 VFIOVGARegion *region = opaque; 1117 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); 1118 union { 1119 uint8_t byte; 1120 uint16_t word; 1121 uint32_t dword; 1122 uint64_t qword; 1123 } buf; 1124 uint64_t data = 0; 1125 off_t offset = vga->fd_offset + region->offset + addr; 1126 1127 if (pread(vga->fd, &buf, size, offset) != size) { 1128 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", 1129 __func__, region->offset + addr, size); 1130 return (uint64_t)-1; 1131 } 1132 1133 switch (size) { 1134 case 1: 1135 data = buf.byte; 1136 break; 1137 case 2: 1138 data = le16_to_cpu(buf.word); 1139 break; 1140 case 4: 1141 data = le32_to_cpu(buf.dword); 1142 break; 1143 default: 1144 hw_error("vfio: unsupported read size, %d bytes", size); 1145 break; 1146 } 1147 1148 trace_vfio_vga_read(region->offset + addr, size, data); 1149 1150 return data; 1151 } 1152 1153 static const MemoryRegionOps vfio_vga_ops = { 1154 .read = vfio_vga_read, 1155 .write = vfio_vga_write, 1156 .endianness = DEVICE_LITTLE_ENDIAN, 1157 }; 1158 1159 /* 1160 * Expand memory region of sub-page(size < PAGE_SIZE) MMIO BAR to page 1161 * size if the BAR is in an exclusive page in host so that we could map 1162 * this BAR to guest. But this sub-page BAR may not occupy an exclusive 1163 * page in guest. So we should set the priority of the expanded memory 1164 * region to zero in case of overlap with BARs which share the same page 1165 * with the sub-page BAR in guest. Besides, we should also recover the 1166 * size of this sub-page BAR when its base address is changed in guest 1167 * and not page aligned any more. 1168 */ 1169 static void vfio_sub_page_bar_update_mapping(PCIDevice *pdev, int bar) 1170 { 1171 VFIOPCIDevice *vdev = VFIO_PCI(pdev); 1172 VFIORegion *region = &vdev->bars[bar].region; 1173 MemoryRegion *mmap_mr, *region_mr, *base_mr; 1174 PCIIORegion *r; 1175 pcibus_t bar_addr; 1176 uint64_t size = region->size; 1177 1178 /* Make sure that the whole region is allowed to be mmapped */ 1179 if (region->nr_mmaps != 1 || !region->mmaps[0].mmap || 1180 region->mmaps[0].size != region->size) { 1181 return; 1182 } 1183 1184 r = &pdev->io_regions[bar]; 1185 bar_addr = r->addr; 1186 base_mr = vdev->bars[bar].mr; 1187 region_mr = region->mem; 1188 mmap_mr = ®ion->mmaps[0].mem; 1189 1190 /* If BAR is mapped and page aligned, update to fill PAGE_SIZE */ 1191 if (bar_addr != PCI_BAR_UNMAPPED && 1192 !(bar_addr & ~qemu_real_host_page_mask())) { 1193 size = qemu_real_host_page_size(); 1194 } 1195 1196 memory_region_transaction_begin(); 1197 1198 if (vdev->bars[bar].size < size) { 1199 memory_region_set_size(base_mr, size); 1200 } 1201 memory_region_set_size(region_mr, size); 1202 memory_region_set_size(mmap_mr, size); 1203 if (size != vdev->bars[bar].size && memory_region_is_mapped(base_mr)) { 1204 memory_region_del_subregion(r->address_space, base_mr); 1205 memory_region_add_subregion_overlap(r->address_space, 1206 bar_addr, base_mr, 0); 1207 } 1208 1209 memory_region_transaction_commit(); 1210 } 1211 1212 /* 1213 * PCI config space 1214 */ 1215 uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) 1216 { 1217 VFIOPCIDevice *vdev = VFIO_PCI(pdev); 1218 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; 1219 1220 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); 1221 emu_bits = le32_to_cpu(emu_bits); 1222 1223 if (emu_bits) { 1224 emu_val = pci_default_read_config(pdev, addr, len); 1225 } 1226 1227 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { 1228 ssize_t ret; 1229 1230 ret = pread(vdev->vbasedev.fd, &phys_val, len, 1231 vdev->config_offset + addr); 1232 if (ret != len) { 1233 error_report("%s(%s, 0x%x, 0x%x) failed: %m", 1234 __func__, vdev->vbasedev.name, addr, len); 1235 return -errno; 1236 } 1237 phys_val = le32_to_cpu(phys_val); 1238 } 1239 1240 val = (emu_val & emu_bits) | (phys_val & ~emu_bits); 1241 1242 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val); 1243 1244 return val; 1245 } 1246 1247 void vfio_pci_write_config(PCIDevice *pdev, 1248 uint32_t addr, uint32_t val, int len) 1249 { 1250 VFIOPCIDevice *vdev = VFIO_PCI(pdev); 1251 uint32_t val_le = cpu_to_le32(val); 1252 1253 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len); 1254 1255 /* Write everything to VFIO, let it filter out what we can't write */ 1256 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr) 1257 != len) { 1258 error_report("%s(%s, 0x%x, 0x%x, 0x%x) failed: %m", 1259 __func__, vdev->vbasedev.name, addr, val, len); 1260 } 1261 1262 /* MSI/MSI-X Enabling/Disabling */ 1263 if (pdev->cap_present & QEMU_PCI_CAP_MSI && 1264 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { 1265 int is_enabled, was_enabled = msi_enabled(pdev); 1266 1267 pci_default_write_config(pdev, addr, val, len); 1268 1269 is_enabled = msi_enabled(pdev); 1270 1271 if (!was_enabled) { 1272 if (is_enabled) { 1273 vfio_msi_enable(vdev); 1274 } 1275 } else { 1276 if (!is_enabled) { 1277 vfio_msi_disable(vdev); 1278 } else { 1279 vfio_update_msi(vdev); 1280 } 1281 } 1282 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && 1283 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { 1284 int is_enabled, was_enabled = msix_enabled(pdev); 1285 1286 pci_default_write_config(pdev, addr, val, len); 1287 1288 is_enabled = msix_enabled(pdev); 1289 1290 if (!was_enabled && is_enabled) { 1291 vfio_msix_enable(vdev); 1292 } else if (was_enabled && !is_enabled) { 1293 vfio_msix_disable(vdev); 1294 } 1295 } else if (ranges_overlap(addr, len, PCI_BASE_ADDRESS_0, 24) || 1296 range_covers_byte(addr, len, PCI_COMMAND)) { 1297 pcibus_t old_addr[PCI_NUM_REGIONS - 1]; 1298 int bar; 1299 1300 for (bar = 0; bar < PCI_ROM_SLOT; bar++) { 1301 old_addr[bar] = pdev->io_regions[bar].addr; 1302 } 1303 1304 pci_default_write_config(pdev, addr, val, len); 1305 1306 for (bar = 0; bar < PCI_ROM_SLOT; bar++) { 1307 if (old_addr[bar] != pdev->io_regions[bar].addr && 1308 vdev->bars[bar].region.size > 0 && 1309 vdev->bars[bar].region.size < qemu_real_host_page_size()) { 1310 vfio_sub_page_bar_update_mapping(pdev, bar); 1311 } 1312 } 1313 } else { 1314 /* Write everything to QEMU to keep emulated bits correct */ 1315 pci_default_write_config(pdev, addr, val, len); 1316 } 1317 } 1318 1319 /* 1320 * Interrupt setup 1321 */ 1322 static void vfio_disable_interrupts(VFIOPCIDevice *vdev) 1323 { 1324 /* 1325 * More complicated than it looks. Disabling MSI/X transitions the 1326 * device to INTx mode (if supported). Therefore we need to first 1327 * disable MSI/X and then cleanup by disabling INTx. 1328 */ 1329 if (vdev->interrupt == VFIO_INT_MSIX) { 1330 vfio_msix_disable(vdev); 1331 } else if (vdev->interrupt == VFIO_INT_MSI) { 1332 vfio_msi_disable(vdev); 1333 } 1334 1335 if (vdev->interrupt == VFIO_INT_INTx) { 1336 vfio_intx_disable(vdev); 1337 } 1338 } 1339 1340 static bool vfio_msi_setup(VFIOPCIDevice *vdev, int pos, Error **errp) 1341 { 1342 uint16_t ctrl; 1343 bool msi_64bit, msi_maskbit; 1344 int ret, entries; 1345 Error *err = NULL; 1346 1347 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), 1348 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { 1349 error_setg_errno(errp, errno, "failed reading MSI PCI_CAP_FLAGS"); 1350 return false; 1351 } 1352 ctrl = le16_to_cpu(ctrl); 1353 1354 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); 1355 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); 1356 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); 1357 1358 trace_vfio_msi_setup(vdev->vbasedev.name, pos); 1359 1360 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit, &err); 1361 if (ret < 0) { 1362 if (ret == -ENOTSUP) { 1363 return true; 1364 } 1365 error_propagate_prepend(errp, err, "msi_init failed: "); 1366 return false; 1367 } 1368 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); 1369 1370 return true; 1371 } 1372 1373 static void vfio_pci_fixup_msix_region(VFIOPCIDevice *vdev) 1374 { 1375 off_t start, end; 1376 VFIORegion *region = &vdev->bars[vdev->msix->table_bar].region; 1377 1378 /* 1379 * If the host driver allows mapping of a MSIX data, we are going to 1380 * do map the entire BAR and emulate MSIX table on top of that. 1381 */ 1382 if (vfio_has_region_cap(&vdev->vbasedev, region->nr, 1383 VFIO_REGION_INFO_CAP_MSIX_MAPPABLE)) { 1384 return; 1385 } 1386 1387 /* 1388 * We expect to find a single mmap covering the whole BAR, anything else 1389 * means it's either unsupported or already setup. 1390 */ 1391 if (region->nr_mmaps != 1 || region->mmaps[0].offset || 1392 region->size != region->mmaps[0].size) { 1393 return; 1394 } 1395 1396 /* MSI-X table start and end aligned to host page size */ 1397 start = vdev->msix->table_offset & qemu_real_host_page_mask(); 1398 end = REAL_HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset + 1399 (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); 1400 1401 /* 1402 * Does the MSI-X table cover the beginning of the BAR? The whole BAR? 1403 * NB - Host page size is necessarily a power of two and so is the PCI 1404 * BAR (not counting EA yet), therefore if we have host page aligned 1405 * @start and @end, then any remainder of the BAR before or after those 1406 * must be at least host page sized and therefore mmap'able. 1407 */ 1408 if (!start) { 1409 if (end >= region->size) { 1410 region->nr_mmaps = 0; 1411 g_free(region->mmaps); 1412 region->mmaps = NULL; 1413 trace_vfio_msix_fixup(vdev->vbasedev.name, 1414 vdev->msix->table_bar, 0, 0); 1415 } else { 1416 region->mmaps[0].offset = end; 1417 region->mmaps[0].size = region->size - end; 1418 trace_vfio_msix_fixup(vdev->vbasedev.name, 1419 vdev->msix->table_bar, region->mmaps[0].offset, 1420 region->mmaps[0].offset + region->mmaps[0].size); 1421 } 1422 1423 /* Maybe it's aligned at the end of the BAR */ 1424 } else if (end >= region->size) { 1425 region->mmaps[0].size = start; 1426 trace_vfio_msix_fixup(vdev->vbasedev.name, 1427 vdev->msix->table_bar, region->mmaps[0].offset, 1428 region->mmaps[0].offset + region->mmaps[0].size); 1429 1430 /* Otherwise it must split the BAR */ 1431 } else { 1432 region->nr_mmaps = 2; 1433 region->mmaps = g_renew(VFIOMmap, region->mmaps, 2); 1434 1435 memcpy(®ion->mmaps[1], ®ion->mmaps[0], sizeof(VFIOMmap)); 1436 1437 region->mmaps[0].size = start; 1438 trace_vfio_msix_fixup(vdev->vbasedev.name, 1439 vdev->msix->table_bar, region->mmaps[0].offset, 1440 region->mmaps[0].offset + region->mmaps[0].size); 1441 1442 region->mmaps[1].offset = end; 1443 region->mmaps[1].size = region->size - end; 1444 trace_vfio_msix_fixup(vdev->vbasedev.name, 1445 vdev->msix->table_bar, region->mmaps[1].offset, 1446 region->mmaps[1].offset + region->mmaps[1].size); 1447 } 1448 } 1449 1450 static bool vfio_pci_relocate_msix(VFIOPCIDevice *vdev, Error **errp) 1451 { 1452 int target_bar = -1; 1453 size_t msix_sz; 1454 1455 if (!vdev->msix || vdev->msix_relo == OFF_AUTO_PCIBAR_OFF) { 1456 return true; 1457 } 1458 1459 /* The actual minimum size of MSI-X structures */ 1460 msix_sz = (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE) + 1461 (QEMU_ALIGN_UP(vdev->msix->entries, 64) / 8); 1462 /* Round up to host pages, we don't want to share a page */ 1463 msix_sz = REAL_HOST_PAGE_ALIGN(msix_sz); 1464 /* PCI BARs must be a power of 2 */ 1465 msix_sz = pow2ceil(msix_sz); 1466 1467 if (vdev->msix_relo == OFF_AUTO_PCIBAR_AUTO) { 1468 /* 1469 * TODO: Lookup table for known devices. 1470 * 1471 * Logically we might use an algorithm here to select the BAR adding 1472 * the least additional MMIO space, but we cannot programmatically 1473 * predict the driver dependency on BAR ordering or sizing, therefore 1474 * 'auto' becomes a lookup for combinations reported to work. 1475 */ 1476 if (target_bar < 0) { 1477 error_setg(errp, "No automatic MSI-X relocation available for " 1478 "device %04x:%04x", vdev->vendor_id, vdev->device_id); 1479 return false; 1480 } 1481 } else { 1482 target_bar = (int)(vdev->msix_relo - OFF_AUTO_PCIBAR_BAR0); 1483 } 1484 1485 /* I/O port BARs cannot host MSI-X structures */ 1486 if (vdev->bars[target_bar].ioport) { 1487 error_setg(errp, "Invalid MSI-X relocation BAR %d, " 1488 "I/O port BAR", target_bar); 1489 return false; 1490 } 1491 1492 /* Cannot use a BAR in the "shadow" of a 64-bit BAR */ 1493 if (!vdev->bars[target_bar].size && 1494 target_bar > 0 && vdev->bars[target_bar - 1].mem64) { 1495 error_setg(errp, "Invalid MSI-X relocation BAR %d, " 1496 "consumed by 64-bit BAR %d", target_bar, target_bar - 1); 1497 return false; 1498 } 1499 1500 /* 2GB max size for 32-bit BARs, cannot double if already > 1G */ 1501 if (vdev->bars[target_bar].size > 1 * GiB && 1502 !vdev->bars[target_bar].mem64) { 1503 error_setg(errp, "Invalid MSI-X relocation BAR %d, " 1504 "no space to extend 32-bit BAR", target_bar); 1505 return false; 1506 } 1507 1508 /* 1509 * If adding a new BAR, test if we can make it 64bit. We make it 1510 * prefetchable since QEMU MSI-X emulation has no read side effects 1511 * and doing so makes mapping more flexible. 1512 */ 1513 if (!vdev->bars[target_bar].size) { 1514 if (target_bar < (PCI_ROM_SLOT - 1) && 1515 !vdev->bars[target_bar + 1].size) { 1516 vdev->bars[target_bar].mem64 = true; 1517 vdev->bars[target_bar].type = PCI_BASE_ADDRESS_MEM_TYPE_64; 1518 } 1519 vdev->bars[target_bar].type |= PCI_BASE_ADDRESS_MEM_PREFETCH; 1520 vdev->bars[target_bar].size = msix_sz; 1521 vdev->msix->table_offset = 0; 1522 } else { 1523 vdev->bars[target_bar].size = MAX(vdev->bars[target_bar].size * 2, 1524 msix_sz * 2); 1525 /* 1526 * Due to above size calc, MSI-X always starts halfway into the BAR, 1527 * which will always be a separate host page. 1528 */ 1529 vdev->msix->table_offset = vdev->bars[target_bar].size / 2; 1530 } 1531 1532 vdev->msix->table_bar = target_bar; 1533 vdev->msix->pba_bar = target_bar; 1534 /* Requires 8-byte alignment, but PCI_MSIX_ENTRY_SIZE guarantees that */ 1535 vdev->msix->pba_offset = vdev->msix->table_offset + 1536 (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE); 1537 1538 trace_vfio_msix_relo(vdev->vbasedev.name, 1539 vdev->msix->table_bar, vdev->msix->table_offset); 1540 return true; 1541 } 1542 1543 /* 1544 * We don't have any control over how pci_add_capability() inserts 1545 * capabilities into the chain. In order to setup MSI-X we need a 1546 * MemoryRegion for the BAR. In order to setup the BAR and not 1547 * attempt to mmap the MSI-X table area, which VFIO won't allow, we 1548 * need to first look for where the MSI-X table lives. So we 1549 * unfortunately split MSI-X setup across two functions. 1550 */ 1551 static bool vfio_msix_early_setup(VFIOPCIDevice *vdev, Error **errp) 1552 { 1553 uint8_t pos; 1554 uint16_t ctrl; 1555 uint32_t table, pba; 1556 int ret, fd = vdev->vbasedev.fd; 1557 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), 1558 .index = VFIO_PCI_MSIX_IRQ_INDEX }; 1559 VFIOMSIXInfo *msix; 1560 1561 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); 1562 if (!pos) { 1563 return true; 1564 } 1565 1566 if (pread(fd, &ctrl, sizeof(ctrl), 1567 vdev->config_offset + pos + PCI_MSIX_FLAGS) != sizeof(ctrl)) { 1568 error_setg_errno(errp, errno, "failed to read PCI MSIX FLAGS"); 1569 return false; 1570 } 1571 1572 if (pread(fd, &table, sizeof(table), 1573 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { 1574 error_setg_errno(errp, errno, "failed to read PCI MSIX TABLE"); 1575 return false; 1576 } 1577 1578 if (pread(fd, &pba, sizeof(pba), 1579 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { 1580 error_setg_errno(errp, errno, "failed to read PCI MSIX PBA"); 1581 return false; 1582 } 1583 1584 ctrl = le16_to_cpu(ctrl); 1585 table = le32_to_cpu(table); 1586 pba = le32_to_cpu(pba); 1587 1588 msix = g_malloc0(sizeof(*msix)); 1589 msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; 1590 msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; 1591 msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; 1592 msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; 1593 msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 1594 1595 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); 1596 if (ret < 0) { 1597 error_setg_errno(errp, -ret, "failed to get MSI-X irq info"); 1598 g_free(msix); 1599 return false; 1600 } 1601 1602 msix->noresize = !!(irq_info.flags & VFIO_IRQ_INFO_NORESIZE); 1603 1604 /* 1605 * Test the size of the pba_offset variable and catch if it extends outside 1606 * of the specified BAR. If it is the case, we need to apply a hardware 1607 * specific quirk if the device is known or we have a broken configuration. 1608 */ 1609 if (msix->pba_offset >= vdev->bars[msix->pba_bar].region.size) { 1610 /* 1611 * Chelsio T5 Virtual Function devices are encoded as 0x58xx for T5 1612 * adapters. The T5 hardware returns an incorrect value of 0x8000 for 1613 * the VF PBA offset while the BAR itself is only 8k. The correct value 1614 * is 0x1000, so we hard code that here. 1615 */ 1616 if (vdev->vendor_id == PCI_VENDOR_ID_CHELSIO && 1617 (vdev->device_id & 0xff00) == 0x5800) { 1618 msix->pba_offset = 0x1000; 1619 /* 1620 * BAIDU KUNLUN Virtual Function devices for KUNLUN AI processor 1621 * return an incorrect value of 0x460000 for the VF PBA offset while 1622 * the BAR itself is only 0x10000. The correct value is 0xb400. 1623 */ 1624 } else if (vfio_pci_is(vdev, PCI_VENDOR_ID_BAIDU, 1625 PCI_DEVICE_ID_KUNLUN_VF)) { 1626 msix->pba_offset = 0xb400; 1627 } else if (vdev->msix_relo == OFF_AUTO_PCIBAR_OFF) { 1628 error_setg(errp, "hardware reports invalid configuration, " 1629 "MSIX PBA outside of specified BAR"); 1630 g_free(msix); 1631 return false; 1632 } 1633 } 1634 1635 trace_vfio_msix_early_setup(vdev->vbasedev.name, pos, msix->table_bar, 1636 msix->table_offset, msix->entries, 1637 msix->noresize); 1638 vdev->msix = msix; 1639 1640 vfio_pci_fixup_msix_region(vdev); 1641 1642 return vfio_pci_relocate_msix(vdev, errp); 1643 } 1644 1645 static bool vfio_msix_setup(VFIOPCIDevice *vdev, int pos, Error **errp) 1646 { 1647 int ret; 1648 Error *err = NULL; 1649 1650 vdev->msix->pending = g_new0(unsigned long, 1651 BITS_TO_LONGS(vdev->msix->entries)); 1652 ret = msix_init(&vdev->pdev, vdev->msix->entries, 1653 vdev->bars[vdev->msix->table_bar].mr, 1654 vdev->msix->table_bar, vdev->msix->table_offset, 1655 vdev->bars[vdev->msix->pba_bar].mr, 1656 vdev->msix->pba_bar, vdev->msix->pba_offset, pos, 1657 &err); 1658 if (ret < 0) { 1659 if (ret == -ENOTSUP) { 1660 warn_report_err(err); 1661 return true; 1662 } 1663 1664 error_propagate(errp, err); 1665 return false; 1666 } 1667 1668 /* 1669 * The PCI spec suggests that devices provide additional alignment for 1670 * MSI-X structures and avoid overlapping non-MSI-X related registers. 1671 * For an assigned device, this hopefully means that emulation of MSI-X 1672 * structures does not affect the performance of the device. If devices 1673 * fail to provide that alignment, a significant performance penalty may 1674 * result, for instance Mellanox MT27500 VFs: 1675 * http://www.spinics.net/lists/kvm/msg125881.html 1676 * 1677 * The PBA is simply not that important for such a serious regression and 1678 * most drivers do not appear to look at it. The solution for this is to 1679 * disable the PBA MemoryRegion unless it's being used. We disable it 1680 * here and only enable it if a masked vector fires through QEMU. As the 1681 * vector-use notifier is called, which occurs on unmask, we test whether 1682 * PBA emulation is needed and again disable if not. 1683 */ 1684 memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false); 1685 1686 /* 1687 * The emulated machine may provide a paravirt interface for MSIX setup 1688 * so it is not strictly necessary to emulate MSIX here. This becomes 1689 * helpful when frequently accessed MMIO registers are located in 1690 * subpages adjacent to the MSIX table but the MSIX data containing page 1691 * cannot be mapped because of a host page size bigger than the MSIX table 1692 * alignment. 1693 */ 1694 if (object_property_get_bool(OBJECT(qdev_get_machine()), 1695 "vfio-no-msix-emulation", NULL)) { 1696 memory_region_set_enabled(&vdev->pdev.msix_table_mmio, false); 1697 } 1698 1699 return true; 1700 } 1701 1702 static void vfio_teardown_msi(VFIOPCIDevice *vdev) 1703 { 1704 msi_uninit(&vdev->pdev); 1705 1706 if (vdev->msix) { 1707 msix_uninit(&vdev->pdev, 1708 vdev->bars[vdev->msix->table_bar].mr, 1709 vdev->bars[vdev->msix->pba_bar].mr); 1710 g_free(vdev->msix->pending); 1711 } 1712 } 1713 1714 /* 1715 * Resource setup 1716 */ 1717 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled) 1718 { 1719 int i; 1720 1721 for (i = 0; i < PCI_ROM_SLOT; i++) { 1722 vfio_region_mmaps_set_enabled(&vdev->bars[i].region, enabled); 1723 } 1724 } 1725 1726 static void vfio_bar_prepare(VFIOPCIDevice *vdev, int nr) 1727 { 1728 VFIOBAR *bar = &vdev->bars[nr]; 1729 1730 uint32_t pci_bar; 1731 int ret; 1732 1733 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ 1734 if (!bar->region.size) { 1735 return; 1736 } 1737 1738 /* Determine what type of BAR this is for registration */ 1739 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar), 1740 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); 1741 if (ret != sizeof(pci_bar)) { 1742 error_report("vfio: Failed to read BAR %d (%m)", nr); 1743 return; 1744 } 1745 1746 pci_bar = le32_to_cpu(pci_bar); 1747 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO); 1748 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64); 1749 bar->type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK : 1750 ~PCI_BASE_ADDRESS_MEM_MASK); 1751 bar->size = bar->region.size; 1752 } 1753 1754 static void vfio_bars_prepare(VFIOPCIDevice *vdev) 1755 { 1756 int i; 1757 1758 for (i = 0; i < PCI_ROM_SLOT; i++) { 1759 vfio_bar_prepare(vdev, i); 1760 } 1761 } 1762 1763 static void vfio_bar_register(VFIOPCIDevice *vdev, int nr) 1764 { 1765 VFIOBAR *bar = &vdev->bars[nr]; 1766 char *name; 1767 1768 if (!bar->size) { 1769 return; 1770 } 1771 1772 bar->mr = g_new0(MemoryRegion, 1); 1773 name = g_strdup_printf("%s base BAR %d", vdev->vbasedev.name, nr); 1774 memory_region_init_io(bar->mr, OBJECT(vdev), NULL, NULL, name, bar->size); 1775 g_free(name); 1776 1777 if (bar->region.size) { 1778 memory_region_add_subregion(bar->mr, 0, bar->region.mem); 1779 1780 if (vfio_region_mmap(&bar->region)) { 1781 error_report("Failed to mmap %s BAR %d. Performance may be slow", 1782 vdev->vbasedev.name, nr); 1783 } 1784 } 1785 1786 pci_register_bar(&vdev->pdev, nr, bar->type, bar->mr); 1787 } 1788 1789 static void vfio_bars_register(VFIOPCIDevice *vdev) 1790 { 1791 int i; 1792 1793 for (i = 0; i < PCI_ROM_SLOT; i++) { 1794 vfio_bar_register(vdev, i); 1795 } 1796 } 1797 1798 static void vfio_bars_exit(VFIOPCIDevice *vdev) 1799 { 1800 int i; 1801 1802 for (i = 0; i < PCI_ROM_SLOT; i++) { 1803 VFIOBAR *bar = &vdev->bars[i]; 1804 1805 vfio_bar_quirk_exit(vdev, i); 1806 vfio_region_exit(&bar->region); 1807 if (bar->region.size) { 1808 memory_region_del_subregion(bar->mr, bar->region.mem); 1809 } 1810 } 1811 1812 if (vdev->vga) { 1813 pci_unregister_vga(&vdev->pdev); 1814 vfio_vga_quirk_exit(vdev); 1815 } 1816 } 1817 1818 static void vfio_bars_finalize(VFIOPCIDevice *vdev) 1819 { 1820 int i; 1821 1822 for (i = 0; i < PCI_ROM_SLOT; i++) { 1823 VFIOBAR *bar = &vdev->bars[i]; 1824 1825 vfio_bar_quirk_finalize(vdev, i); 1826 vfio_region_finalize(&bar->region); 1827 if (bar->mr) { 1828 assert(bar->size); 1829 object_unparent(OBJECT(bar->mr)); 1830 g_free(bar->mr); 1831 bar->mr = NULL; 1832 } 1833 } 1834 1835 if (vdev->vga) { 1836 vfio_vga_quirk_finalize(vdev); 1837 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1838 object_unparent(OBJECT(&vdev->vga->region[i].mem)); 1839 } 1840 g_free(vdev->vga); 1841 } 1842 } 1843 1844 /* 1845 * General setup 1846 */ 1847 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) 1848 { 1849 uint8_t tmp; 1850 uint16_t next = PCI_CONFIG_SPACE_SIZE; 1851 1852 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; 1853 tmp = pdev->config[tmp + PCI_CAP_LIST_NEXT]) { 1854 if (tmp > pos && tmp < next) { 1855 next = tmp; 1856 } 1857 } 1858 1859 return next - pos; 1860 } 1861 1862 1863 static uint16_t vfio_ext_cap_max_size(const uint8_t *config, uint16_t pos) 1864 { 1865 uint16_t tmp, next = PCIE_CONFIG_SPACE_SIZE; 1866 1867 for (tmp = PCI_CONFIG_SPACE_SIZE; tmp; 1868 tmp = PCI_EXT_CAP_NEXT(pci_get_long(config + tmp))) { 1869 if (tmp > pos && tmp < next) { 1870 next = tmp; 1871 } 1872 } 1873 1874 return next - pos; 1875 } 1876 1877 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) 1878 { 1879 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); 1880 } 1881 1882 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos, 1883 uint16_t val, uint16_t mask) 1884 { 1885 vfio_set_word_bits(vdev->pdev.config + pos, val, mask); 1886 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); 1887 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); 1888 } 1889 1890 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) 1891 { 1892 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); 1893 } 1894 1895 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos, 1896 uint32_t val, uint32_t mask) 1897 { 1898 vfio_set_long_bits(vdev->pdev.config + pos, val, mask); 1899 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); 1900 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); 1901 } 1902 1903 static void vfio_pci_enable_rp_atomics(VFIOPCIDevice *vdev) 1904 { 1905 struct vfio_device_info_cap_pci_atomic_comp *cap; 1906 g_autofree struct vfio_device_info *info = NULL; 1907 PCIBus *bus = pci_get_bus(&vdev->pdev); 1908 PCIDevice *parent = bus->parent_dev; 1909 struct vfio_info_cap_header *hdr; 1910 uint32_t mask = 0; 1911 uint8_t *pos; 1912 1913 /* 1914 * PCIe Atomic Ops completer support is only added automatically for single 1915 * function devices downstream of a root port supporting DEVCAP2. Support 1916 * is added during realize and, if added, removed during device exit. The 1917 * single function requirement avoids conflicting requirements should a 1918 * slot be composed of multiple devices with differing capabilities. 1919 */ 1920 if (pci_bus_is_root(bus) || !parent || !parent->exp.exp_cap || 1921 pcie_cap_get_type(parent) != PCI_EXP_TYPE_ROOT_PORT || 1922 pcie_cap_get_version(parent) != PCI_EXP_FLAGS_VER2 || 1923 vdev->pdev.devfn || 1924 vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 1925 return; 1926 } 1927 1928 pos = parent->config + parent->exp.exp_cap + PCI_EXP_DEVCAP2; 1929 1930 /* Abort if there'a already an Atomic Ops configuration on the root port */ 1931 if (pci_get_long(pos) & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | 1932 PCI_EXP_DEVCAP2_ATOMIC_COMP64 | 1933 PCI_EXP_DEVCAP2_ATOMIC_COMP128)) { 1934 return; 1935 } 1936 1937 info = vfio_get_device_info(vdev->vbasedev.fd); 1938 if (!info) { 1939 return; 1940 } 1941 1942 hdr = vfio_get_device_info_cap(info, VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP); 1943 if (!hdr) { 1944 return; 1945 } 1946 1947 cap = (void *)hdr; 1948 if (cap->flags & VFIO_PCI_ATOMIC_COMP32) { 1949 mask |= PCI_EXP_DEVCAP2_ATOMIC_COMP32; 1950 } 1951 if (cap->flags & VFIO_PCI_ATOMIC_COMP64) { 1952 mask |= PCI_EXP_DEVCAP2_ATOMIC_COMP64; 1953 } 1954 if (cap->flags & VFIO_PCI_ATOMIC_COMP128) { 1955 mask |= PCI_EXP_DEVCAP2_ATOMIC_COMP128; 1956 } 1957 1958 if (!mask) { 1959 return; 1960 } 1961 1962 pci_long_test_and_set_mask(pos, mask); 1963 vdev->clear_parent_atomics_on_exit = true; 1964 } 1965 1966 static void vfio_pci_disable_rp_atomics(VFIOPCIDevice *vdev) 1967 { 1968 if (vdev->clear_parent_atomics_on_exit) { 1969 PCIDevice *parent = pci_get_bus(&vdev->pdev)->parent_dev; 1970 uint8_t *pos = parent->config + parent->exp.exp_cap + PCI_EXP_DEVCAP2; 1971 1972 pci_long_test_and_clear_mask(pos, PCI_EXP_DEVCAP2_ATOMIC_COMP32 | 1973 PCI_EXP_DEVCAP2_ATOMIC_COMP64 | 1974 PCI_EXP_DEVCAP2_ATOMIC_COMP128); 1975 } 1976 } 1977 1978 static bool vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size, 1979 Error **errp) 1980 { 1981 uint16_t flags; 1982 uint8_t type; 1983 1984 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); 1985 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; 1986 1987 if (type != PCI_EXP_TYPE_ENDPOINT && 1988 type != PCI_EXP_TYPE_LEG_END && 1989 type != PCI_EXP_TYPE_RC_END) { 1990 1991 error_setg(errp, "assignment of PCIe type 0x%x " 1992 "devices is not currently supported", type); 1993 return false; 1994 } 1995 1996 if (!pci_bus_is_express(pci_get_bus(&vdev->pdev))) { 1997 PCIBus *bus = pci_get_bus(&vdev->pdev); 1998 PCIDevice *bridge; 1999 2000 /* 2001 * Traditionally PCI device assignment exposes the PCIe capability 2002 * as-is on non-express buses. The reason being that some drivers 2003 * simply assume that it's there, for example tg3. However when 2004 * we're running on a native PCIe machine type, like Q35, we need 2005 * to hide the PCIe capability. The reason for this is twofold; 2006 * first Windows guests get a Code 10 error when the PCIe capability 2007 * is exposed in this configuration. Therefore express devices won't 2008 * work at all unless they're attached to express buses in the VM. 2009 * Second, a native PCIe machine introduces the possibility of fine 2010 * granularity IOMMUs supporting both translation and isolation. 2011 * Guest code to discover the IOMMU visibility of a device, such as 2012 * IOMMU grouping code on Linux, is very aware of device types and 2013 * valid transitions between bus types. An express device on a non- 2014 * express bus is not a valid combination on bare metal systems. 2015 * 2016 * Drivers that require a PCIe capability to make the device 2017 * functional are simply going to need to have their devices placed 2018 * on a PCIe bus in the VM. 2019 */ 2020 while (!pci_bus_is_root(bus)) { 2021 bridge = pci_bridge_get_device(bus); 2022 bus = pci_get_bus(bridge); 2023 } 2024 2025 if (pci_bus_is_express(bus)) { 2026 return true; 2027 } 2028 2029 } else if (pci_bus_is_root(pci_get_bus(&vdev->pdev))) { 2030 /* 2031 * On a Root Complex bus Endpoints become Root Complex Integrated 2032 * Endpoints, which changes the type and clears the LNK & LNK2 fields. 2033 */ 2034 if (type == PCI_EXP_TYPE_ENDPOINT) { 2035 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2036 PCI_EXP_TYPE_RC_END << 4, 2037 PCI_EXP_FLAGS_TYPE); 2038 2039 /* Link Capabilities, Status, and Control goes away */ 2040 if (size > PCI_EXP_LNKCTL) { 2041 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); 2042 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); 2043 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); 2044 2045 #ifndef PCI_EXP_LNKCAP2 2046 #define PCI_EXP_LNKCAP2 44 2047 #endif 2048 #ifndef PCI_EXP_LNKSTA2 2049 #define PCI_EXP_LNKSTA2 50 2050 #endif 2051 /* Link 2 Capabilities, Status, and Control goes away */ 2052 if (size > PCI_EXP_LNKCAP2) { 2053 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); 2054 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); 2055 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); 2056 } 2057 } 2058 2059 } else if (type == PCI_EXP_TYPE_LEG_END) { 2060 /* 2061 * Legacy endpoints don't belong on the root complex. Windows 2062 * seems to be happier with devices if we skip the capability. 2063 */ 2064 return true; 2065 } 2066 2067 } else { 2068 /* 2069 * Convert Root Complex Integrated Endpoints to regular endpoints. 2070 * These devices don't support LNK/LNK2 capabilities, so make them up. 2071 */ 2072 if (type == PCI_EXP_TYPE_RC_END) { 2073 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2074 PCI_EXP_TYPE_ENDPOINT << 4, 2075 PCI_EXP_FLAGS_TYPE); 2076 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 2077 QEMU_PCI_EXP_LNKCAP_MLW(QEMU_PCI_EXP_LNK_X1) | 2078 QEMU_PCI_EXP_LNKCAP_MLS(QEMU_PCI_EXP_LNK_2_5GT), ~0); 2079 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); 2080 } 2081 2082 vfio_pci_enable_rp_atomics(vdev); 2083 } 2084 2085 /* 2086 * Intel 82599 SR-IOV VFs report an invalid PCIe capability version 0 2087 * (Niantic errate #35) causing Windows to error with a Code 10 for the 2088 * device on Q35. Fixup any such devices to report version 1. If we 2089 * were to remove the capability entirely the guest would lose extended 2090 * config space. 2091 */ 2092 if ((flags & PCI_EXP_FLAGS_VERS) == 0) { 2093 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2094 1, PCI_EXP_FLAGS_VERS); 2095 } 2096 2097 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size, 2098 errp); 2099 if (pos < 0) { 2100 return false; 2101 } 2102 2103 vdev->pdev.exp.exp_cap = pos; 2104 2105 return true; 2106 } 2107 2108 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos) 2109 { 2110 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP); 2111 2112 if (cap & PCI_EXP_DEVCAP_FLR) { 2113 trace_vfio_check_pcie_flr(vdev->vbasedev.name); 2114 vdev->has_flr = true; 2115 } 2116 } 2117 2118 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos) 2119 { 2120 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL); 2121 2122 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) { 2123 trace_vfio_check_pm_reset(vdev->vbasedev.name); 2124 vdev->has_pm_reset = true; 2125 } 2126 } 2127 2128 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos) 2129 { 2130 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP); 2131 2132 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) { 2133 trace_vfio_check_af_flr(vdev->vbasedev.name); 2134 vdev->has_flr = true; 2135 } 2136 } 2137 2138 static bool vfio_add_vendor_specific_cap(VFIOPCIDevice *vdev, int pos, 2139 uint8_t size, Error **errp) 2140 { 2141 PCIDevice *pdev = &vdev->pdev; 2142 2143 pos = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, size, errp); 2144 if (pos < 0) { 2145 return false; 2146 } 2147 2148 /* 2149 * Exempt config space check for Vendor Specific Information during 2150 * restore/load. 2151 * Config space check is still enforced for 3 byte VSC header. 2152 */ 2153 if (vdev->skip_vsc_check && size > 3) { 2154 memset(pdev->cmask + pos + 3, 0, size - 3); 2155 } 2156 2157 return true; 2158 } 2159 2160 static bool vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos, Error **errp) 2161 { 2162 ERRP_GUARD(); 2163 PCIDevice *pdev = &vdev->pdev; 2164 uint8_t cap_id, next, size; 2165 bool ret; 2166 2167 cap_id = pdev->config[pos]; 2168 next = pdev->config[pos + PCI_CAP_LIST_NEXT]; 2169 2170 /* 2171 * If it becomes important to configure capabilities to their actual 2172 * size, use this as the default when it's something we don't recognize. 2173 * Since QEMU doesn't actually handle many of the config accesses, 2174 * exact size doesn't seem worthwhile. 2175 */ 2176 size = vfio_std_cap_max_size(pdev, pos); 2177 2178 /* 2179 * pci_add_capability always inserts the new capability at the head 2180 * of the chain. Therefore to end up with a chain that matches the 2181 * physical device, we insert from the end by making this recursive. 2182 * This is also why we pre-calculate size above as cached config space 2183 * will be changed as we unwind the stack. 2184 */ 2185 if (next) { 2186 if (!vfio_add_std_cap(vdev, next, errp)) { 2187 return false; 2188 } 2189 } else { 2190 /* Begin the rebuild, use QEMU emulated list bits */ 2191 pdev->config[PCI_CAPABILITY_LIST] = 0; 2192 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; 2193 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; 2194 2195 if (!vfio_add_virt_caps(vdev, errp)) { 2196 return false; 2197 } 2198 } 2199 2200 /* Scale down size, esp in case virt caps were added above */ 2201 size = MIN(size, vfio_std_cap_max_size(pdev, pos)); 2202 2203 /* Use emulated next pointer to allow dropping caps */ 2204 pci_set_byte(vdev->emulated_config_bits + pos + PCI_CAP_LIST_NEXT, 0xff); 2205 2206 switch (cap_id) { 2207 case PCI_CAP_ID_MSI: 2208 ret = vfio_msi_setup(vdev, pos, errp); 2209 break; 2210 case PCI_CAP_ID_EXP: 2211 vfio_check_pcie_flr(vdev, pos); 2212 ret = vfio_setup_pcie_cap(vdev, pos, size, errp); 2213 break; 2214 case PCI_CAP_ID_MSIX: 2215 ret = vfio_msix_setup(vdev, pos, errp); 2216 break; 2217 case PCI_CAP_ID_PM: 2218 vfio_check_pm_reset(vdev, pos); 2219 ret = pci_pm_init(pdev, pos, errp) >= 0; 2220 /* 2221 * PCI-core config space emulation needs write access to the power 2222 * state enabled for tracking BAR mapping relative to PM state. 2223 */ 2224 pci_set_word(pdev->wmask + pos + PCI_PM_CTRL, PCI_PM_CTRL_STATE_MASK); 2225 break; 2226 case PCI_CAP_ID_AF: 2227 vfio_check_af_flr(vdev, pos); 2228 ret = pci_add_capability(pdev, cap_id, pos, size, errp) >= 0; 2229 break; 2230 case PCI_CAP_ID_VNDR: 2231 ret = vfio_add_vendor_specific_cap(vdev, pos, size, errp); 2232 break; 2233 default: 2234 ret = pci_add_capability(pdev, cap_id, pos, size, errp) >= 0; 2235 break; 2236 } 2237 2238 if (!ret) { 2239 error_prepend(errp, 2240 "failed to add PCI capability 0x%x[0x%x]@0x%x: ", 2241 cap_id, size, pos); 2242 } 2243 2244 return ret; 2245 } 2246 2247 static int vfio_setup_rebar_ecap(VFIOPCIDevice *vdev, uint16_t pos) 2248 { 2249 uint32_t ctrl; 2250 int i, nbar; 2251 2252 ctrl = pci_get_long(vdev->pdev.config + pos + PCI_REBAR_CTRL); 2253 nbar = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> PCI_REBAR_CTRL_NBAR_SHIFT; 2254 2255 for (i = 0; i < nbar; i++) { 2256 uint32_t cap; 2257 int size; 2258 2259 ctrl = pci_get_long(vdev->pdev.config + pos + PCI_REBAR_CTRL + (i * 8)); 2260 size = (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 2261 2262 /* The cap register reports sizes 1MB to 128TB, with 4 reserved bits */ 2263 cap = size <= 27 ? 1U << (size + 4) : 0; 2264 2265 /* 2266 * The PCIe spec (v6.0.1, 7.8.6) requires HW to support at least one 2267 * size in the range 1MB to 512GB. We intend to mask all sizes except 2268 * the one currently enabled in the size field, therefore if it's 2269 * outside the range, hide the whole capability as this virtualization 2270 * trick won't work. If >512GB resizable BARs start to appear, we 2271 * might need an opt-in or reservation scheme in the kernel. 2272 */ 2273 if (!(cap & PCI_REBAR_CAP_SIZES)) { 2274 return -EINVAL; 2275 } 2276 2277 /* Hide all sizes reported in the ctrl reg per above requirement. */ 2278 ctrl &= (PCI_REBAR_CTRL_BAR_SIZE | 2279 PCI_REBAR_CTRL_NBAR_MASK | 2280 PCI_REBAR_CTRL_BAR_IDX); 2281 2282 /* 2283 * The BAR size field is RW, however we've mangled the capability 2284 * register such that we only report a single size, ie. the current 2285 * BAR size. A write of an unsupported value is undefined, therefore 2286 * the register field is essentially RO. 2287 */ 2288 vfio_add_emulated_long(vdev, pos + PCI_REBAR_CAP + (i * 8), cap, ~0); 2289 vfio_add_emulated_long(vdev, pos + PCI_REBAR_CTRL + (i * 8), ctrl, ~0); 2290 } 2291 2292 return 0; 2293 } 2294 2295 static void vfio_add_ext_cap(VFIOPCIDevice *vdev) 2296 { 2297 PCIDevice *pdev = &vdev->pdev; 2298 uint32_t header; 2299 uint16_t cap_id, next, size; 2300 uint8_t cap_ver; 2301 uint8_t *config; 2302 2303 /* Only add extended caps if we have them and the guest can see them */ 2304 if (!pci_is_express(pdev) || !pci_bus_is_express(pci_get_bus(pdev)) || 2305 !pci_get_long(pdev->config + PCI_CONFIG_SPACE_SIZE)) { 2306 return; 2307 } 2308 2309 /* 2310 * pcie_add_capability always inserts the new capability at the tail 2311 * of the chain. Therefore to end up with a chain that matches the 2312 * physical device, we cache the config space to avoid overwriting 2313 * the original config space when we parse the extended capabilities. 2314 */ 2315 config = g_memdup(pdev->config, vdev->config_size); 2316 2317 /* 2318 * Extended capabilities are chained with each pointing to the next, so we 2319 * can drop anything other than the head of the chain simply by modifying 2320 * the previous next pointer. Seed the head of the chain here such that 2321 * we can simply skip any capabilities we want to drop below, regardless 2322 * of their position in the chain. If this stub capability still exists 2323 * after we add the capabilities we want to expose, update the capability 2324 * ID to zero. Note that we cannot seed with the capability header being 2325 * zero as this conflicts with definition of an absent capability chain 2326 * and prevents capabilities beyond the head of the list from being added. 2327 * By replacing the dummy capability ID with zero after walking the device 2328 * chain, we also transparently mark extended capabilities as absent if 2329 * no capabilities were added. Note that the PCIe spec defines an absence 2330 * of extended capabilities to be determined by a value of zero for the 2331 * capability ID, version, AND next pointer. A non-zero next pointer 2332 * should be sufficient to indicate additional capabilities are present, 2333 * which will occur if we call pcie_add_capability() below. The entire 2334 * first dword is emulated to support this. 2335 * 2336 * NB. The kernel side does similar masking, so be prepared that our 2337 * view of the device may also contain a capability ID zero in the head 2338 * of the chain. Skip it for the same reason that we cannot seed the 2339 * chain with a zero capability. 2340 */ 2341 pci_set_long(pdev->config + PCI_CONFIG_SPACE_SIZE, 2342 PCI_EXT_CAP(0xFFFF, 0, 0)); 2343 pci_set_long(pdev->wmask + PCI_CONFIG_SPACE_SIZE, 0); 2344 pci_set_long(vdev->emulated_config_bits + PCI_CONFIG_SPACE_SIZE, ~0); 2345 2346 for (next = PCI_CONFIG_SPACE_SIZE; next; 2347 next = PCI_EXT_CAP_NEXT(pci_get_long(config + next))) { 2348 header = pci_get_long(config + next); 2349 cap_id = PCI_EXT_CAP_ID(header); 2350 cap_ver = PCI_EXT_CAP_VER(header); 2351 2352 /* 2353 * If it becomes important to configure extended capabilities to their 2354 * actual size, use this as the default when it's something we don't 2355 * recognize. Since QEMU doesn't actually handle many of the config 2356 * accesses, exact size doesn't seem worthwhile. 2357 */ 2358 size = vfio_ext_cap_max_size(config, next); 2359 2360 /* Use emulated next pointer to allow dropping extended caps */ 2361 pci_long_test_and_set_mask(vdev->emulated_config_bits + next, 2362 PCI_EXT_CAP_NEXT_MASK); 2363 2364 switch (cap_id) { 2365 case 0: /* kernel masked capability */ 2366 case PCI_EXT_CAP_ID_SRIOV: /* Read-only VF BARs confuse OVMF */ 2367 case PCI_EXT_CAP_ID_ARI: /* XXX Needs next function virtualization */ 2368 trace_vfio_add_ext_cap_dropped(vdev->vbasedev.name, cap_id, next); 2369 break; 2370 case PCI_EXT_CAP_ID_REBAR: 2371 if (!vfio_setup_rebar_ecap(vdev, next)) { 2372 pcie_add_capability(pdev, cap_id, cap_ver, next, size); 2373 } 2374 break; 2375 default: 2376 pcie_add_capability(pdev, cap_id, cap_ver, next, size); 2377 } 2378 2379 } 2380 2381 /* Cleanup chain head ID if necessary */ 2382 if (pci_get_word(pdev->config + PCI_CONFIG_SPACE_SIZE) == 0xFFFF) { 2383 pci_set_word(pdev->config + PCI_CONFIG_SPACE_SIZE, 0); 2384 } 2385 2386 g_free(config); 2387 } 2388 2389 static bool vfio_add_capabilities(VFIOPCIDevice *vdev, Error **errp) 2390 { 2391 PCIDevice *pdev = &vdev->pdev; 2392 2393 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || 2394 !pdev->config[PCI_CAPABILITY_LIST]) { 2395 return true; /* Nothing to add */ 2396 } 2397 2398 if (!vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST], errp)) { 2399 return false; 2400 } 2401 2402 vfio_add_ext_cap(vdev); 2403 return true; 2404 } 2405 2406 void vfio_pci_pre_reset(VFIOPCIDevice *vdev) 2407 { 2408 PCIDevice *pdev = &vdev->pdev; 2409 uint16_t cmd; 2410 2411 vfio_disable_interrupts(vdev); 2412 2413 /* 2414 * Stop any ongoing DMA by disconnecting I/O, MMIO, and bus master. 2415 * Also put INTx Disable in known state. 2416 */ 2417 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); 2418 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | 2419 PCI_COMMAND_INTX_DISABLE); 2420 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); 2421 2422 /* Make sure the device is in D0 */ 2423 if (pdev->pm_cap) { 2424 uint16_t pmcsr; 2425 uint8_t state; 2426 2427 pmcsr = vfio_pci_read_config(pdev, pdev->pm_cap + PCI_PM_CTRL, 2); 2428 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 2429 if (state) { 2430 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 2431 vfio_pci_write_config(pdev, pdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); 2432 /* vfio handles the necessary delay here */ 2433 pmcsr = vfio_pci_read_config(pdev, pdev->pm_cap + PCI_PM_CTRL, 2); 2434 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 2435 if (state) { 2436 error_report("vfio: Unable to power on device, stuck in D%d", 2437 state); 2438 } 2439 } 2440 } 2441 } 2442 2443 void vfio_pci_post_reset(VFIOPCIDevice *vdev) 2444 { 2445 Error *err = NULL; 2446 int nr; 2447 2448 if (!vfio_intx_enable(vdev, &err)) { 2449 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 2450 } 2451 2452 for (nr = 0; nr < PCI_NUM_REGIONS - 1; ++nr) { 2453 off_t addr = vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr); 2454 uint32_t val = 0; 2455 uint32_t len = sizeof(val); 2456 2457 if (pwrite(vdev->vbasedev.fd, &val, len, addr) != len) { 2458 error_report("%s(%s) reset bar %d failed: %m", __func__, 2459 vdev->vbasedev.name, nr); 2460 } 2461 } 2462 2463 vfio_quirk_reset(vdev); 2464 } 2465 2466 bool vfio_pci_host_match(PCIHostDeviceAddress *addr, const char *name) 2467 { 2468 char tmp[13]; 2469 2470 sprintf(tmp, "%04x:%02x:%02x.%1x", addr->domain, 2471 addr->bus, addr->slot, addr->function); 2472 2473 return (strcmp(tmp, name) == 0); 2474 } 2475 2476 int vfio_pci_get_pci_hot_reset_info(VFIOPCIDevice *vdev, 2477 struct vfio_pci_hot_reset_info **info_p) 2478 { 2479 struct vfio_pci_hot_reset_info *info; 2480 int ret, count; 2481 2482 assert(info_p && !*info_p); 2483 2484 info = g_malloc0(sizeof(*info)); 2485 info->argsz = sizeof(*info); 2486 2487 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); 2488 if (ret && errno != ENOSPC) { 2489 ret = -errno; 2490 g_free(info); 2491 if (!vdev->has_pm_reset) { 2492 error_report("vfio: Cannot reset device %s, " 2493 "no available reset mechanism.", vdev->vbasedev.name); 2494 } 2495 return ret; 2496 } 2497 2498 count = info->count; 2499 info = g_realloc(info, sizeof(*info) + (count * sizeof(info->devices[0]))); 2500 info->argsz = sizeof(*info) + (count * sizeof(info->devices[0])); 2501 2502 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); 2503 if (ret) { 2504 ret = -errno; 2505 g_free(info); 2506 error_report("vfio: hot reset info failed: %m"); 2507 return ret; 2508 } 2509 2510 *info_p = info; 2511 return 0; 2512 } 2513 2514 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single) 2515 { 2516 VFIODevice *vbasedev = &vdev->vbasedev; 2517 const VFIOIOMMUClass *vioc = VFIO_IOMMU_GET_CLASS(vbasedev->bcontainer); 2518 2519 return vioc->pci_hot_reset(vbasedev, single); 2520 } 2521 2522 /* 2523 * We want to differentiate hot reset of multiple in-use devices vs hot reset 2524 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case 2525 * of doing hot resets when there is only a single device per bus. The in-use 2526 * here refers to how many VFIODevices are affected. A hot reset that affects 2527 * multiple devices, but only a single in-use device, means that we can call 2528 * it from our bus ->reset() callback since the extent is effectively a single 2529 * device. This allows us to make use of it in the hotplug path. When there 2530 * are multiple in-use devices, we can only trigger the hot reset during a 2531 * system reset and thus from our reset handler. We separate _one vs _multi 2532 * here so that we don't overlap and do a double reset on the system reset 2533 * path where both our reset handler and ->reset() callback are used. Calling 2534 * _one() will only do a hot reset for the one in-use devices case, calling 2535 * _multi() will do nothing if a _one() would have been sufficient. 2536 */ 2537 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev) 2538 { 2539 return vfio_pci_hot_reset(vdev, true); 2540 } 2541 2542 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev) 2543 { 2544 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2545 return vfio_pci_hot_reset(vdev, false); 2546 } 2547 2548 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev) 2549 { 2550 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2551 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { 2552 vbasedev->needs_reset = true; 2553 } 2554 } 2555 2556 static Object *vfio_pci_get_object(VFIODevice *vbasedev) 2557 { 2558 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2559 2560 return OBJECT(vdev); 2561 } 2562 2563 static bool vfio_msix_present(void *opaque, int version_id) 2564 { 2565 PCIDevice *pdev = opaque; 2566 2567 return msix_present(pdev); 2568 } 2569 2570 static bool vfio_display_migration_needed(void *opaque) 2571 { 2572 VFIOPCIDevice *vdev = opaque; 2573 2574 /* 2575 * We need to migrate the VFIODisplay object if ramfb *migration* was 2576 * explicitly requested (in which case we enforced both ramfb=on and 2577 * display=on), or ramfb migration was left at the default "auto" 2578 * setting, and *ramfb* was explicitly requested (in which case we 2579 * enforced display=on). 2580 */ 2581 return vdev->ramfb_migrate == ON_OFF_AUTO_ON || 2582 (vdev->ramfb_migrate == ON_OFF_AUTO_AUTO && vdev->enable_ramfb); 2583 } 2584 2585 static const VMStateDescription vmstate_vfio_display = { 2586 .name = "VFIOPCIDevice/VFIODisplay", 2587 .version_id = 1, 2588 .minimum_version_id = 1, 2589 .needed = vfio_display_migration_needed, 2590 .fields = (const VMStateField[]){ 2591 VMSTATE_STRUCT_POINTER(dpy, VFIOPCIDevice, vfio_display_vmstate, 2592 VFIODisplay), 2593 VMSTATE_END_OF_LIST() 2594 } 2595 }; 2596 2597 static const VMStateDescription vmstate_vfio_pci_config = { 2598 .name = "VFIOPCIDevice", 2599 .version_id = 1, 2600 .minimum_version_id = 1, 2601 .fields = (const VMStateField[]) { 2602 VMSTATE_PCI_DEVICE(pdev, VFIOPCIDevice), 2603 VMSTATE_MSIX_TEST(pdev, VFIOPCIDevice, vfio_msix_present), 2604 VMSTATE_END_OF_LIST() 2605 }, 2606 .subsections = (const VMStateDescription * const []) { 2607 &vmstate_vfio_display, 2608 NULL 2609 } 2610 }; 2611 2612 static int vfio_pci_save_config(VFIODevice *vbasedev, QEMUFile *f, Error **errp) 2613 { 2614 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2615 2616 return vmstate_save_state_with_err(f, &vmstate_vfio_pci_config, vdev, NULL, 2617 errp); 2618 } 2619 2620 static int vfio_pci_load_config(VFIODevice *vbasedev, QEMUFile *f) 2621 { 2622 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2623 PCIDevice *pdev = &vdev->pdev; 2624 pcibus_t old_addr[PCI_NUM_REGIONS - 1]; 2625 int bar, ret; 2626 2627 for (bar = 0; bar < PCI_ROM_SLOT; bar++) { 2628 old_addr[bar] = pdev->io_regions[bar].addr; 2629 } 2630 2631 ret = vmstate_load_state(f, &vmstate_vfio_pci_config, vdev, 1); 2632 if (ret) { 2633 return ret; 2634 } 2635 2636 vfio_pci_write_config(pdev, PCI_COMMAND, 2637 pci_get_word(pdev->config + PCI_COMMAND), 2); 2638 2639 for (bar = 0; bar < PCI_ROM_SLOT; bar++) { 2640 /* 2641 * The address may not be changed in some scenarios 2642 * (e.g. the VF driver isn't loaded in VM). 2643 */ 2644 if (old_addr[bar] != pdev->io_regions[bar].addr && 2645 vdev->bars[bar].region.size > 0 && 2646 vdev->bars[bar].region.size < qemu_real_host_page_size()) { 2647 vfio_sub_page_bar_update_mapping(pdev, bar); 2648 } 2649 } 2650 2651 if (msi_enabled(pdev)) { 2652 vfio_msi_enable(vdev); 2653 } else if (msix_enabled(pdev)) { 2654 vfio_msix_enable(vdev); 2655 } 2656 2657 return ret; 2658 } 2659 2660 static VFIODeviceOps vfio_pci_ops = { 2661 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset, 2662 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi, 2663 .vfio_eoi = vfio_intx_eoi, 2664 .vfio_get_object = vfio_pci_get_object, 2665 .vfio_save_config = vfio_pci_save_config, 2666 .vfio_load_config = vfio_pci_load_config, 2667 }; 2668 2669 bool vfio_populate_vga(VFIOPCIDevice *vdev, Error **errp) 2670 { 2671 VFIODevice *vbasedev = &vdev->vbasedev; 2672 g_autofree struct vfio_region_info *reg_info = NULL; 2673 int ret; 2674 2675 ret = vfio_get_region_info(vbasedev, VFIO_PCI_VGA_REGION_INDEX, ®_info); 2676 if (ret) { 2677 error_setg_errno(errp, -ret, 2678 "failed getting region info for VGA region index %d", 2679 VFIO_PCI_VGA_REGION_INDEX); 2680 return false; 2681 } 2682 2683 if (!(reg_info->flags & VFIO_REGION_INFO_FLAG_READ) || 2684 !(reg_info->flags & VFIO_REGION_INFO_FLAG_WRITE) || 2685 reg_info->size < 0xbffff + 1) { 2686 error_setg(errp, "unexpected VGA info, flags 0x%lx, size 0x%lx", 2687 (unsigned long)reg_info->flags, 2688 (unsigned long)reg_info->size); 2689 return false; 2690 } 2691 2692 vdev->vga = g_new0(VFIOVGA, 1); 2693 2694 vdev->vga->fd_offset = reg_info->offset; 2695 vdev->vga->fd = vdev->vbasedev.fd; 2696 2697 vdev->vga->region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; 2698 vdev->vga->region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; 2699 QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_MEM].quirks); 2700 2701 memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_MEM].mem, 2702 OBJECT(vdev), &vfio_vga_ops, 2703 &vdev->vga->region[QEMU_PCI_VGA_MEM], 2704 "vfio-vga-mmio@0xa0000", 2705 QEMU_PCI_VGA_MEM_SIZE); 2706 2707 vdev->vga->region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; 2708 vdev->vga->region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; 2709 QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].quirks); 2710 2711 memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem, 2712 OBJECT(vdev), &vfio_vga_ops, 2713 &vdev->vga->region[QEMU_PCI_VGA_IO_LO], 2714 "vfio-vga-io@0x3b0", 2715 QEMU_PCI_VGA_IO_LO_SIZE); 2716 2717 vdev->vga->region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; 2718 vdev->vga->region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; 2719 QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks); 2720 2721 memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 2722 OBJECT(vdev), &vfio_vga_ops, 2723 &vdev->vga->region[QEMU_PCI_VGA_IO_HI], 2724 "vfio-vga-io@0x3c0", 2725 QEMU_PCI_VGA_IO_HI_SIZE); 2726 2727 pci_register_vga(&vdev->pdev, &vdev->vga->region[QEMU_PCI_VGA_MEM].mem, 2728 &vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem, 2729 &vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem); 2730 2731 return true; 2732 } 2733 2734 static bool vfio_populate_device(VFIOPCIDevice *vdev, Error **errp) 2735 { 2736 VFIODevice *vbasedev = &vdev->vbasedev; 2737 g_autofree struct vfio_region_info *reg_info = NULL; 2738 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; 2739 int i, ret = -1; 2740 2741 /* Sanity check device */ 2742 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) { 2743 error_setg(errp, "this isn't a PCI device"); 2744 return false; 2745 } 2746 2747 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { 2748 error_setg(errp, "unexpected number of io regions %u", 2749 vbasedev->num_regions); 2750 return false; 2751 } 2752 2753 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { 2754 error_setg(errp, "unexpected number of irqs %u", vbasedev->num_irqs); 2755 return false; 2756 } 2757 2758 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { 2759 char *name = g_strdup_printf("%s BAR %d", vbasedev->name, i); 2760 2761 ret = vfio_region_setup(OBJECT(vdev), vbasedev, 2762 &vdev->bars[i].region, i, name); 2763 g_free(name); 2764 2765 if (ret) { 2766 error_setg_errno(errp, -ret, "failed to get region %d info", i); 2767 return false; 2768 } 2769 2770 QLIST_INIT(&vdev->bars[i].quirks); 2771 } 2772 2773 ret = vfio_get_region_info(vbasedev, 2774 VFIO_PCI_CONFIG_REGION_INDEX, ®_info); 2775 if (ret) { 2776 error_setg_errno(errp, -ret, "failed to get config info"); 2777 return false; 2778 } 2779 2780 trace_vfio_populate_device_config(vdev->vbasedev.name, 2781 (unsigned long)reg_info->size, 2782 (unsigned long)reg_info->offset, 2783 (unsigned long)reg_info->flags); 2784 2785 vdev->config_size = reg_info->size; 2786 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { 2787 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; 2788 } 2789 vdev->config_offset = reg_info->offset; 2790 2791 if (vdev->features & VFIO_FEATURE_ENABLE_VGA) { 2792 if (!vfio_populate_vga(vdev, errp)) { 2793 error_append_hint(errp, "device does not support " 2794 "requested feature x-vga\n"); 2795 return false; 2796 } 2797 } 2798 2799 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX; 2800 2801 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); 2802 if (ret) { 2803 /* This can fail for an old kernel or legacy PCI dev */ 2804 trace_vfio_populate_device_get_irq_info_failure(strerror(errno)); 2805 } else if (irq_info.count == 1) { 2806 vdev->pci_aer = true; 2807 } else { 2808 warn_report(VFIO_MSG_PREFIX 2809 "Could not enable error recovery for the device", 2810 vbasedev->name); 2811 } 2812 2813 return true; 2814 } 2815 2816 static void vfio_pci_put_device(VFIOPCIDevice *vdev) 2817 { 2818 vfio_detach_device(&vdev->vbasedev); 2819 2820 g_free(vdev->vbasedev.name); 2821 g_free(vdev->msix); 2822 } 2823 2824 static void vfio_err_notifier_handler(void *opaque) 2825 { 2826 VFIOPCIDevice *vdev = opaque; 2827 2828 if (!event_notifier_test_and_clear(&vdev->err_notifier)) { 2829 return; 2830 } 2831 2832 /* 2833 * TBD. Retrieve the error details and decide what action 2834 * needs to be taken. One of the actions could be to pass 2835 * the error to the guest and have the guest driver recover 2836 * from the error. This requires that PCIe capabilities be 2837 * exposed to the guest. For now, we just terminate the 2838 * guest to contain the error. 2839 */ 2840 2841 error_report("%s(%s) Unrecoverable error detected. Please collect any data possible and then kill the guest", __func__, vdev->vbasedev.name); 2842 2843 vm_stop(RUN_STATE_INTERNAL_ERROR); 2844 } 2845 2846 /* 2847 * Registers error notifier for devices supporting error recovery. 2848 * If we encounter a failure in this function, we report an error 2849 * and continue after disabling error recovery support for the 2850 * device. 2851 */ 2852 static void vfio_register_err_notifier(VFIOPCIDevice *vdev) 2853 { 2854 Error *err = NULL; 2855 int32_t fd; 2856 2857 if (!vdev->pci_aer) { 2858 return; 2859 } 2860 2861 if (event_notifier_init(&vdev->err_notifier, 0)) { 2862 error_report("vfio: Unable to init event notifier for error detection"); 2863 vdev->pci_aer = false; 2864 return; 2865 } 2866 2867 fd = event_notifier_get_fd(&vdev->err_notifier); 2868 qemu_set_fd_handler(fd, vfio_err_notifier_handler, NULL, vdev); 2869 2870 if (!vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_ERR_IRQ_INDEX, 0, 2871 VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { 2872 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 2873 qemu_set_fd_handler(fd, NULL, NULL, vdev); 2874 event_notifier_cleanup(&vdev->err_notifier); 2875 vdev->pci_aer = false; 2876 } 2877 } 2878 2879 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev) 2880 { 2881 Error *err = NULL; 2882 2883 if (!vdev->pci_aer) { 2884 return; 2885 } 2886 2887 if (!vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_ERR_IRQ_INDEX, 0, 2888 VFIO_IRQ_SET_ACTION_TRIGGER, -1, &err)) { 2889 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 2890 } 2891 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier), 2892 NULL, NULL, vdev); 2893 event_notifier_cleanup(&vdev->err_notifier); 2894 } 2895 2896 static void vfio_req_notifier_handler(void *opaque) 2897 { 2898 VFIOPCIDevice *vdev = opaque; 2899 Error *err = NULL; 2900 2901 if (!event_notifier_test_and_clear(&vdev->req_notifier)) { 2902 return; 2903 } 2904 2905 qdev_unplug(DEVICE(vdev), &err); 2906 if (err) { 2907 warn_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 2908 } 2909 } 2910 2911 static void vfio_register_req_notifier(VFIOPCIDevice *vdev) 2912 { 2913 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), 2914 .index = VFIO_PCI_REQ_IRQ_INDEX }; 2915 Error *err = NULL; 2916 int32_t fd; 2917 2918 if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) { 2919 return; 2920 } 2921 2922 if (ioctl(vdev->vbasedev.fd, 2923 VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) { 2924 return; 2925 } 2926 2927 if (event_notifier_init(&vdev->req_notifier, 0)) { 2928 error_report("vfio: Unable to init event notifier for device request"); 2929 return; 2930 } 2931 2932 fd = event_notifier_get_fd(&vdev->req_notifier); 2933 qemu_set_fd_handler(fd, vfio_req_notifier_handler, NULL, vdev); 2934 2935 if (!vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_REQ_IRQ_INDEX, 0, 2936 VFIO_IRQ_SET_ACTION_TRIGGER, fd, &err)) { 2937 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 2938 qemu_set_fd_handler(fd, NULL, NULL, vdev); 2939 event_notifier_cleanup(&vdev->req_notifier); 2940 } else { 2941 vdev->req_enabled = true; 2942 } 2943 } 2944 2945 static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev) 2946 { 2947 Error *err = NULL; 2948 2949 if (!vdev->req_enabled) { 2950 return; 2951 } 2952 2953 if (!vfio_set_irq_signaling(&vdev->vbasedev, VFIO_PCI_REQ_IRQ_INDEX, 0, 2954 VFIO_IRQ_SET_ACTION_TRIGGER, -1, &err)) { 2955 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 2956 } 2957 qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier), 2958 NULL, NULL, vdev); 2959 event_notifier_cleanup(&vdev->req_notifier); 2960 2961 vdev->req_enabled = false; 2962 } 2963 2964 static void vfio_realize(PCIDevice *pdev, Error **errp) 2965 { 2966 ERRP_GUARD(); 2967 VFIOPCIDevice *vdev = VFIO_PCI(pdev); 2968 VFIODevice *vbasedev = &vdev->vbasedev; 2969 int i, ret; 2970 char uuid[UUID_STR_LEN]; 2971 g_autofree char *name = NULL; 2972 2973 if (vbasedev->fd < 0 && !vbasedev->sysfsdev) { 2974 if (!(~vdev->host.domain || ~vdev->host.bus || 2975 ~vdev->host.slot || ~vdev->host.function)) { 2976 error_setg(errp, "No provided host device"); 2977 error_append_hint(errp, "Use -device vfio-pci,host=DDDD:BB:DD.F " 2978 #ifdef CONFIG_IOMMUFD 2979 "or -device vfio-pci,fd=DEVICE_FD " 2980 #endif 2981 "or -device vfio-pci,sysfsdev=PATH_TO_DEVICE\n"); 2982 return; 2983 } 2984 vbasedev->sysfsdev = 2985 g_strdup_printf("/sys/bus/pci/devices/%04x:%02x:%02x.%01x", 2986 vdev->host.domain, vdev->host.bus, 2987 vdev->host.slot, vdev->host.function); 2988 } 2989 2990 if (!vfio_device_get_name(vbasedev, errp)) { 2991 return; 2992 } 2993 2994 /* 2995 * Mediated devices *might* operate compatibly with discarding of RAM, but 2996 * we cannot know for certain, it depends on whether the mdev vendor driver 2997 * stays in sync with the active working set of the guest driver. Prevent 2998 * the x-balloon-allowed option unless this is minimally an mdev device. 2999 */ 3000 vbasedev->mdev = vfio_device_is_mdev(vbasedev); 3001 3002 trace_vfio_mdev(vbasedev->name, vbasedev->mdev); 3003 3004 if (vbasedev->ram_block_discard_allowed && !vbasedev->mdev) { 3005 error_setg(errp, "x-balloon-allowed only potentially compatible " 3006 "with mdev devices"); 3007 goto error; 3008 } 3009 3010 if (!qemu_uuid_is_null(&vdev->vf_token)) { 3011 qemu_uuid_unparse(&vdev->vf_token, uuid); 3012 name = g_strdup_printf("%s vf_token=%s", vbasedev->name, uuid); 3013 } else { 3014 name = g_strdup(vbasedev->name); 3015 } 3016 3017 if (!vfio_attach_device(name, vbasedev, 3018 pci_device_iommu_address_space(pdev), errp)) { 3019 goto error; 3020 } 3021 3022 if (!vfio_populate_device(vdev, errp)) { 3023 goto error; 3024 } 3025 3026 /* Get a copy of config space */ 3027 ret = pread(vbasedev->fd, vdev->pdev.config, 3028 MIN(pci_config_size(&vdev->pdev), vdev->config_size), 3029 vdev->config_offset); 3030 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { 3031 ret = ret < 0 ? -errno : -EFAULT; 3032 error_setg_errno(errp, -ret, "failed to read device config space"); 3033 goto error; 3034 } 3035 3036 /* vfio emulates a lot for us, but some bits need extra love */ 3037 vdev->emulated_config_bits = g_malloc0(vdev->config_size); 3038 3039 /* QEMU can choose to expose the ROM or not */ 3040 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); 3041 /* QEMU can also add or extend BARs */ 3042 memset(vdev->emulated_config_bits + PCI_BASE_ADDRESS_0, 0xff, 6 * 4); 3043 3044 /* 3045 * The PCI spec reserves vendor ID 0xffff as an invalid value. The 3046 * device ID is managed by the vendor and need only be a 16-bit value. 3047 * Allow any 16-bit value for subsystem so they can be hidden or changed. 3048 */ 3049 if (vdev->vendor_id != PCI_ANY_ID) { 3050 if (vdev->vendor_id >= 0xffff) { 3051 error_setg(errp, "invalid PCI vendor ID provided"); 3052 goto error; 3053 } 3054 vfio_add_emulated_word(vdev, PCI_VENDOR_ID, vdev->vendor_id, ~0); 3055 trace_vfio_pci_emulated_vendor_id(vbasedev->name, vdev->vendor_id); 3056 } else { 3057 vdev->vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); 3058 } 3059 3060 if (vdev->device_id != PCI_ANY_ID) { 3061 if (vdev->device_id > 0xffff) { 3062 error_setg(errp, "invalid PCI device ID provided"); 3063 goto error; 3064 } 3065 vfio_add_emulated_word(vdev, PCI_DEVICE_ID, vdev->device_id, ~0); 3066 trace_vfio_pci_emulated_device_id(vbasedev->name, vdev->device_id); 3067 } else { 3068 vdev->device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); 3069 } 3070 3071 if (vdev->sub_vendor_id != PCI_ANY_ID) { 3072 if (vdev->sub_vendor_id > 0xffff) { 3073 error_setg(errp, "invalid PCI subsystem vendor ID provided"); 3074 goto error; 3075 } 3076 vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_VENDOR_ID, 3077 vdev->sub_vendor_id, ~0); 3078 trace_vfio_pci_emulated_sub_vendor_id(vbasedev->name, 3079 vdev->sub_vendor_id); 3080 } 3081 3082 if (vdev->sub_device_id != PCI_ANY_ID) { 3083 if (vdev->sub_device_id > 0xffff) { 3084 error_setg(errp, "invalid PCI subsystem device ID provided"); 3085 goto error; 3086 } 3087 vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_ID, vdev->sub_device_id, ~0); 3088 trace_vfio_pci_emulated_sub_device_id(vbasedev->name, 3089 vdev->sub_device_id); 3090 } 3091 3092 /* QEMU can change multi-function devices to single function, or reverse */ 3093 vdev->emulated_config_bits[PCI_HEADER_TYPE] = 3094 PCI_HEADER_TYPE_MULTI_FUNCTION; 3095 3096 /* Restore or clear multifunction, this is always controlled by QEMU */ 3097 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 3098 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; 3099 } else { 3100 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; 3101 } 3102 3103 /* 3104 * Clear host resource mapping info. If we choose not to register a 3105 * BAR, such as might be the case with the option ROM, we can get 3106 * confusing, unwritable, residual addresses from the host here. 3107 */ 3108 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); 3109 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); 3110 3111 vfio_pci_size_rom(vdev); 3112 3113 vfio_bars_prepare(vdev); 3114 3115 if (!vfio_msix_early_setup(vdev, errp)) { 3116 goto error; 3117 } 3118 3119 vfio_bars_register(vdev); 3120 3121 if (!vbasedev->mdev && 3122 !pci_device_set_iommu_device(pdev, vbasedev->hiod, errp)) { 3123 error_prepend(errp, "Failed to set vIOMMU: "); 3124 goto out_teardown; 3125 } 3126 3127 if (!vfio_add_capabilities(vdev, errp)) { 3128 goto out_unset_idev; 3129 } 3130 3131 if (!vfio_config_quirk_setup(vdev, errp)) { 3132 goto out_unset_idev; 3133 } 3134 3135 if (vdev->vga) { 3136 vfio_vga_quirk_setup(vdev); 3137 } 3138 3139 for (i = 0; i < PCI_ROM_SLOT; i++) { 3140 vfio_bar_quirk_setup(vdev, i); 3141 } 3142 3143 /* QEMU emulates all of MSI & MSIX */ 3144 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { 3145 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, 3146 MSIX_CAP_LENGTH); 3147 } 3148 3149 if (pdev->cap_present & QEMU_PCI_CAP_MSI) { 3150 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, 3151 vdev->msi_cap_size); 3152 } 3153 3154 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { 3155 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3156 vfio_intx_mmap_enable, vdev); 3157 pci_device_set_intx_routing_notifier(&vdev->pdev, 3158 vfio_intx_routing_notifier); 3159 vdev->irqchip_change_notifier.notify = vfio_irqchip_change; 3160 kvm_irqchip_add_change_notifier(&vdev->irqchip_change_notifier); 3161 if (!vfio_intx_enable(vdev, errp)) { 3162 goto out_deregister; 3163 } 3164 } 3165 3166 if (vdev->display != ON_OFF_AUTO_OFF) { 3167 if (!vfio_display_probe(vdev, errp)) { 3168 goto out_deregister; 3169 } 3170 } 3171 if (vdev->enable_ramfb && vdev->dpy == NULL) { 3172 error_setg(errp, "ramfb=on requires display=on"); 3173 goto out_deregister; 3174 } 3175 if (vdev->display_xres || vdev->display_yres) { 3176 if (vdev->dpy == NULL) { 3177 error_setg(errp, "xres and yres properties require display=on"); 3178 goto out_deregister; 3179 } 3180 if (vdev->dpy->edid_regs == NULL) { 3181 error_setg(errp, "xres and yres properties need edid support"); 3182 goto out_deregister; 3183 } 3184 } 3185 3186 if (vdev->ramfb_migrate == ON_OFF_AUTO_ON && !vdev->enable_ramfb) { 3187 warn_report("x-ramfb-migrate=on but ramfb=off. " 3188 "Forcing x-ramfb-migrate to off."); 3189 vdev->ramfb_migrate = ON_OFF_AUTO_OFF; 3190 } 3191 if (vbasedev->enable_migration == ON_OFF_AUTO_OFF) { 3192 if (vdev->ramfb_migrate == ON_OFF_AUTO_AUTO) { 3193 vdev->ramfb_migrate = ON_OFF_AUTO_OFF; 3194 } else if (vdev->ramfb_migrate == ON_OFF_AUTO_ON) { 3195 error_setg(errp, "x-ramfb-migrate requires enable-migration"); 3196 goto out_deregister; 3197 } 3198 } 3199 3200 if (!pdev->failover_pair_id) { 3201 if (!vfio_migration_realize(vbasedev, errp)) { 3202 goto out_deregister; 3203 } 3204 } 3205 3206 vfio_register_err_notifier(vdev); 3207 vfio_register_req_notifier(vdev); 3208 vfio_setup_resetfn_quirk(vdev); 3209 3210 return; 3211 3212 out_deregister: 3213 if (vdev->interrupt == VFIO_INT_INTx) { 3214 vfio_intx_disable(vdev); 3215 } 3216 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); 3217 if (vdev->irqchip_change_notifier.notify) { 3218 kvm_irqchip_remove_change_notifier(&vdev->irqchip_change_notifier); 3219 } 3220 if (vdev->intx.mmap_timer) { 3221 timer_free(vdev->intx.mmap_timer); 3222 } 3223 out_unset_idev: 3224 if (!vbasedev->mdev) { 3225 pci_device_unset_iommu_device(pdev); 3226 } 3227 out_teardown: 3228 vfio_teardown_msi(vdev); 3229 vfio_bars_exit(vdev); 3230 error: 3231 error_prepend(errp, VFIO_MSG_PREFIX, vbasedev->name); 3232 } 3233 3234 static void vfio_instance_finalize(Object *obj) 3235 { 3236 VFIOPCIDevice *vdev = VFIO_PCI(obj); 3237 3238 vfio_display_finalize(vdev); 3239 vfio_bars_finalize(vdev); 3240 g_free(vdev->emulated_config_bits); 3241 g_free(vdev->rom); 3242 /* 3243 * XXX Leaking igd_opregion is not an oversight, we can't remove the 3244 * fw_cfg entry therefore leaking this allocation seems like the safest 3245 * option. 3246 * 3247 * g_free(vdev->igd_opregion); 3248 */ 3249 vfio_pci_put_device(vdev); 3250 } 3251 3252 static void vfio_exitfn(PCIDevice *pdev) 3253 { 3254 VFIOPCIDevice *vdev = VFIO_PCI(pdev); 3255 VFIODevice *vbasedev = &vdev->vbasedev; 3256 3257 vfio_unregister_req_notifier(vdev); 3258 vfio_unregister_err_notifier(vdev); 3259 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); 3260 if (vdev->irqchip_change_notifier.notify) { 3261 kvm_irqchip_remove_change_notifier(&vdev->irqchip_change_notifier); 3262 } 3263 vfio_disable_interrupts(vdev); 3264 if (vdev->intx.mmap_timer) { 3265 timer_free(vdev->intx.mmap_timer); 3266 } 3267 vfio_teardown_msi(vdev); 3268 vfio_pci_disable_rp_atomics(vdev); 3269 vfio_bars_exit(vdev); 3270 vfio_migration_exit(vbasedev); 3271 if (!vbasedev->mdev) { 3272 pci_device_unset_iommu_device(pdev); 3273 } 3274 } 3275 3276 static void vfio_pci_reset(DeviceState *dev) 3277 { 3278 VFIOPCIDevice *vdev = VFIO_PCI(dev); 3279 3280 trace_vfio_pci_reset(vdev->vbasedev.name); 3281 3282 vfio_pci_pre_reset(vdev); 3283 3284 if (vdev->display != ON_OFF_AUTO_OFF) { 3285 vfio_display_reset(vdev); 3286 } 3287 3288 if (vdev->resetfn && !vdev->resetfn(vdev)) { 3289 goto post_reset; 3290 } 3291 3292 if (vdev->vbasedev.reset_works && 3293 (vdev->has_flr || !vdev->has_pm_reset) && 3294 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { 3295 trace_vfio_pci_reset_flr(vdev->vbasedev.name); 3296 goto post_reset; 3297 } 3298 3299 /* See if we can do our own bus reset */ 3300 if (!vfio_pci_hot_reset_one(vdev)) { 3301 goto post_reset; 3302 } 3303 3304 /* If nothing else works and the device supports PM reset, use it */ 3305 if (vdev->vbasedev.reset_works && vdev->has_pm_reset && 3306 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { 3307 trace_vfio_pci_reset_pm(vdev->vbasedev.name); 3308 goto post_reset; 3309 } 3310 3311 post_reset: 3312 vfio_pci_post_reset(vdev); 3313 } 3314 3315 static void vfio_instance_init(Object *obj) 3316 { 3317 PCIDevice *pci_dev = PCI_DEVICE(obj); 3318 VFIOPCIDevice *vdev = VFIO_PCI(obj); 3319 VFIODevice *vbasedev = &vdev->vbasedev; 3320 3321 device_add_bootindex_property(obj, &vdev->bootindex, 3322 "bootindex", NULL, 3323 &pci_dev->qdev); 3324 vdev->host.domain = ~0U; 3325 vdev->host.bus = ~0U; 3326 vdev->host.slot = ~0U; 3327 vdev->host.function = ~0U; 3328 3329 vfio_device_init(vbasedev, VFIO_DEVICE_TYPE_PCI, &vfio_pci_ops, 3330 DEVICE(vdev), false); 3331 3332 vdev->nv_gpudirect_clique = 0xFF; 3333 3334 /* QEMU_PCI_CAP_EXPRESS initialization does not depend on QEMU command 3335 * line, therefore, no need to wait to realize like other devices */ 3336 pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; 3337 } 3338 3339 static PropertyInfo vfio_pci_migration_multifd_transfer_prop; 3340 3341 static const Property vfio_pci_dev_properties[] = { 3342 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host), 3343 DEFINE_PROP_UUID_NODEFAULT("vf-token", VFIOPCIDevice, vf_token), 3344 DEFINE_PROP_STRING("sysfsdev", VFIOPCIDevice, vbasedev.sysfsdev), 3345 DEFINE_PROP_ON_OFF_AUTO("x-pre-copy-dirty-page-tracking", VFIOPCIDevice, 3346 vbasedev.pre_copy_dirty_page_tracking, 3347 ON_OFF_AUTO_ON), 3348 DEFINE_PROP_ON_OFF_AUTO("x-device-dirty-page-tracking", VFIOPCIDevice, 3349 vbasedev.device_dirty_page_tracking, 3350 ON_OFF_AUTO_ON), 3351 DEFINE_PROP_ON_OFF_AUTO("display", VFIOPCIDevice, 3352 display, ON_OFF_AUTO_OFF), 3353 DEFINE_PROP_UINT32("xres", VFIOPCIDevice, display_xres, 0), 3354 DEFINE_PROP_UINT32("yres", VFIOPCIDevice, display_yres, 0), 3355 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice, 3356 intx.mmap_timeout, 1100), 3357 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features, 3358 VFIO_FEATURE_ENABLE_VGA_BIT, false), 3359 DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features, 3360 VFIO_FEATURE_ENABLE_REQ_BIT, true), 3361 DEFINE_PROP_BIT("x-igd-opregion", VFIOPCIDevice, features, 3362 VFIO_FEATURE_ENABLE_IGD_OPREGION_BIT, false), 3363 DEFINE_PROP_BIT("x-igd-lpc", VFIOPCIDevice, features, 3364 VFIO_FEATURE_ENABLE_IGD_LPC_BIT, false), 3365 DEFINE_PROP_ON_OFF_AUTO("x-igd-legacy-mode", VFIOPCIDevice, 3366 igd_legacy_mode, ON_OFF_AUTO_AUTO), 3367 DEFINE_PROP_ON_OFF_AUTO("enable-migration", VFIOPCIDevice, 3368 vbasedev.enable_migration, ON_OFF_AUTO_AUTO), 3369 DEFINE_PROP("x-migration-multifd-transfer", VFIOPCIDevice, 3370 vbasedev.migration_multifd_transfer, 3371 vfio_pci_migration_multifd_transfer_prop, OnOffAuto, 3372 .set_default = true, .defval.i = ON_OFF_AUTO_AUTO), 3373 DEFINE_PROP_BOOL("migration-events", VFIOPCIDevice, 3374 vbasedev.migration_events, false), 3375 DEFINE_PROP_BOOL("x-no-mmap", VFIOPCIDevice, vbasedev.no_mmap, false), 3376 DEFINE_PROP_BOOL("x-balloon-allowed", VFIOPCIDevice, 3377 vbasedev.ram_block_discard_allowed, false), 3378 DEFINE_PROP_BOOL("x-no-kvm-intx", VFIOPCIDevice, no_kvm_intx, false), 3379 DEFINE_PROP_BOOL("x-no-kvm-msi", VFIOPCIDevice, no_kvm_msi, false), 3380 DEFINE_PROP_BOOL("x-no-kvm-msix", VFIOPCIDevice, no_kvm_msix, false), 3381 DEFINE_PROP_BOOL("x-no-geforce-quirks", VFIOPCIDevice, 3382 no_geforce_quirks, false), 3383 DEFINE_PROP_BOOL("x-no-kvm-ioeventfd", VFIOPCIDevice, no_kvm_ioeventfd, 3384 false), 3385 DEFINE_PROP_BOOL("x-no-vfio-ioeventfd", VFIOPCIDevice, no_vfio_ioeventfd, 3386 false), 3387 DEFINE_PROP_UINT32("x-pci-vendor-id", VFIOPCIDevice, vendor_id, PCI_ANY_ID), 3388 DEFINE_PROP_UINT32("x-pci-device-id", VFIOPCIDevice, device_id, PCI_ANY_ID), 3389 DEFINE_PROP_UINT32("x-pci-sub-vendor-id", VFIOPCIDevice, 3390 sub_vendor_id, PCI_ANY_ID), 3391 DEFINE_PROP_UINT32("x-pci-sub-device-id", VFIOPCIDevice, 3392 sub_device_id, PCI_ANY_ID), 3393 DEFINE_PROP_UINT32("x-igd-gms", VFIOPCIDevice, igd_gms, 0), 3394 DEFINE_PROP_UNSIGNED_NODEFAULT("x-nv-gpudirect-clique", VFIOPCIDevice, 3395 nv_gpudirect_clique, 3396 qdev_prop_nv_gpudirect_clique, uint8_t), 3397 DEFINE_PROP_OFF_AUTO_PCIBAR("x-msix-relocation", VFIOPCIDevice, msix_relo, 3398 OFF_AUTO_PCIBAR_OFF), 3399 #ifdef CONFIG_IOMMUFD 3400 DEFINE_PROP_LINK("iommufd", VFIOPCIDevice, vbasedev.iommufd, 3401 TYPE_IOMMUFD_BACKEND, IOMMUFDBackend *), 3402 #endif 3403 DEFINE_PROP_BOOL("skip-vsc-check", VFIOPCIDevice, skip_vsc_check, true), 3404 }; 3405 3406 #ifdef CONFIG_IOMMUFD 3407 static void vfio_pci_set_fd(Object *obj, const char *str, Error **errp) 3408 { 3409 vfio_device_set_fd(&VFIO_PCI(obj)->vbasedev, str, errp); 3410 } 3411 #endif 3412 3413 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) 3414 { 3415 DeviceClass *dc = DEVICE_CLASS(klass); 3416 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); 3417 3418 device_class_set_legacy_reset(dc, vfio_pci_reset); 3419 device_class_set_props(dc, vfio_pci_dev_properties); 3420 #ifdef CONFIG_IOMMUFD 3421 object_class_property_add_str(klass, "fd", NULL, vfio_pci_set_fd); 3422 #endif 3423 dc->desc = "VFIO-based PCI device assignment"; 3424 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 3425 pdc->realize = vfio_realize; 3426 pdc->exit = vfio_exitfn; 3427 pdc->config_read = vfio_pci_read_config; 3428 pdc->config_write = vfio_pci_write_config; 3429 3430 object_class_property_set_description(klass, /* 1.3 */ 3431 "host", 3432 "Host PCI address [domain:]<bus:slot.function> of assigned device"); 3433 object_class_property_set_description(klass, /* 1.3 */ 3434 "x-intx-mmap-timeout-ms", 3435 "When EOI is not provided by KVM/QEMU, wait time " 3436 "(milliseconds) to re-enable device direct access " 3437 "after INTx (DEBUG)"); 3438 object_class_property_set_description(klass, /* 1.5 */ 3439 "x-vga", 3440 "Expose VGA address spaces for device"); 3441 object_class_property_set_description(klass, /* 2.3 */ 3442 "x-req", 3443 "Disable device request notification support (DEBUG)"); 3444 object_class_property_set_description(klass, /* 2.4 and 2.5 */ 3445 "x-no-mmap", 3446 "Disable MMAP for device. Allows to trace MMIO " 3447 "accesses (DEBUG)"); 3448 object_class_property_set_description(klass, /* 2.5 */ 3449 "x-no-kvm-intx", 3450 "Disable direct VFIO->KVM INTx injection. Allows to " 3451 "trace INTx interrupts (DEBUG)"); 3452 object_class_property_set_description(klass, /* 2.5 */ 3453 "x-no-kvm-msi", 3454 "Disable direct VFIO->KVM MSI injection. Allows to " 3455 "trace MSI interrupts (DEBUG)"); 3456 object_class_property_set_description(klass, /* 2.5 */ 3457 "x-no-kvm-msix", 3458 "Disable direct VFIO->KVM MSIx injection. Allows to " 3459 "trace MSIx interrupts (DEBUG)"); 3460 object_class_property_set_description(klass, /* 2.5 */ 3461 "x-pci-vendor-id", 3462 "Override PCI Vendor ID with provided value (DEBUG)"); 3463 object_class_property_set_description(klass, /* 2.5 */ 3464 "x-pci-device-id", 3465 "Override PCI device ID with provided value (DEBUG)"); 3466 object_class_property_set_description(klass, /* 2.5 */ 3467 "x-pci-sub-vendor-id", 3468 "Override PCI Subsystem Vendor ID with provided value " 3469 "(DEBUG)"); 3470 object_class_property_set_description(klass, /* 2.5 */ 3471 "x-pci-sub-device-id", 3472 "Override PCI Subsystem Device ID with provided value " 3473 "(DEBUG)"); 3474 object_class_property_set_description(klass, /* 2.6 */ 3475 "sysfsdev", 3476 "Host sysfs path of assigned device"); 3477 object_class_property_set_description(klass, /* 2.7 */ 3478 "x-igd-opregion", 3479 "Expose host IGD OpRegion to guest"); 3480 object_class_property_set_description(klass, /* 2.7 (See c4c45e943e51) */ 3481 "x-igd-gms", 3482 "Override IGD data stolen memory size (32MiB units)"); 3483 object_class_property_set_description(klass, /* 2.11 */ 3484 "x-nv-gpudirect-clique", 3485 "Add NVIDIA GPUDirect capability indicating P2P DMA " 3486 "clique for device [0-15]"); 3487 object_class_property_set_description(klass, /* 2.12 */ 3488 "x-no-geforce-quirks", 3489 "Disable GeForce quirks (for NVIDIA Quadro/GRID/Tesla). " 3490 "Improves performance"); 3491 object_class_property_set_description(klass, /* 2.12 */ 3492 "display", 3493 "Enable display support for device, ex. vGPU"); 3494 object_class_property_set_description(klass, /* 2.12 */ 3495 "x-msix-relocation", 3496 "Specify MSI-X MMIO relocation to the end of specified " 3497 "existing BAR or new BAR to avoid virtualization overhead " 3498 "due to adjacent device registers"); 3499 object_class_property_set_description(klass, /* 3.0 */ 3500 "x-no-kvm-ioeventfd", 3501 "Disable registration of ioeventfds with KVM (DEBUG)"); 3502 object_class_property_set_description(klass, /* 3.0 */ 3503 "x-no-vfio-ioeventfd", 3504 "Disable linking of KVM ioeventfds to VFIO ioeventfds " 3505 "(DEBUG)"); 3506 object_class_property_set_description(klass, /* 3.1 */ 3507 "x-balloon-allowed", 3508 "Override allowing ballooning with device (DEBUG, DANGER)"); 3509 object_class_property_set_description(klass, /* 3.2 */ 3510 "xres", 3511 "Set X display resolution the vGPU should use"); 3512 object_class_property_set_description(klass, /* 3.2 */ 3513 "yres", 3514 "Set Y display resolution the vGPU should use"); 3515 object_class_property_set_description(klass, /* 5.2 */ 3516 "x-pre-copy-dirty-page-tracking", 3517 "Disable dirty pages tracking during iterative phase " 3518 "(DEBUG)"); 3519 object_class_property_set_description(klass, /* 5.2, 8.0 non-experimetal */ 3520 "enable-migration", 3521 "Enale device migration. Also requires a host VFIO PCI " 3522 "variant or mdev driver with migration support enabled"); 3523 object_class_property_set_description(klass, /* 8.1 */ 3524 "vf-token", 3525 "Specify UUID VF token. Required for VF when PF is owned " 3526 "by another VFIO driver"); 3527 #ifdef CONFIG_IOMMUFD 3528 object_class_property_set_description(klass, /* 9.0 */ 3529 "iommufd", 3530 "Set host IOMMUFD backend device"); 3531 #endif 3532 object_class_property_set_description(klass, /* 9.1 */ 3533 "x-device-dirty-page-tracking", 3534 "Disable device dirty page tracking and use " 3535 "container-based dirty page tracking"); 3536 object_class_property_set_description(klass, /* 9.1 */ 3537 "migration-events", 3538 "Emit VFIO migration QAPI event when a VFIO device " 3539 "changes its migration state. For management applications"); 3540 object_class_property_set_description(klass, /* 9.1 */ 3541 "skip-vsc-check", 3542 "Skip config space check for Vendor Specific Capability. " 3543 "Setting to false will enforce strict checking of VSC content " 3544 "(DEBUG)"); 3545 object_class_property_set_description(klass, /* 10.0 */ 3546 "x-migration-multifd-transfer", 3547 "Transfer this device state via " 3548 "multifd channels when live migrating it"); 3549 } 3550 3551 static const TypeInfo vfio_pci_dev_info = { 3552 .name = TYPE_VFIO_PCI, 3553 .parent = TYPE_PCI_DEVICE, 3554 .instance_size = sizeof(VFIOPCIDevice), 3555 .class_init = vfio_pci_dev_class_init, 3556 .instance_init = vfio_instance_init, 3557 .instance_finalize = vfio_instance_finalize, 3558 .interfaces = (InterfaceInfo[]) { 3559 { INTERFACE_PCIE_DEVICE }, 3560 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 3561 { } 3562 }, 3563 }; 3564 3565 static const Property vfio_pci_dev_nohotplug_properties[] = { 3566 DEFINE_PROP_BOOL("ramfb", VFIOPCIDevice, enable_ramfb, false), 3567 DEFINE_PROP_ON_OFF_AUTO("x-ramfb-migrate", VFIOPCIDevice, ramfb_migrate, 3568 ON_OFF_AUTO_AUTO), 3569 }; 3570 3571 static void vfio_pci_nohotplug_dev_class_init(ObjectClass *klass, void *data) 3572 { 3573 DeviceClass *dc = DEVICE_CLASS(klass); 3574 3575 device_class_set_props(dc, vfio_pci_dev_nohotplug_properties); 3576 dc->hotpluggable = false; 3577 3578 object_class_property_set_description(klass, /* 3.1 */ 3579 "ramfb", 3580 "Enable ramfb to provide pre-boot graphics for devices " 3581 "enabling display option"); 3582 object_class_property_set_description(klass, /* 8.2 */ 3583 "x-ramfb-migrate", 3584 "Override default migration support for ramfb support " 3585 "(DEBUG)"); 3586 } 3587 3588 static const TypeInfo vfio_pci_nohotplug_dev_info = { 3589 .name = TYPE_VFIO_PCI_NOHOTPLUG, 3590 .parent = TYPE_VFIO_PCI, 3591 .instance_size = sizeof(VFIOPCIDevice), 3592 .class_init = vfio_pci_nohotplug_dev_class_init, 3593 }; 3594 3595 static void register_vfio_pci_dev_type(void) 3596 { 3597 /* 3598 * Ordinary ON_OFF_AUTO property isn't runtime-mutable, but source VM can 3599 * run for a long time before being migrated so it is desirable to have a 3600 * fallback mechanism to the old way of transferring VFIO device state if 3601 * it turns to be necessary. 3602 * The following makes this type of property have the same mutability level 3603 * as ordinary migration parameters. 3604 */ 3605 vfio_pci_migration_multifd_transfer_prop = qdev_prop_on_off_auto; 3606 vfio_pci_migration_multifd_transfer_prop.realized_set_allowed = true; 3607 3608 type_register_static(&vfio_pci_dev_info); 3609 type_register_static(&vfio_pci_nohotplug_dev_info); 3610 } 3611 3612 type_init(register_vfio_pci_dev_type) 3613