1 /* 2 * vfio based device assignment support 3 * 4 * Copyright Red Hat, Inc. 2012 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Based on qemu-kvm device-assignment: 13 * Adapted for KVM by Qumranet. 14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) 15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) 16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) 17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) 18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) 19 */ 20 21 #include <dirent.h> 22 #include <linux/vfio.h> 23 #include <sys/ioctl.h> 24 #include <sys/mman.h> 25 #include <sys/stat.h> 26 #include <sys/types.h> 27 #include <unistd.h> 28 29 #include "config.h" 30 #include "exec/address-spaces.h" 31 #include "exec/memory.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci.h" 35 #include "qemu-common.h" 36 #include "qemu/error-report.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/queue.h" 39 #include "qemu/range.h" 40 #include "sysemu/kvm.h" 41 #include "sysemu/sysemu.h" 42 #include "trace.h" 43 #include "hw/vfio/vfio.h" 44 #include "hw/vfio/vfio-common.h" 45 46 struct VFIOPCIDevice; 47 48 typedef struct VFIOQuirk { 49 MemoryRegion mem; 50 struct VFIOPCIDevice *vdev; 51 QLIST_ENTRY(VFIOQuirk) next; 52 struct { 53 uint32_t base_offset:TARGET_PAGE_BITS; 54 uint32_t address_offset:TARGET_PAGE_BITS; 55 uint32_t address_size:3; 56 uint32_t bar:3; 57 58 uint32_t address_match; 59 uint32_t address_mask; 60 61 uint32_t address_val:TARGET_PAGE_BITS; 62 uint32_t data_offset:TARGET_PAGE_BITS; 63 uint32_t data_size:3; 64 65 uint8_t flags; 66 uint8_t read_flags; 67 uint8_t write_flags; 68 } data; 69 } VFIOQuirk; 70 71 typedef struct VFIOBAR { 72 VFIORegion region; 73 bool ioport; 74 bool mem64; 75 QLIST_HEAD(, VFIOQuirk) quirks; 76 } VFIOBAR; 77 78 typedef struct VFIOVGARegion { 79 MemoryRegion mem; 80 off_t offset; 81 int nr; 82 QLIST_HEAD(, VFIOQuirk) quirks; 83 } VFIOVGARegion; 84 85 typedef struct VFIOVGA { 86 off_t fd_offset; 87 int fd; 88 VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS]; 89 } VFIOVGA; 90 91 typedef struct VFIOINTx { 92 bool pending; /* interrupt pending */ 93 bool kvm_accel; /* set when QEMU bypass through KVM enabled */ 94 uint8_t pin; /* which pin to pull for qemu_set_irq */ 95 EventNotifier interrupt; /* eventfd triggered on interrupt */ 96 EventNotifier unmask; /* eventfd for unmask on QEMU bypass */ 97 PCIINTxRoute route; /* routing info for QEMU bypass */ 98 uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */ 99 QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */ 100 } VFIOINTx; 101 102 typedef struct VFIOMSIVector { 103 /* 104 * Two interrupt paths are configured per vector. The first, is only used 105 * for interrupts injected via QEMU. This is typically the non-accel path, 106 * but may also be used when we want QEMU to handle masking and pending 107 * bits. The KVM path bypasses QEMU and is therefore higher performance, 108 * but requires masking at the device. virq is used to track the MSI route 109 * through KVM, thus kvm_interrupt is only available when virq is set to a 110 * valid (>= 0) value. 111 */ 112 EventNotifier interrupt; 113 EventNotifier kvm_interrupt; 114 struct VFIOPCIDevice *vdev; /* back pointer to device */ 115 int virq; 116 bool use; 117 } VFIOMSIVector; 118 119 enum { 120 VFIO_INT_NONE = 0, 121 VFIO_INT_INTx = 1, 122 VFIO_INT_MSI = 2, 123 VFIO_INT_MSIX = 3, 124 }; 125 126 /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */ 127 typedef struct VFIOMSIXInfo { 128 uint8_t table_bar; 129 uint8_t pba_bar; 130 uint16_t entries; 131 uint32_t table_offset; 132 uint32_t pba_offset; 133 MemoryRegion mmap_mem; 134 void *mmap; 135 } VFIOMSIXInfo; 136 137 typedef struct VFIOPCIDevice { 138 PCIDevice pdev; 139 VFIODevice vbasedev; 140 VFIOINTx intx; 141 unsigned int config_size; 142 uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */ 143 off_t config_offset; /* Offset of config space region within device fd */ 144 unsigned int rom_size; 145 off_t rom_offset; /* Offset of ROM region within device fd */ 146 void *rom; 147 int msi_cap_size; 148 VFIOMSIVector *msi_vectors; 149 VFIOMSIXInfo *msix; 150 int nr_vectors; /* Number of MSI/MSIX vectors currently in use */ 151 int interrupt; /* Current interrupt type */ 152 VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */ 153 VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */ 154 PCIHostDeviceAddress host; 155 EventNotifier err_notifier; 156 EventNotifier req_notifier; 157 int (*resetfn)(struct VFIOPCIDevice *); 158 uint32_t features; 159 #define VFIO_FEATURE_ENABLE_VGA_BIT 0 160 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT) 161 #define VFIO_FEATURE_ENABLE_REQ_BIT 1 162 #define VFIO_FEATURE_ENABLE_REQ (1 << VFIO_FEATURE_ENABLE_REQ_BIT) 163 int32_t bootindex; 164 uint8_t pm_cap; 165 bool has_vga; 166 bool pci_aer; 167 bool req_enabled; 168 bool has_flr; 169 bool has_pm_reset; 170 bool rom_read_failed; 171 } VFIOPCIDevice; 172 173 typedef struct VFIORomBlacklistEntry { 174 uint16_t vendor_id; 175 uint16_t device_id; 176 } VFIORomBlacklistEntry; 177 178 /* 179 * List of device ids/vendor ids for which to disable 180 * option rom loading. This avoids the guest hangs during rom 181 * execution as noticed with the BCM 57810 card for lack of a 182 * more better way to handle such issues. 183 * The user can still override by specifying a romfile or 184 * rombar=1. 185 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 186 * for an analysis of the 57810 card hang. When adding 187 * a new vendor id/device id combination below, please also add 188 * your card/environment details and information that could 189 * help in debugging to the bug tracking this issue 190 */ 191 static const VFIORomBlacklistEntry romblacklist[] = { 192 /* Broadcom BCM 57810 */ 193 { 0x14e4, 0x168e } 194 }; 195 196 #define MSIX_CAP_LENGTH 12 197 198 static void vfio_disable_interrupts(VFIOPCIDevice *vdev); 199 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len); 200 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, 201 uint32_t val, int len); 202 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled); 203 204 /* 205 * Disabling BAR mmaping can be slow, but toggling it around INTx can 206 * also be a huge overhead. We try to get the best of both worlds by 207 * waiting until an interrupt to disable mmaps (subsequent transitions 208 * to the same state are effectively no overhead). If the interrupt has 209 * been serviced and the time gap is long enough, we re-enable mmaps for 210 * performance. This works well for things like graphics cards, which 211 * may not use their interrupt at all and are penalized to an unusable 212 * level by read/write BAR traps. Other devices, like NICs, have more 213 * regular interrupts and see much better latency by staying in non-mmap 214 * mode. We therefore set the default mmap_timeout such that a ping 215 * is just enough to keep the mmap disabled. Users can experiment with 216 * other options with the x-intx-mmap-timeout-ms parameter (a value of 217 * zero disables the timer). 218 */ 219 static void vfio_intx_mmap_enable(void *opaque) 220 { 221 VFIOPCIDevice *vdev = opaque; 222 223 if (vdev->intx.pending) { 224 timer_mod(vdev->intx.mmap_timer, 225 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); 226 return; 227 } 228 229 vfio_mmap_set_enabled(vdev, true); 230 } 231 232 static void vfio_intx_interrupt(void *opaque) 233 { 234 VFIOPCIDevice *vdev = opaque; 235 236 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { 237 return; 238 } 239 240 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin); 241 242 vdev->intx.pending = true; 243 pci_irq_assert(&vdev->pdev); 244 vfio_mmap_set_enabled(vdev, false); 245 if (vdev->intx.mmap_timeout) { 246 timer_mod(vdev->intx.mmap_timer, 247 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); 248 } 249 } 250 251 static void vfio_eoi(VFIODevice *vbasedev) 252 { 253 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 254 255 if (!vdev->intx.pending) { 256 return; 257 } 258 259 trace_vfio_eoi(vbasedev->name); 260 261 vdev->intx.pending = false; 262 pci_irq_deassert(&vdev->pdev); 263 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 264 } 265 266 static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev) 267 { 268 #ifdef CONFIG_KVM 269 struct kvm_irqfd irqfd = { 270 .fd = event_notifier_get_fd(&vdev->intx.interrupt), 271 .gsi = vdev->intx.route.irq, 272 .flags = KVM_IRQFD_FLAG_RESAMPLE, 273 }; 274 struct vfio_irq_set *irq_set; 275 int ret, argsz; 276 int32_t *pfd; 277 278 if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() || 279 vdev->intx.route.mode != PCI_INTX_ENABLED || 280 !kvm_resamplefds_enabled()) { 281 return; 282 } 283 284 /* Get to a known interrupt state */ 285 qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev); 286 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 287 vdev->intx.pending = false; 288 pci_irq_deassert(&vdev->pdev); 289 290 /* Get an eventfd for resample/unmask */ 291 if (event_notifier_init(&vdev->intx.unmask, 0)) { 292 error_report("vfio: Error: event_notifier_init failed eoi"); 293 goto fail; 294 } 295 296 /* KVM triggers it, VFIO listens for it */ 297 irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask); 298 299 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { 300 error_report("vfio: Error: Failed to setup resample irqfd: %m"); 301 goto fail_irqfd; 302 } 303 304 argsz = sizeof(*irq_set) + sizeof(*pfd); 305 306 irq_set = g_malloc0(argsz); 307 irq_set->argsz = argsz; 308 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK; 309 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; 310 irq_set->start = 0; 311 irq_set->count = 1; 312 pfd = (int32_t *)&irq_set->data; 313 314 *pfd = irqfd.resamplefd; 315 316 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 317 g_free(irq_set); 318 if (ret) { 319 error_report("vfio: Error: Failed to setup INTx unmask fd: %m"); 320 goto fail_vfio; 321 } 322 323 /* Let'em rip */ 324 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 325 326 vdev->intx.kvm_accel = true; 327 328 trace_vfio_enable_intx_kvm(vdev->vbasedev.name); 329 330 return; 331 332 fail_vfio: 333 irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN; 334 kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd); 335 fail_irqfd: 336 event_notifier_cleanup(&vdev->intx.unmask); 337 fail: 338 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); 339 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 340 #endif 341 } 342 343 static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev) 344 { 345 #ifdef CONFIG_KVM 346 struct kvm_irqfd irqfd = { 347 .fd = event_notifier_get_fd(&vdev->intx.interrupt), 348 .gsi = vdev->intx.route.irq, 349 .flags = KVM_IRQFD_FLAG_DEASSIGN, 350 }; 351 352 if (!vdev->intx.kvm_accel) { 353 return; 354 } 355 356 /* 357 * Get to a known state, hardware masked, QEMU ready to accept new 358 * interrupts, QEMU IRQ de-asserted. 359 */ 360 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 361 vdev->intx.pending = false; 362 pci_irq_deassert(&vdev->pdev); 363 364 /* Tell KVM to stop listening for an INTx irqfd */ 365 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { 366 error_report("vfio: Error: Failed to disable INTx irqfd: %m"); 367 } 368 369 /* We only need to close the eventfd for VFIO to cleanup the kernel side */ 370 event_notifier_cleanup(&vdev->intx.unmask); 371 372 /* QEMU starts listening for interrupt events. */ 373 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); 374 375 vdev->intx.kvm_accel = false; 376 377 /* If we've missed an event, let it re-fire through QEMU */ 378 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 379 380 trace_vfio_disable_intx_kvm(vdev->vbasedev.name); 381 #endif 382 } 383 384 static void vfio_update_irq(PCIDevice *pdev) 385 { 386 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 387 PCIINTxRoute route; 388 389 if (vdev->interrupt != VFIO_INT_INTx) { 390 return; 391 } 392 393 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); 394 395 if (!pci_intx_route_changed(&vdev->intx.route, &route)) { 396 return; /* Nothing changed */ 397 } 398 399 trace_vfio_update_irq(vdev->vbasedev.name, 400 vdev->intx.route.irq, route.irq); 401 402 vfio_disable_intx_kvm(vdev); 403 404 vdev->intx.route = route; 405 406 if (route.mode != PCI_INTX_ENABLED) { 407 return; 408 } 409 410 vfio_enable_intx_kvm(vdev); 411 412 /* Re-enable the interrupt in cased we missed an EOI */ 413 vfio_eoi(&vdev->vbasedev); 414 } 415 416 static int vfio_enable_intx(VFIOPCIDevice *vdev) 417 { 418 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); 419 int ret, argsz; 420 struct vfio_irq_set *irq_set; 421 int32_t *pfd; 422 423 if (!pin) { 424 return 0; 425 } 426 427 vfio_disable_interrupts(vdev); 428 429 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ 430 pci_config_set_interrupt_pin(vdev->pdev.config, pin); 431 432 #ifdef CONFIG_KVM 433 /* 434 * Only conditional to avoid generating error messages on platforms 435 * where we won't actually use the result anyway. 436 */ 437 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) { 438 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, 439 vdev->intx.pin); 440 } 441 #endif 442 443 ret = event_notifier_init(&vdev->intx.interrupt, 0); 444 if (ret) { 445 error_report("vfio: Error: event_notifier_init failed"); 446 return ret; 447 } 448 449 argsz = sizeof(*irq_set) + sizeof(*pfd); 450 451 irq_set = g_malloc0(argsz); 452 irq_set->argsz = argsz; 453 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; 454 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; 455 irq_set->start = 0; 456 irq_set->count = 1; 457 pfd = (int32_t *)&irq_set->data; 458 459 *pfd = event_notifier_get_fd(&vdev->intx.interrupt); 460 qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev); 461 462 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 463 g_free(irq_set); 464 if (ret) { 465 error_report("vfio: Error: Failed to setup INTx fd: %m"); 466 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 467 event_notifier_cleanup(&vdev->intx.interrupt); 468 return -errno; 469 } 470 471 vfio_enable_intx_kvm(vdev); 472 473 vdev->interrupt = VFIO_INT_INTx; 474 475 trace_vfio_enable_intx(vdev->vbasedev.name); 476 477 return 0; 478 } 479 480 static void vfio_disable_intx(VFIOPCIDevice *vdev) 481 { 482 int fd; 483 484 timer_del(vdev->intx.mmap_timer); 485 vfio_disable_intx_kvm(vdev); 486 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); 487 vdev->intx.pending = false; 488 pci_irq_deassert(&vdev->pdev); 489 vfio_mmap_set_enabled(vdev, true); 490 491 fd = event_notifier_get_fd(&vdev->intx.interrupt); 492 qemu_set_fd_handler(fd, NULL, NULL, vdev); 493 event_notifier_cleanup(&vdev->intx.interrupt); 494 495 vdev->interrupt = VFIO_INT_NONE; 496 497 trace_vfio_disable_intx(vdev->vbasedev.name); 498 } 499 500 /* 501 * MSI/X 502 */ 503 static void vfio_msi_interrupt(void *opaque) 504 { 505 VFIOMSIVector *vector = opaque; 506 VFIOPCIDevice *vdev = vector->vdev; 507 int nr = vector - vdev->msi_vectors; 508 509 if (!event_notifier_test_and_clear(&vector->interrupt)) { 510 return; 511 } 512 513 #ifdef DEBUG_VFIO 514 MSIMessage msg; 515 516 if (vdev->interrupt == VFIO_INT_MSIX) { 517 msg = msix_get_message(&vdev->pdev, nr); 518 } else if (vdev->interrupt == VFIO_INT_MSI) { 519 msg = msi_get_message(&vdev->pdev, nr); 520 } else { 521 abort(); 522 } 523 524 trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data); 525 #endif 526 527 if (vdev->interrupt == VFIO_INT_MSIX) { 528 msix_notify(&vdev->pdev, nr); 529 } else if (vdev->interrupt == VFIO_INT_MSI) { 530 msi_notify(&vdev->pdev, nr); 531 } else { 532 error_report("vfio: MSI interrupt receieved, but not enabled?"); 533 } 534 } 535 536 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix) 537 { 538 struct vfio_irq_set *irq_set; 539 int ret = 0, i, argsz; 540 int32_t *fds; 541 542 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); 543 544 irq_set = g_malloc0(argsz); 545 irq_set->argsz = argsz; 546 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; 547 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; 548 irq_set->start = 0; 549 irq_set->count = vdev->nr_vectors; 550 fds = (int32_t *)&irq_set->data; 551 552 for (i = 0; i < vdev->nr_vectors; i++) { 553 int fd = -1; 554 555 /* 556 * MSI vs MSI-X - The guest has direct access to MSI mask and pending 557 * bits, therefore we always use the KVM signaling path when setup. 558 * MSI-X mask and pending bits are emulated, so we want to use the 559 * KVM signaling path only when configured and unmasked. 560 */ 561 if (vdev->msi_vectors[i].use) { 562 if (vdev->msi_vectors[i].virq < 0 || 563 (msix && msix_is_masked(&vdev->pdev, i))) { 564 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); 565 } else { 566 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); 567 } 568 } 569 570 fds[i] = fd; 571 } 572 573 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 574 575 g_free(irq_set); 576 577 return ret; 578 } 579 580 static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg, 581 bool msix) 582 { 583 int virq; 584 585 if ((msix && !VFIO_ALLOW_KVM_MSIX) || 586 (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) { 587 return; 588 } 589 590 if (event_notifier_init(&vector->kvm_interrupt, 0)) { 591 return; 592 } 593 594 virq = kvm_irqchip_add_msi_route(kvm_state, *msg); 595 if (virq < 0) { 596 event_notifier_cleanup(&vector->kvm_interrupt); 597 return; 598 } 599 600 if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt, 601 NULL, virq) < 0) { 602 kvm_irqchip_release_virq(kvm_state, virq); 603 event_notifier_cleanup(&vector->kvm_interrupt); 604 return; 605 } 606 607 vector->virq = virq; 608 } 609 610 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) 611 { 612 kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt, 613 vector->virq); 614 kvm_irqchip_release_virq(kvm_state, vector->virq); 615 vector->virq = -1; 616 event_notifier_cleanup(&vector->kvm_interrupt); 617 } 618 619 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg) 620 { 621 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg); 622 } 623 624 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, 625 MSIMessage *msg, IOHandler *handler) 626 { 627 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 628 VFIOMSIVector *vector; 629 int ret; 630 631 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr); 632 633 vector = &vdev->msi_vectors[nr]; 634 635 if (!vector->use) { 636 vector->vdev = vdev; 637 vector->virq = -1; 638 if (event_notifier_init(&vector->interrupt, 0)) { 639 error_report("vfio: Error: event_notifier_init failed"); 640 } 641 vector->use = true; 642 msix_vector_use(pdev, nr); 643 } 644 645 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 646 handler, NULL, vector); 647 648 /* 649 * Attempt to enable route through KVM irqchip, 650 * default to userspace handling if unavailable. 651 */ 652 if (vector->virq >= 0) { 653 if (!msg) { 654 vfio_remove_kvm_msi_virq(vector); 655 } else { 656 vfio_update_kvm_msi_virq(vector, *msg); 657 } 658 } else { 659 vfio_add_kvm_msi_virq(vector, msg, true); 660 } 661 662 /* 663 * We don't want to have the host allocate all possible MSI vectors 664 * for a device if they're not in use, so we shutdown and incrementally 665 * increase them as needed. 666 */ 667 if (vdev->nr_vectors < nr + 1) { 668 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); 669 vdev->nr_vectors = nr + 1; 670 ret = vfio_enable_vectors(vdev, true); 671 if (ret) { 672 error_report("vfio: failed to enable vectors, %d", ret); 673 } 674 } else { 675 int argsz; 676 struct vfio_irq_set *irq_set; 677 int32_t *pfd; 678 679 argsz = sizeof(*irq_set) + sizeof(*pfd); 680 681 irq_set = g_malloc0(argsz); 682 irq_set->argsz = argsz; 683 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 684 VFIO_IRQ_SET_ACTION_TRIGGER; 685 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; 686 irq_set->start = nr; 687 irq_set->count = 1; 688 pfd = (int32_t *)&irq_set->data; 689 690 if (vector->virq >= 0) { 691 *pfd = event_notifier_get_fd(&vector->kvm_interrupt); 692 } else { 693 *pfd = event_notifier_get_fd(&vector->interrupt); 694 } 695 696 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 697 g_free(irq_set); 698 if (ret) { 699 error_report("vfio: failed to modify vector, %d", ret); 700 } 701 } 702 703 return 0; 704 } 705 706 static int vfio_msix_vector_use(PCIDevice *pdev, 707 unsigned int nr, MSIMessage msg) 708 { 709 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); 710 } 711 712 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) 713 { 714 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 715 VFIOMSIVector *vector = &vdev->msi_vectors[nr]; 716 717 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr); 718 719 /* 720 * There are still old guests that mask and unmask vectors on every 721 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of 722 * the KVM setup in place, simply switch VFIO to use the non-bypass 723 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X 724 * core will mask the interrupt and set pending bits, allowing it to 725 * be re-asserted on unmask. Nothing to do if already using QEMU mode. 726 */ 727 if (vector->virq >= 0) { 728 int argsz; 729 struct vfio_irq_set *irq_set; 730 int32_t *pfd; 731 732 argsz = sizeof(*irq_set) + sizeof(*pfd); 733 734 irq_set = g_malloc0(argsz); 735 irq_set->argsz = argsz; 736 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 737 VFIO_IRQ_SET_ACTION_TRIGGER; 738 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; 739 irq_set->start = nr; 740 irq_set->count = 1; 741 pfd = (int32_t *)&irq_set->data; 742 743 *pfd = event_notifier_get_fd(&vector->interrupt); 744 745 ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 746 747 g_free(irq_set); 748 } 749 } 750 751 static void vfio_enable_msix(VFIOPCIDevice *vdev) 752 { 753 vfio_disable_interrupts(vdev); 754 755 vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector)); 756 757 vdev->interrupt = VFIO_INT_MSIX; 758 759 /* 760 * Some communication channels between VF & PF or PF & fw rely on the 761 * physical state of the device and expect that enabling MSI-X from the 762 * guest enables the same on the host. When our guest is Linux, the 763 * guest driver call to pci_enable_msix() sets the enabling bit in the 764 * MSI-X capability, but leaves the vector table masked. We therefore 765 * can't rely on a vector_use callback (from request_irq() in the guest) 766 * to switch the physical device into MSI-X mode because that may come a 767 * long time after pci_enable_msix(). This code enables vector 0 with 768 * triggering to userspace, then immediately release the vector, leaving 769 * the physical device with no vectors enabled, but MSI-X enabled, just 770 * like the guest view. 771 */ 772 vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL); 773 vfio_msix_vector_release(&vdev->pdev, 0); 774 775 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, 776 vfio_msix_vector_release, NULL)) { 777 error_report("vfio: msix_set_vector_notifiers failed"); 778 } 779 780 trace_vfio_enable_msix(vdev->vbasedev.name); 781 } 782 783 static void vfio_enable_msi(VFIOPCIDevice *vdev) 784 { 785 int ret, i; 786 787 vfio_disable_interrupts(vdev); 788 789 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); 790 retry: 791 vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector)); 792 793 for (i = 0; i < vdev->nr_vectors; i++) { 794 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 795 MSIMessage msg = msi_get_message(&vdev->pdev, i); 796 797 vector->vdev = vdev; 798 vector->virq = -1; 799 vector->use = true; 800 801 if (event_notifier_init(&vector->interrupt, 0)) { 802 error_report("vfio: Error: event_notifier_init failed"); 803 } 804 805 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 806 vfio_msi_interrupt, NULL, vector); 807 808 /* 809 * Attempt to enable route through KVM irqchip, 810 * default to userspace handling if unavailable. 811 */ 812 vfio_add_kvm_msi_virq(vector, &msg, false); 813 } 814 815 /* Set interrupt type prior to possible interrupts */ 816 vdev->interrupt = VFIO_INT_MSI; 817 818 ret = vfio_enable_vectors(vdev, false); 819 if (ret) { 820 if (ret < 0) { 821 error_report("vfio: Error: Failed to setup MSI fds: %m"); 822 } else if (ret != vdev->nr_vectors) { 823 error_report("vfio: Error: Failed to enable %d " 824 "MSI vectors, retry with %d", vdev->nr_vectors, ret); 825 } 826 827 for (i = 0; i < vdev->nr_vectors; i++) { 828 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 829 if (vector->virq >= 0) { 830 vfio_remove_kvm_msi_virq(vector); 831 } 832 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 833 NULL, NULL, NULL); 834 event_notifier_cleanup(&vector->interrupt); 835 } 836 837 g_free(vdev->msi_vectors); 838 839 if (ret > 0 && ret != vdev->nr_vectors) { 840 vdev->nr_vectors = ret; 841 goto retry; 842 } 843 vdev->nr_vectors = 0; 844 845 /* 846 * Failing to setup MSI doesn't really fall within any specification. 847 * Let's try leaving interrupts disabled and hope the guest figures 848 * out to fall back to INTx for this device. 849 */ 850 error_report("vfio: Error: Failed to enable MSI"); 851 vdev->interrupt = VFIO_INT_NONE; 852 853 return; 854 } 855 856 trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors); 857 } 858 859 static void vfio_disable_msi_common(VFIOPCIDevice *vdev) 860 { 861 int i; 862 863 for (i = 0; i < vdev->nr_vectors; i++) { 864 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 865 if (vdev->msi_vectors[i].use) { 866 if (vector->virq >= 0) { 867 vfio_remove_kvm_msi_virq(vector); 868 } 869 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), 870 NULL, NULL, NULL); 871 event_notifier_cleanup(&vector->interrupt); 872 } 873 } 874 875 g_free(vdev->msi_vectors); 876 vdev->msi_vectors = NULL; 877 vdev->nr_vectors = 0; 878 vdev->interrupt = VFIO_INT_NONE; 879 880 vfio_enable_intx(vdev); 881 } 882 883 static void vfio_disable_msix(VFIOPCIDevice *vdev) 884 { 885 int i; 886 887 msix_unset_vector_notifiers(&vdev->pdev); 888 889 /* 890 * MSI-X will only release vectors if MSI-X is still enabled on the 891 * device, check through the rest and release it ourselves if necessary. 892 */ 893 for (i = 0; i < vdev->nr_vectors; i++) { 894 if (vdev->msi_vectors[i].use) { 895 vfio_msix_vector_release(&vdev->pdev, i); 896 msix_vector_unuse(&vdev->pdev, i); 897 } 898 } 899 900 if (vdev->nr_vectors) { 901 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); 902 } 903 904 vfio_disable_msi_common(vdev); 905 906 trace_vfio_disable_msix(vdev->vbasedev.name); 907 } 908 909 static void vfio_disable_msi(VFIOPCIDevice *vdev) 910 { 911 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX); 912 vfio_disable_msi_common(vdev); 913 914 trace_vfio_disable_msi(vdev->vbasedev.name); 915 } 916 917 static void vfio_update_msi(VFIOPCIDevice *vdev) 918 { 919 int i; 920 921 for (i = 0; i < vdev->nr_vectors; i++) { 922 VFIOMSIVector *vector = &vdev->msi_vectors[i]; 923 MSIMessage msg; 924 925 if (!vector->use || vector->virq < 0) { 926 continue; 927 } 928 929 msg = msi_get_message(&vdev->pdev, i); 930 vfio_update_kvm_msi_virq(vector, msg); 931 } 932 } 933 934 static void vfio_pci_load_rom(VFIOPCIDevice *vdev) 935 { 936 struct vfio_region_info reg_info = { 937 .argsz = sizeof(reg_info), 938 .index = VFIO_PCI_ROM_REGION_INDEX 939 }; 940 uint64_t size; 941 off_t off = 0; 942 size_t bytes; 943 944 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, ®_info)) { 945 error_report("vfio: Error getting ROM info: %m"); 946 return; 947 } 948 949 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size, 950 (unsigned long)reg_info.offset, 951 (unsigned long)reg_info.flags); 952 953 vdev->rom_size = size = reg_info.size; 954 vdev->rom_offset = reg_info.offset; 955 956 if (!vdev->rom_size) { 957 vdev->rom_read_failed = true; 958 error_report("vfio-pci: Cannot read device rom at " 959 "%s", vdev->vbasedev.name); 960 error_printf("Device option ROM contents are probably invalid " 961 "(check dmesg).\nSkip option ROM probe with rombar=0, " 962 "or load from file with romfile=\n"); 963 return; 964 } 965 966 vdev->rom = g_malloc(size); 967 memset(vdev->rom, 0xff, size); 968 969 while (size) { 970 bytes = pread(vdev->vbasedev.fd, vdev->rom + off, 971 size, vdev->rom_offset + off); 972 if (bytes == 0) { 973 break; 974 } else if (bytes > 0) { 975 off += bytes; 976 size -= bytes; 977 } else { 978 if (errno == EINTR || errno == EAGAIN) { 979 continue; 980 } 981 error_report("vfio: Error reading device ROM: %m"); 982 break; 983 } 984 } 985 } 986 987 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) 988 { 989 VFIOPCIDevice *vdev = opaque; 990 union { 991 uint8_t byte; 992 uint16_t word; 993 uint32_t dword; 994 uint64_t qword; 995 } val; 996 uint64_t data = 0; 997 998 /* Load the ROM lazily when the guest tries to read it */ 999 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { 1000 vfio_pci_load_rom(vdev); 1001 } 1002 1003 memcpy(&val, vdev->rom + addr, 1004 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); 1005 1006 switch (size) { 1007 case 1: 1008 data = val.byte; 1009 break; 1010 case 2: 1011 data = le16_to_cpu(val.word); 1012 break; 1013 case 4: 1014 data = le32_to_cpu(val.dword); 1015 break; 1016 default: 1017 hw_error("vfio: unsupported read size, %d bytes\n", size); 1018 break; 1019 } 1020 1021 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data); 1022 1023 return data; 1024 } 1025 1026 static void vfio_rom_write(void *opaque, hwaddr addr, 1027 uint64_t data, unsigned size) 1028 { 1029 } 1030 1031 static const MemoryRegionOps vfio_rom_ops = { 1032 .read = vfio_rom_read, 1033 .write = vfio_rom_write, 1034 .endianness = DEVICE_LITTLE_ENDIAN, 1035 }; 1036 1037 static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 1038 { 1039 PCIDevice *pdev = &vdev->pdev; 1040 uint16_t vendor_id, device_id; 1041 int count = 0; 1042 1043 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); 1044 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); 1045 1046 while (count < ARRAY_SIZE(romblacklist)) { 1047 if (romblacklist[count].vendor_id == vendor_id && 1048 romblacklist[count].device_id == device_id) { 1049 return true; 1050 } 1051 count++; 1052 } 1053 1054 return false; 1055 } 1056 1057 static void vfio_pci_size_rom(VFIOPCIDevice *vdev) 1058 { 1059 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); 1060 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; 1061 DeviceState *dev = DEVICE(vdev); 1062 char name[32]; 1063 int fd = vdev->vbasedev.fd; 1064 1065 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { 1066 /* Since pci handles romfile, just print a message and return */ 1067 if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) { 1068 error_printf("Warning : Device at %04x:%02x:%02x.%x " 1069 "is known to cause system instability issues during " 1070 "option rom execution. " 1071 "Proceeding anyway since user specified romfile\n", 1072 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1073 vdev->host.function); 1074 } 1075 return; 1076 } 1077 1078 /* 1079 * Use the same size ROM BAR as the physical device. The contents 1080 * will get filled in later when the guest tries to read it. 1081 */ 1082 if (pread(fd, &orig, 4, offset) != 4 || 1083 pwrite(fd, &size, 4, offset) != 4 || 1084 pread(fd, &size, 4, offset) != 4 || 1085 pwrite(fd, &orig, 4, offset) != 4) { 1086 error_report("%s(%04x:%02x:%02x.%x) failed: %m", 1087 __func__, vdev->host.domain, vdev->host.bus, 1088 vdev->host.slot, vdev->host.function); 1089 return; 1090 } 1091 1092 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; 1093 1094 if (!size) { 1095 return; 1096 } 1097 1098 if (vfio_blacklist_opt_rom(vdev)) { 1099 if (dev->opts && qemu_opt_get(dev->opts, "rombar")) { 1100 error_printf("Warning : Device at %04x:%02x:%02x.%x " 1101 "is known to cause system instability issues during " 1102 "option rom execution. " 1103 "Proceeding anyway since user specified non zero value for " 1104 "rombar\n", 1105 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1106 vdev->host.function); 1107 } else { 1108 error_printf("Warning : Rom loading for device at " 1109 "%04x:%02x:%02x.%x has been disabled due to " 1110 "system instability issues. " 1111 "Specify rombar=1 or romfile to force\n", 1112 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1113 vdev->host.function); 1114 return; 1115 } 1116 } 1117 1118 trace_vfio_pci_size_rom(vdev->vbasedev.name, size); 1119 1120 snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom", 1121 vdev->host.domain, vdev->host.bus, vdev->host.slot, 1122 vdev->host.function); 1123 1124 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), 1125 &vfio_rom_ops, vdev, name, size); 1126 1127 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, 1128 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); 1129 1130 vdev->pdev.has_rom = true; 1131 vdev->rom_read_failed = false; 1132 } 1133 1134 static void vfio_vga_write(void *opaque, hwaddr addr, 1135 uint64_t data, unsigned size) 1136 { 1137 VFIOVGARegion *region = opaque; 1138 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); 1139 union { 1140 uint8_t byte; 1141 uint16_t word; 1142 uint32_t dword; 1143 uint64_t qword; 1144 } buf; 1145 off_t offset = vga->fd_offset + region->offset + addr; 1146 1147 switch (size) { 1148 case 1: 1149 buf.byte = data; 1150 break; 1151 case 2: 1152 buf.word = cpu_to_le16(data); 1153 break; 1154 case 4: 1155 buf.dword = cpu_to_le32(data); 1156 break; 1157 default: 1158 hw_error("vfio: unsupported write size, %d bytes", size); 1159 break; 1160 } 1161 1162 if (pwrite(vga->fd, &buf, size, offset) != size) { 1163 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", 1164 __func__, region->offset + addr, data, size); 1165 } 1166 1167 trace_vfio_vga_write(region->offset + addr, data, size); 1168 } 1169 1170 static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) 1171 { 1172 VFIOVGARegion *region = opaque; 1173 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); 1174 union { 1175 uint8_t byte; 1176 uint16_t word; 1177 uint32_t dword; 1178 uint64_t qword; 1179 } buf; 1180 uint64_t data = 0; 1181 off_t offset = vga->fd_offset + region->offset + addr; 1182 1183 if (pread(vga->fd, &buf, size, offset) != size) { 1184 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", 1185 __func__, region->offset + addr, size); 1186 return (uint64_t)-1; 1187 } 1188 1189 switch (size) { 1190 case 1: 1191 data = buf.byte; 1192 break; 1193 case 2: 1194 data = le16_to_cpu(buf.word); 1195 break; 1196 case 4: 1197 data = le32_to_cpu(buf.dword); 1198 break; 1199 default: 1200 hw_error("vfio: unsupported read size, %d bytes", size); 1201 break; 1202 } 1203 1204 trace_vfio_vga_read(region->offset + addr, size, data); 1205 1206 return data; 1207 } 1208 1209 static const MemoryRegionOps vfio_vga_ops = { 1210 .read = vfio_vga_read, 1211 .write = vfio_vga_write, 1212 .endianness = DEVICE_LITTLE_ENDIAN, 1213 }; 1214 1215 /* 1216 * Device specific quirks 1217 */ 1218 1219 /* Is range1 fully contained within range2? */ 1220 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 1221 uint64_t first2, uint64_t len2) { 1222 return (first1 >= first2 && first1 + len1 <= first2 + len2); 1223 } 1224 1225 static bool vfio_flags_enabled(uint8_t flags, uint8_t mask) 1226 { 1227 return (mask && (flags & mask) == mask); 1228 } 1229 1230 static uint64_t vfio_generic_window_quirk_read(void *opaque, 1231 hwaddr addr, unsigned size) 1232 { 1233 VFIOQuirk *quirk = opaque; 1234 VFIOPCIDevice *vdev = quirk->vdev; 1235 uint64_t data; 1236 1237 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && 1238 ranges_overlap(addr, size, 1239 quirk->data.data_offset, quirk->data.data_size)) { 1240 hwaddr offset = addr - quirk->data.data_offset; 1241 1242 if (!vfio_range_contained(addr, size, quirk->data.data_offset, 1243 quirk->data.data_size)) { 1244 hw_error("%s: window data read not fully contained: %s", 1245 __func__, memory_region_name(&quirk->mem)); 1246 } 1247 1248 data = vfio_pci_read_config(&vdev->pdev, 1249 quirk->data.address_val + offset, size); 1250 1251 trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem), 1252 vdev->vbasedev.name, 1253 quirk->data.bar, 1254 addr, size, data); 1255 } else { 1256 data = vfio_region_read(&vdev->bars[quirk->data.bar].region, 1257 addr + quirk->data.base_offset, size); 1258 } 1259 1260 return data; 1261 } 1262 1263 static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr, 1264 uint64_t data, unsigned size) 1265 { 1266 VFIOQuirk *quirk = opaque; 1267 VFIOPCIDevice *vdev = quirk->vdev; 1268 1269 if (ranges_overlap(addr, size, 1270 quirk->data.address_offset, quirk->data.address_size)) { 1271 1272 if (addr != quirk->data.address_offset) { 1273 hw_error("%s: offset write into address window: %s", 1274 __func__, memory_region_name(&quirk->mem)); 1275 } 1276 1277 if ((data & ~quirk->data.address_mask) == quirk->data.address_match) { 1278 quirk->data.flags |= quirk->data.write_flags | 1279 quirk->data.read_flags; 1280 quirk->data.address_val = data & quirk->data.address_mask; 1281 } else { 1282 quirk->data.flags &= ~(quirk->data.write_flags | 1283 quirk->data.read_flags); 1284 } 1285 } 1286 1287 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && 1288 ranges_overlap(addr, size, 1289 quirk->data.data_offset, quirk->data.data_size)) { 1290 hwaddr offset = addr - quirk->data.data_offset; 1291 1292 if (!vfio_range_contained(addr, size, quirk->data.data_offset, 1293 quirk->data.data_size)) { 1294 hw_error("%s: window data write not fully contained: %s", 1295 __func__, memory_region_name(&quirk->mem)); 1296 } 1297 1298 vfio_pci_write_config(&vdev->pdev, 1299 quirk->data.address_val + offset, data, size); 1300 trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem), 1301 vdev->vbasedev.name, 1302 quirk->data.bar, 1303 addr, data, size); 1304 return; 1305 } 1306 1307 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1308 addr + quirk->data.base_offset, data, size); 1309 } 1310 1311 static const MemoryRegionOps vfio_generic_window_quirk = { 1312 .read = vfio_generic_window_quirk_read, 1313 .write = vfio_generic_window_quirk_write, 1314 .endianness = DEVICE_LITTLE_ENDIAN, 1315 }; 1316 1317 static uint64_t vfio_generic_quirk_read(void *opaque, 1318 hwaddr addr, unsigned size) 1319 { 1320 VFIOQuirk *quirk = opaque; 1321 VFIOPCIDevice *vdev = quirk->vdev; 1322 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1323 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; 1324 uint64_t data; 1325 1326 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && 1327 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { 1328 if (!vfio_range_contained(addr, size, offset, 1329 quirk->data.address_mask + 1)) { 1330 hw_error("%s: read not fully contained: %s", 1331 __func__, memory_region_name(&quirk->mem)); 1332 } 1333 1334 data = vfio_pci_read_config(&vdev->pdev, addr - offset, size); 1335 1336 trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem), 1337 vdev->vbasedev.name, quirk->data.bar, 1338 addr + base, size, data); 1339 } else { 1340 data = vfio_region_read(&vdev->bars[quirk->data.bar].region, 1341 addr + base, size); 1342 } 1343 1344 return data; 1345 } 1346 1347 static void vfio_generic_quirk_write(void *opaque, hwaddr addr, 1348 uint64_t data, unsigned size) 1349 { 1350 VFIOQuirk *quirk = opaque; 1351 VFIOPCIDevice *vdev = quirk->vdev; 1352 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1353 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; 1354 1355 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && 1356 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { 1357 if (!vfio_range_contained(addr, size, offset, 1358 quirk->data.address_mask + 1)) { 1359 hw_error("%s: write not fully contained: %s", 1360 __func__, memory_region_name(&quirk->mem)); 1361 } 1362 1363 vfio_pci_write_config(&vdev->pdev, addr - offset, data, size); 1364 1365 trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem), 1366 vdev->vbasedev.name, quirk->data.bar, 1367 addr + base, data, size); 1368 } else { 1369 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1370 addr + base, data, size); 1371 } 1372 } 1373 1374 static const MemoryRegionOps vfio_generic_quirk = { 1375 .read = vfio_generic_quirk_read, 1376 .write = vfio_generic_quirk_write, 1377 .endianness = DEVICE_LITTLE_ENDIAN, 1378 }; 1379 1380 #define PCI_VENDOR_ID_ATI 0x1002 1381 1382 /* 1383 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 1384 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 1385 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 1386 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 1387 * I/O port BAR address. Originally this was coded to return the virtual BAR 1388 * address only if the physical register read returns the actual BAR address, 1389 * but users have reported greater success if we return the virtual address 1390 * unconditionally. 1391 */ 1392 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 1393 hwaddr addr, unsigned size) 1394 { 1395 VFIOQuirk *quirk = opaque; 1396 VFIOPCIDevice *vdev = quirk->vdev; 1397 uint64_t data = vfio_pci_read_config(&vdev->pdev, 1398 PCI_BASE_ADDRESS_0 + (4 * 4) + 1, 1399 size); 1400 trace_vfio_ati_3c3_quirk_read(data); 1401 1402 return data; 1403 } 1404 1405 static const MemoryRegionOps vfio_ati_3c3_quirk = { 1406 .read = vfio_ati_3c3_quirk_read, 1407 .endianness = DEVICE_LITTLE_ENDIAN, 1408 }; 1409 1410 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 1411 { 1412 PCIDevice *pdev = &vdev->pdev; 1413 VFIOQuirk *quirk; 1414 1415 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1416 return; 1417 } 1418 1419 /* 1420 * As long as the BAR is >= 256 bytes it will be aligned such that the 1421 * lower byte is always zero. Filter out anything else, if it exists. 1422 */ 1423 if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 1424 return; 1425 } 1426 1427 quirk = g_malloc0(sizeof(*quirk)); 1428 quirk->vdev = vdev; 1429 1430 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk, 1431 "vfio-ati-3c3-quirk", 1); 1432 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 1433 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem); 1434 1435 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, 1436 quirk, next); 1437 1438 trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name); 1439 } 1440 1441 /* 1442 * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI 1443 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 1444 * the MMIO space directly, but a window to this space is provided through 1445 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 1446 * data register. When the address is programmed to a range of 0x4000-0x4fff 1447 * PCI configuration space is available. Experimentation seems to indicate 1448 * that only read-only access is provided, but we drop writes when the window 1449 * is enabled to config space nonetheless. 1450 */ 1451 static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr) 1452 { 1453 PCIDevice *pdev = &vdev->pdev; 1454 VFIOQuirk *quirk; 1455 1456 if (!vdev->has_vga || nr != 4 || 1457 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1458 return; 1459 } 1460 1461 quirk = g_malloc0(sizeof(*quirk)); 1462 quirk->vdev = vdev; 1463 quirk->data.address_size = 4; 1464 quirk->data.data_offset = 4; 1465 quirk->data.data_size = 4; 1466 quirk->data.address_match = 0x4000; 1467 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1468 quirk->data.bar = nr; 1469 quirk->data.read_flags = quirk->data.write_flags = 1; 1470 1471 memory_region_init_io(&quirk->mem, OBJECT(vdev), 1472 &vfio_generic_window_quirk, quirk, 1473 "vfio-ati-bar4-window-quirk", 8); 1474 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1475 quirk->data.base_offset, &quirk->mem, 1); 1476 1477 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1478 1479 trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name); 1480 } 1481 1482 #define PCI_VENDOR_ID_REALTEK 0x10ec 1483 1484 /* 1485 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 1486 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 1487 * register. According to the Linux r8169 driver, the MSI-X table is addressed 1488 * when the "type" portion of the address register is set to 0x1. This appears 1489 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 1490 * "address latched" indicator. Bits 12:15 are a mask field, which we can 1491 * ignore because the MSI-X table should always be accessed as a dword (full 1492 * mask). Bits 0:11 is offset within the type. 1493 * 1494 * Example trace: 1495 * 1496 * Read from MSI-X table offset 0 1497 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 1498 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 1499 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 1500 * 1501 * Write 0xfee00000 to MSI-X table offset 0 1502 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 1503 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 1504 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 1505 */ 1506 1507 static uint64_t vfio_rtl8168_window_quirk_read(void *opaque, 1508 hwaddr addr, unsigned size) 1509 { 1510 VFIOQuirk *quirk = opaque; 1511 VFIOPCIDevice *vdev = quirk->vdev; 1512 1513 switch (addr) { 1514 case 4: /* address */ 1515 if (quirk->data.flags) { 1516 trace_vfio_rtl8168_window_quirk_read_fake( 1517 memory_region_name(&quirk->mem), 1518 vdev->vbasedev.name); 1519 1520 return quirk->data.address_match ^ 0x10000000U; 1521 } 1522 break; 1523 case 0: /* data */ 1524 if (quirk->data.flags) { 1525 uint64_t val; 1526 1527 trace_vfio_rtl8168_window_quirk_read_table( 1528 memory_region_name(&quirk->mem), 1529 vdev->vbasedev.name); 1530 1531 if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 1532 return 0; 1533 } 1534 1535 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, 1536 (hwaddr)(quirk->data.address_match 1537 & 0xfff), 1538 &val, 1539 size, 1540 MEMTXATTRS_UNSPECIFIED); 1541 return val; 1542 } 1543 } 1544 1545 trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem), 1546 vdev->vbasedev.name); 1547 1548 return vfio_region_read(&vdev->bars[quirk->data.bar].region, 1549 addr + 0x70, size); 1550 } 1551 1552 static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr, 1553 uint64_t data, unsigned size) 1554 { 1555 VFIOQuirk *quirk = opaque; 1556 VFIOPCIDevice *vdev = quirk->vdev; 1557 1558 switch (addr) { 1559 case 4: /* address */ 1560 if ((data & 0x7fff0000) == 0x10000) { 1561 if (data & 0x10000000U && 1562 vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 1563 1564 trace_vfio_rtl8168_window_quirk_write_table( 1565 memory_region_name(&quirk->mem), 1566 vdev->vbasedev.name); 1567 1568 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 1569 (hwaddr)(quirk->data.address_match 1570 & 0xfff), 1571 data, 1572 size, 1573 MEMTXATTRS_UNSPECIFIED); 1574 } 1575 1576 quirk->data.flags = 1; 1577 quirk->data.address_match = data; 1578 1579 return; 1580 } 1581 quirk->data.flags = 0; 1582 break; 1583 case 0: /* data */ 1584 quirk->data.address_mask = data; 1585 break; 1586 } 1587 1588 trace_vfio_rtl8168_window_quirk_write_direct( 1589 memory_region_name(&quirk->mem), 1590 vdev->vbasedev.name); 1591 1592 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1593 addr + 0x70, data, size); 1594 } 1595 1596 static const MemoryRegionOps vfio_rtl8168_window_quirk = { 1597 .read = vfio_rtl8168_window_quirk_read, 1598 .write = vfio_rtl8168_window_quirk_write, 1599 .valid = { 1600 .min_access_size = 4, 1601 .max_access_size = 4, 1602 .unaligned = false, 1603 }, 1604 .endianness = DEVICE_LITTLE_ENDIAN, 1605 }; 1606 1607 static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr) 1608 { 1609 PCIDevice *pdev = &vdev->pdev; 1610 VFIOQuirk *quirk; 1611 1612 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK || 1613 pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) { 1614 return; 1615 } 1616 1617 quirk = g_malloc0(sizeof(*quirk)); 1618 quirk->vdev = vdev; 1619 quirk->data.bar = nr; 1620 1621 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk, 1622 quirk, "vfio-rtl8168-window-quirk", 8); 1623 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1624 0x70, &quirk->mem, 1); 1625 1626 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1627 1628 trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name); 1629 } 1630 /* 1631 * Trap the BAR2 MMIO window to config space as well. 1632 */ 1633 static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr) 1634 { 1635 PCIDevice *pdev = &vdev->pdev; 1636 VFIOQuirk *quirk; 1637 1638 /* Only enable on newer devices where BAR2 is 64bit */ 1639 if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 || 1640 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { 1641 return; 1642 } 1643 1644 quirk = g_malloc0(sizeof(*quirk)); 1645 quirk->vdev = vdev; 1646 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1647 quirk->data.address_match = 0x4000; 1648 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1649 quirk->data.bar = nr; 1650 1651 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, 1652 "vfio-ati-bar2-4000-quirk", 1653 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1654 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1655 quirk->data.address_match & TARGET_PAGE_MASK, 1656 &quirk->mem, 1); 1657 1658 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1659 1660 trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name); 1661 } 1662 1663 /* 1664 * Older ATI/AMD cards like the X550 have a similar window to that above. 1665 * I/O port BAR1 provides a window to a mirror of PCI config space located 1666 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 1667 * note it for future reference. 1668 */ 1669 1670 #define PCI_VENDOR_ID_NVIDIA 0x10de 1671 1672 /* 1673 * Nvidia has several different methods to get to config space, the 1674 * nouveu project has several of these documented here: 1675 * https://github.com/pathscale/envytools/tree/master/hwdocs 1676 * 1677 * The first quirk is actually not documented in envytools and is found 1678 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 1679 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 1680 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 1681 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 1682 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 1683 * is written for a write to 0x3d4. The BAR0 offset is then accessible 1684 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 1685 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 1686 */ 1687 enum { 1688 NV_3D0_NONE = 0, 1689 NV_3D0_SELECT, 1690 NV_3D0_WINDOW, 1691 NV_3D0_READ, 1692 NV_3D0_WRITE, 1693 }; 1694 1695 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 1696 hwaddr addr, unsigned size) 1697 { 1698 VFIOQuirk *quirk = opaque; 1699 VFIOPCIDevice *vdev = quirk->vdev; 1700 PCIDevice *pdev = &vdev->pdev; 1701 uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], 1702 addr + quirk->data.base_offset, size); 1703 1704 if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) { 1705 data = vfio_pci_read_config(pdev, quirk->data.address_val, size); 1706 trace_vfio_nvidia_3d0_quirk_read(size, data); 1707 } 1708 1709 quirk->data.flags = NV_3D0_NONE; 1710 1711 return data; 1712 } 1713 1714 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 1715 uint64_t data, unsigned size) 1716 { 1717 VFIOQuirk *quirk = opaque; 1718 VFIOPCIDevice *vdev = quirk->vdev; 1719 PCIDevice *pdev = &vdev->pdev; 1720 1721 switch (quirk->data.flags) { 1722 case NV_3D0_NONE: 1723 if (addr == quirk->data.address_offset && data == 0x338) { 1724 quirk->data.flags = NV_3D0_SELECT; 1725 } 1726 break; 1727 case NV_3D0_SELECT: 1728 quirk->data.flags = NV_3D0_NONE; 1729 if (addr == quirk->data.data_offset && 1730 (data & ~quirk->data.address_mask) == quirk->data.address_match) { 1731 quirk->data.flags = NV_3D0_WINDOW; 1732 quirk->data.address_val = data & quirk->data.address_mask; 1733 } 1734 break; 1735 case NV_3D0_WINDOW: 1736 quirk->data.flags = NV_3D0_NONE; 1737 if (addr == quirk->data.address_offset) { 1738 if (data == 0x538) { 1739 quirk->data.flags = NV_3D0_READ; 1740 } else if (data == 0x738) { 1741 quirk->data.flags = NV_3D0_WRITE; 1742 } 1743 } 1744 break; 1745 case NV_3D0_WRITE: 1746 quirk->data.flags = NV_3D0_NONE; 1747 if (addr == quirk->data.data_offset) { 1748 vfio_pci_write_config(pdev, quirk->data.address_val, data, size); 1749 trace_vfio_nvidia_3d0_quirk_write(data, size); 1750 return; 1751 } 1752 break; 1753 } 1754 1755 vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], 1756 addr + quirk->data.base_offset, data, size); 1757 } 1758 1759 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 1760 .read = vfio_nvidia_3d0_quirk_read, 1761 .write = vfio_nvidia_3d0_quirk_write, 1762 .endianness = DEVICE_LITTLE_ENDIAN, 1763 }; 1764 1765 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 1766 { 1767 PCIDevice *pdev = &vdev->pdev; 1768 VFIOQuirk *quirk; 1769 1770 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA || 1771 !vdev->bars[1].region.size) { 1772 return; 1773 } 1774 1775 quirk = g_malloc0(sizeof(*quirk)); 1776 quirk->vdev = vdev; 1777 quirk->data.base_offset = 0x10; 1778 quirk->data.address_offset = 4; 1779 quirk->data.address_size = 2; 1780 quirk->data.address_match = 0x1800; 1781 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; 1782 quirk->data.data_offset = 0; 1783 quirk->data.data_size = 4; 1784 1785 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk, 1786 quirk, "vfio-nvidia-3d0-quirk", 6); 1787 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 1788 quirk->data.base_offset, &quirk->mem); 1789 1790 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, 1791 quirk, next); 1792 1793 trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name); 1794 } 1795 1796 /* 1797 * The second quirk is documented in envytools. The I/O port BAR5 is just 1798 * a set of address/data ports to the MMIO BARs. The BAR we care about is 1799 * again BAR0. This backdoor is apparently a bit newer than the one above 1800 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 1801 * space, including extended space is available at the 4k @0x88000. 1802 */ 1803 enum { 1804 NV_BAR5_ADDRESS = 0x1, 1805 NV_BAR5_ENABLE = 0x2, 1806 NV_BAR5_MASTER = 0x4, 1807 NV_BAR5_VALID = 0x7, 1808 }; 1809 1810 static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr, 1811 uint64_t data, unsigned size) 1812 { 1813 VFIOQuirk *quirk = opaque; 1814 1815 switch (addr) { 1816 case 0x0: 1817 if (data & 0x1) { 1818 quirk->data.flags |= NV_BAR5_MASTER; 1819 } else { 1820 quirk->data.flags &= ~NV_BAR5_MASTER; 1821 } 1822 break; 1823 case 0x4: 1824 if (data & 0x1) { 1825 quirk->data.flags |= NV_BAR5_ENABLE; 1826 } else { 1827 quirk->data.flags &= ~NV_BAR5_ENABLE; 1828 } 1829 break; 1830 case 0x8: 1831 if (quirk->data.flags & NV_BAR5_MASTER) { 1832 if ((data & ~0xfff) == 0x88000) { 1833 quirk->data.flags |= NV_BAR5_ADDRESS; 1834 quirk->data.address_val = data & 0xfff; 1835 } else if ((data & ~0xff) == 0x1800) { 1836 quirk->data.flags |= NV_BAR5_ADDRESS; 1837 quirk->data.address_val = data & 0xff; 1838 } else { 1839 quirk->data.flags &= ~NV_BAR5_ADDRESS; 1840 } 1841 } 1842 break; 1843 } 1844 1845 vfio_generic_window_quirk_write(opaque, addr, data, size); 1846 } 1847 1848 static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = { 1849 .read = vfio_generic_window_quirk_read, 1850 .write = vfio_nvidia_bar5_window_quirk_write, 1851 .valid.min_access_size = 4, 1852 .endianness = DEVICE_LITTLE_ENDIAN, 1853 }; 1854 1855 static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr) 1856 { 1857 PCIDevice *pdev = &vdev->pdev; 1858 VFIOQuirk *quirk; 1859 1860 if (!vdev->has_vga || nr != 5 || 1861 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { 1862 return; 1863 } 1864 1865 quirk = g_malloc0(sizeof(*quirk)); 1866 quirk->vdev = vdev; 1867 quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID; 1868 quirk->data.address_offset = 0x8; 1869 quirk->data.address_size = 0; /* actually 4, but avoids generic code */ 1870 quirk->data.data_offset = 0xc; 1871 quirk->data.data_size = 4; 1872 quirk->data.bar = nr; 1873 1874 memory_region_init_io(&quirk->mem, OBJECT(vdev), 1875 &vfio_nvidia_bar5_window_quirk, quirk, 1876 "vfio-nvidia-bar5-window-quirk", 16); 1877 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1878 0, &quirk->mem, 1); 1879 1880 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1881 1882 trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name); 1883 } 1884 1885 static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr, 1886 uint64_t data, unsigned size) 1887 { 1888 VFIOQuirk *quirk = opaque; 1889 VFIOPCIDevice *vdev = quirk->vdev; 1890 PCIDevice *pdev = &vdev->pdev; 1891 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; 1892 1893 vfio_generic_quirk_write(opaque, addr, data, size); 1894 1895 /* 1896 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 1897 * MSI capability ID register. Both the ID and next register are 1898 * read-only, so we allow writes covering either of those to real hw. 1899 * NB - only fixed for the 0x88000 MMIO window. 1900 */ 1901 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 1902 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 1903 vfio_region_write(&vdev->bars[quirk->data.bar].region, 1904 addr + base, data, size); 1905 } 1906 } 1907 1908 static const MemoryRegionOps vfio_nvidia_88000_quirk = { 1909 .read = vfio_generic_quirk_read, 1910 .write = vfio_nvidia_88000_quirk_write, 1911 .endianness = DEVICE_LITTLE_ENDIAN, 1912 }; 1913 1914 /* 1915 * Finally, BAR0 itself. We want to redirect any accesses to either 1916 * 0x1800 or 0x88000 through the PCI config space access functions. 1917 * 1918 * NB - quirk at a page granularity or else they don't seem to work when 1919 * BARs are mmap'd 1920 * 1921 * Here's offset 0x88000... 1922 */ 1923 static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr) 1924 { 1925 PCIDevice *pdev = &vdev->pdev; 1926 VFIOQuirk *quirk; 1927 uint16_t vendor, class; 1928 1929 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID); 1930 class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 1931 1932 if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA || 1933 class != PCI_CLASS_DISPLAY_VGA) { 1934 return; 1935 } 1936 1937 quirk = g_malloc0(sizeof(*quirk)); 1938 quirk->vdev = vdev; 1939 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1940 quirk->data.address_match = 0x88000; 1941 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; 1942 quirk->data.bar = nr; 1943 1944 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk, 1945 quirk, "vfio-nvidia-bar0-88000-quirk", 1946 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1947 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1948 quirk->data.address_match & TARGET_PAGE_MASK, 1949 &quirk->mem, 1); 1950 1951 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1952 1953 trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name); 1954 } 1955 1956 /* 1957 * And here's the same for BAR0 offset 0x1800... 1958 */ 1959 static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr) 1960 { 1961 PCIDevice *pdev = &vdev->pdev; 1962 VFIOQuirk *quirk; 1963 1964 if (!vdev->has_vga || nr != 0 || 1965 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { 1966 return; 1967 } 1968 1969 /* Log the chipset ID */ 1970 trace_vfio_probe_nvidia_bar0_1800_quirk_id( 1971 (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20) 1972 & 0xff); 1973 1974 quirk = g_malloc0(sizeof(*quirk)); 1975 quirk->vdev = vdev; 1976 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; 1977 quirk->data.address_match = 0x1800; 1978 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; 1979 quirk->data.bar = nr; 1980 1981 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, 1982 "vfio-nvidia-bar0-1800-quirk", 1983 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); 1984 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 1985 quirk->data.address_match & TARGET_PAGE_MASK, 1986 &quirk->mem, 1); 1987 1988 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1989 1990 trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name); 1991 } 1992 1993 /* 1994 * TODO - Some Nvidia devices provide config access to their companion HDA 1995 * device and even to their parent bridge via these config space mirrors. 1996 * Add quirks for those regions. 1997 */ 1998 1999 /* 2000 * Common quirk probe entry points. 2001 */ 2002 static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 2003 { 2004 vfio_vga_probe_ati_3c3_quirk(vdev); 2005 vfio_vga_probe_nvidia_3d0_quirk(vdev); 2006 } 2007 2008 static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev) 2009 { 2010 VFIOQuirk *quirk; 2011 int i; 2012 2013 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { 2014 QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) { 2015 memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem); 2016 } 2017 } 2018 } 2019 2020 static void vfio_vga_quirk_free(VFIOPCIDevice *vdev) 2021 { 2022 int i; 2023 2024 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { 2025 while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) { 2026 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks); 2027 object_unparent(OBJECT(&quirk->mem)); 2028 QLIST_REMOVE(quirk, next); 2029 g_free(quirk); 2030 } 2031 } 2032 } 2033 2034 static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 2035 { 2036 vfio_probe_ati_bar4_window_quirk(vdev, nr); 2037 vfio_probe_ati_bar2_4000_quirk(vdev, nr); 2038 vfio_probe_nvidia_bar5_window_quirk(vdev, nr); 2039 vfio_probe_nvidia_bar0_88000_quirk(vdev, nr); 2040 vfio_probe_nvidia_bar0_1800_quirk(vdev, nr); 2041 vfio_probe_rtl8168_bar2_window_quirk(vdev, nr); 2042 } 2043 2044 static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr) 2045 { 2046 VFIOBAR *bar = &vdev->bars[nr]; 2047 VFIOQuirk *quirk; 2048 2049 QLIST_FOREACH(quirk, &bar->quirks, next) { 2050 memory_region_del_subregion(&bar->region.mem, &quirk->mem); 2051 } 2052 } 2053 2054 static void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr) 2055 { 2056 VFIOBAR *bar = &vdev->bars[nr]; 2057 2058 while (!QLIST_EMPTY(&bar->quirks)) { 2059 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 2060 object_unparent(OBJECT(&quirk->mem)); 2061 QLIST_REMOVE(quirk, next); 2062 g_free(quirk); 2063 } 2064 } 2065 2066 /* 2067 * PCI config space 2068 */ 2069 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) 2070 { 2071 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 2072 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; 2073 2074 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); 2075 emu_bits = le32_to_cpu(emu_bits); 2076 2077 if (emu_bits) { 2078 emu_val = pci_default_read_config(pdev, addr, len); 2079 } 2080 2081 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { 2082 ssize_t ret; 2083 2084 ret = pread(vdev->vbasedev.fd, &phys_val, len, 2085 vdev->config_offset + addr); 2086 if (ret != len) { 2087 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m", 2088 __func__, vdev->host.domain, vdev->host.bus, 2089 vdev->host.slot, vdev->host.function, addr, len); 2090 return -errno; 2091 } 2092 phys_val = le32_to_cpu(phys_val); 2093 } 2094 2095 val = (emu_val & emu_bits) | (phys_val & ~emu_bits); 2096 2097 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val); 2098 2099 return val; 2100 } 2101 2102 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, 2103 uint32_t val, int len) 2104 { 2105 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 2106 uint32_t val_le = cpu_to_le32(val); 2107 2108 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len); 2109 2110 /* Write everything to VFIO, let it filter out what we can't write */ 2111 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr) 2112 != len) { 2113 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m", 2114 __func__, vdev->host.domain, vdev->host.bus, 2115 vdev->host.slot, vdev->host.function, addr, val, len); 2116 } 2117 2118 /* MSI/MSI-X Enabling/Disabling */ 2119 if (pdev->cap_present & QEMU_PCI_CAP_MSI && 2120 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { 2121 int is_enabled, was_enabled = msi_enabled(pdev); 2122 2123 pci_default_write_config(pdev, addr, val, len); 2124 2125 is_enabled = msi_enabled(pdev); 2126 2127 if (!was_enabled) { 2128 if (is_enabled) { 2129 vfio_enable_msi(vdev); 2130 } 2131 } else { 2132 if (!is_enabled) { 2133 vfio_disable_msi(vdev); 2134 } else { 2135 vfio_update_msi(vdev); 2136 } 2137 } 2138 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && 2139 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { 2140 int is_enabled, was_enabled = msix_enabled(pdev); 2141 2142 pci_default_write_config(pdev, addr, val, len); 2143 2144 is_enabled = msix_enabled(pdev); 2145 2146 if (!was_enabled && is_enabled) { 2147 vfio_enable_msix(vdev); 2148 } else if (was_enabled && !is_enabled) { 2149 vfio_disable_msix(vdev); 2150 } 2151 } else { 2152 /* Write everything to QEMU to keep emulated bits correct */ 2153 pci_default_write_config(pdev, addr, val, len); 2154 } 2155 } 2156 2157 /* 2158 * Interrupt setup 2159 */ 2160 static void vfio_disable_interrupts(VFIOPCIDevice *vdev) 2161 { 2162 /* 2163 * More complicated than it looks. Disabling MSI/X transitions the 2164 * device to INTx mode (if supported). Therefore we need to first 2165 * disable MSI/X and then cleanup by disabling INTx. 2166 */ 2167 if (vdev->interrupt == VFIO_INT_MSIX) { 2168 vfio_disable_msix(vdev); 2169 } else if (vdev->interrupt == VFIO_INT_MSI) { 2170 vfio_disable_msi(vdev); 2171 } 2172 2173 if (vdev->interrupt == VFIO_INT_INTx) { 2174 vfio_disable_intx(vdev); 2175 } 2176 } 2177 2178 static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos) 2179 { 2180 uint16_t ctrl; 2181 bool msi_64bit, msi_maskbit; 2182 int ret, entries; 2183 2184 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), 2185 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { 2186 return -errno; 2187 } 2188 ctrl = le16_to_cpu(ctrl); 2189 2190 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); 2191 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); 2192 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); 2193 2194 trace_vfio_setup_msi(vdev->vbasedev.name, pos); 2195 2196 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit); 2197 if (ret < 0) { 2198 if (ret == -ENOTSUP) { 2199 return 0; 2200 } 2201 error_report("vfio: msi_init failed"); 2202 return ret; 2203 } 2204 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); 2205 2206 return 0; 2207 } 2208 2209 /* 2210 * We don't have any control over how pci_add_capability() inserts 2211 * capabilities into the chain. In order to setup MSI-X we need a 2212 * MemoryRegion for the BAR. In order to setup the BAR and not 2213 * attempt to mmap the MSI-X table area, which VFIO won't allow, we 2214 * need to first look for where the MSI-X table lives. So we 2215 * unfortunately split MSI-X setup across two functions. 2216 */ 2217 static int vfio_early_setup_msix(VFIOPCIDevice *vdev) 2218 { 2219 uint8_t pos; 2220 uint16_t ctrl; 2221 uint32_t table, pba; 2222 int fd = vdev->vbasedev.fd; 2223 2224 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); 2225 if (!pos) { 2226 return 0; 2227 } 2228 2229 if (pread(fd, &ctrl, sizeof(ctrl), 2230 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { 2231 return -errno; 2232 } 2233 2234 if (pread(fd, &table, sizeof(table), 2235 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { 2236 return -errno; 2237 } 2238 2239 if (pread(fd, &pba, sizeof(pba), 2240 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { 2241 return -errno; 2242 } 2243 2244 ctrl = le16_to_cpu(ctrl); 2245 table = le32_to_cpu(table); 2246 pba = le32_to_cpu(pba); 2247 2248 vdev->msix = g_malloc0(sizeof(*(vdev->msix))); 2249 vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; 2250 vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; 2251 vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; 2252 vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; 2253 vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 2254 2255 trace_vfio_early_setup_msix(vdev->vbasedev.name, pos, 2256 vdev->msix->table_bar, 2257 vdev->msix->table_offset, 2258 vdev->msix->entries); 2259 2260 return 0; 2261 } 2262 2263 static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos) 2264 { 2265 int ret; 2266 2267 ret = msix_init(&vdev->pdev, vdev->msix->entries, 2268 &vdev->bars[vdev->msix->table_bar].region.mem, 2269 vdev->msix->table_bar, vdev->msix->table_offset, 2270 &vdev->bars[vdev->msix->pba_bar].region.mem, 2271 vdev->msix->pba_bar, vdev->msix->pba_offset, pos); 2272 if (ret < 0) { 2273 if (ret == -ENOTSUP) { 2274 return 0; 2275 } 2276 error_report("vfio: msix_init failed"); 2277 return ret; 2278 } 2279 2280 return 0; 2281 } 2282 2283 static void vfio_teardown_msi(VFIOPCIDevice *vdev) 2284 { 2285 msi_uninit(&vdev->pdev); 2286 2287 if (vdev->msix) { 2288 msix_uninit(&vdev->pdev, 2289 &vdev->bars[vdev->msix->table_bar].region.mem, 2290 &vdev->bars[vdev->msix->pba_bar].region.mem); 2291 } 2292 } 2293 2294 /* 2295 * Resource setup 2296 */ 2297 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled) 2298 { 2299 int i; 2300 2301 for (i = 0; i < PCI_ROM_SLOT; i++) { 2302 VFIOBAR *bar = &vdev->bars[i]; 2303 2304 if (!bar->region.size) { 2305 continue; 2306 } 2307 2308 memory_region_set_enabled(&bar->region.mmap_mem, enabled); 2309 if (vdev->msix && vdev->msix->table_bar == i) { 2310 memory_region_set_enabled(&vdev->msix->mmap_mem, enabled); 2311 } 2312 } 2313 } 2314 2315 static void vfio_unregister_bar(VFIOPCIDevice *vdev, int nr) 2316 { 2317 VFIOBAR *bar = &vdev->bars[nr]; 2318 2319 if (!bar->region.size) { 2320 return; 2321 } 2322 2323 vfio_bar_quirk_teardown(vdev, nr); 2324 2325 memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem); 2326 2327 if (vdev->msix && vdev->msix->table_bar == nr) { 2328 memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem); 2329 } 2330 } 2331 2332 static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr) 2333 { 2334 VFIOBAR *bar = &vdev->bars[nr]; 2335 2336 if (!bar->region.size) { 2337 return; 2338 } 2339 2340 vfio_bar_quirk_free(vdev, nr); 2341 2342 munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem)); 2343 2344 if (vdev->msix && vdev->msix->table_bar == nr) { 2345 munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem)); 2346 } 2347 } 2348 2349 static void vfio_map_bar(VFIOPCIDevice *vdev, int nr) 2350 { 2351 VFIOBAR *bar = &vdev->bars[nr]; 2352 uint64_t size = bar->region.size; 2353 char name[64]; 2354 uint32_t pci_bar; 2355 uint8_t type; 2356 int ret; 2357 2358 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ 2359 if (!size) { 2360 return; 2361 } 2362 2363 snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d", 2364 vdev->host.domain, vdev->host.bus, vdev->host.slot, 2365 vdev->host.function, nr); 2366 2367 /* Determine what type of BAR this is for registration */ 2368 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar), 2369 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); 2370 if (ret != sizeof(pci_bar)) { 2371 error_report("vfio: Failed to read BAR %d (%m)", nr); 2372 return; 2373 } 2374 2375 pci_bar = le32_to_cpu(pci_bar); 2376 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO); 2377 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64); 2378 type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK : 2379 ~PCI_BASE_ADDRESS_MEM_MASK); 2380 2381 /* A "slow" read/write mapping underlies all BARs */ 2382 memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops, 2383 bar, name, size); 2384 pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem); 2385 2386 /* 2387 * We can't mmap areas overlapping the MSIX vector table, so we 2388 * potentially insert a direct-mapped subregion before and after it. 2389 */ 2390 if (vdev->msix && vdev->msix->table_bar == nr) { 2391 size = vdev->msix->table_offset & qemu_host_page_mask; 2392 } 2393 2394 strncat(name, " mmap", sizeof(name) - strlen(name) - 1); 2395 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem, 2396 &bar->region.mmap_mem, &bar->region.mmap, 2397 size, 0, name)) { 2398 error_report("%s unsupported. Performance may be slow", name); 2399 } 2400 2401 if (vdev->msix && vdev->msix->table_bar == nr) { 2402 uint64_t start; 2403 2404 start = HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset + 2405 (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); 2406 2407 size = start < bar->region.size ? bar->region.size - start : 0; 2408 strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1); 2409 /* VFIOMSIXInfo contains another MemoryRegion for this mapping */ 2410 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem, 2411 &vdev->msix->mmap_mem, 2412 &vdev->msix->mmap, size, start, name)) { 2413 error_report("%s unsupported. Performance may be slow", name); 2414 } 2415 } 2416 2417 vfio_bar_quirk_setup(vdev, nr); 2418 } 2419 2420 static void vfio_map_bars(VFIOPCIDevice *vdev) 2421 { 2422 int i; 2423 2424 for (i = 0; i < PCI_ROM_SLOT; i++) { 2425 vfio_map_bar(vdev, i); 2426 } 2427 2428 if (vdev->has_vga) { 2429 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem, 2430 OBJECT(vdev), &vfio_vga_ops, 2431 &vdev->vga.region[QEMU_PCI_VGA_MEM], 2432 "vfio-vga-mmio@0xa0000", 2433 QEMU_PCI_VGA_MEM_SIZE); 2434 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, 2435 OBJECT(vdev), &vfio_vga_ops, 2436 &vdev->vga.region[QEMU_PCI_VGA_IO_LO], 2437 "vfio-vga-io@0x3b0", 2438 QEMU_PCI_VGA_IO_LO_SIZE); 2439 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 2440 OBJECT(vdev), &vfio_vga_ops, 2441 &vdev->vga.region[QEMU_PCI_VGA_IO_HI], 2442 "vfio-vga-io@0x3c0", 2443 QEMU_PCI_VGA_IO_HI_SIZE); 2444 2445 pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem, 2446 &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, 2447 &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem); 2448 vfio_vga_quirk_setup(vdev); 2449 } 2450 } 2451 2452 static void vfio_unregister_bars(VFIOPCIDevice *vdev) 2453 { 2454 int i; 2455 2456 for (i = 0; i < PCI_ROM_SLOT; i++) { 2457 vfio_unregister_bar(vdev, i); 2458 } 2459 2460 if (vdev->has_vga) { 2461 vfio_vga_quirk_teardown(vdev); 2462 pci_unregister_vga(&vdev->pdev); 2463 } 2464 } 2465 2466 static void vfio_unmap_bars(VFIOPCIDevice *vdev) 2467 { 2468 int i; 2469 2470 for (i = 0; i < PCI_ROM_SLOT; i++) { 2471 vfio_unmap_bar(vdev, i); 2472 } 2473 2474 if (vdev->has_vga) { 2475 vfio_vga_quirk_free(vdev); 2476 } 2477 } 2478 2479 /* 2480 * General setup 2481 */ 2482 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) 2483 { 2484 uint8_t tmp, next = 0xff; 2485 2486 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; 2487 tmp = pdev->config[tmp + 1]) { 2488 if (tmp > pos && tmp < next) { 2489 next = tmp; 2490 } 2491 } 2492 2493 return next - pos; 2494 } 2495 2496 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) 2497 { 2498 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); 2499 } 2500 2501 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos, 2502 uint16_t val, uint16_t mask) 2503 { 2504 vfio_set_word_bits(vdev->pdev.config + pos, val, mask); 2505 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); 2506 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); 2507 } 2508 2509 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) 2510 { 2511 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); 2512 } 2513 2514 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos, 2515 uint32_t val, uint32_t mask) 2516 { 2517 vfio_set_long_bits(vdev->pdev.config + pos, val, mask); 2518 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); 2519 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); 2520 } 2521 2522 static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size) 2523 { 2524 uint16_t flags; 2525 uint8_t type; 2526 2527 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); 2528 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; 2529 2530 if (type != PCI_EXP_TYPE_ENDPOINT && 2531 type != PCI_EXP_TYPE_LEG_END && 2532 type != PCI_EXP_TYPE_RC_END) { 2533 2534 error_report("vfio: Assignment of PCIe type 0x%x " 2535 "devices is not currently supported", type); 2536 return -EINVAL; 2537 } 2538 2539 if (!pci_bus_is_express(vdev->pdev.bus)) { 2540 /* 2541 * Use express capability as-is on PCI bus. It doesn't make much 2542 * sense to even expose, but some drivers (ex. tg3) depend on it 2543 * and guests don't seem to be particular about it. We'll need 2544 * to revist this or force express devices to express buses if we 2545 * ever expose an IOMMU to the guest. 2546 */ 2547 } else if (pci_bus_is_root(vdev->pdev.bus)) { 2548 /* 2549 * On a Root Complex bus Endpoints become Root Complex Integrated 2550 * Endpoints, which changes the type and clears the LNK & LNK2 fields. 2551 */ 2552 if (type == PCI_EXP_TYPE_ENDPOINT) { 2553 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2554 PCI_EXP_TYPE_RC_END << 4, 2555 PCI_EXP_FLAGS_TYPE); 2556 2557 /* Link Capabilities, Status, and Control goes away */ 2558 if (size > PCI_EXP_LNKCTL) { 2559 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); 2560 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); 2561 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); 2562 2563 #ifndef PCI_EXP_LNKCAP2 2564 #define PCI_EXP_LNKCAP2 44 2565 #endif 2566 #ifndef PCI_EXP_LNKSTA2 2567 #define PCI_EXP_LNKSTA2 50 2568 #endif 2569 /* Link 2 Capabilities, Status, and Control goes away */ 2570 if (size > PCI_EXP_LNKCAP2) { 2571 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); 2572 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); 2573 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); 2574 } 2575 } 2576 2577 } else if (type == PCI_EXP_TYPE_LEG_END) { 2578 /* 2579 * Legacy endpoints don't belong on the root complex. Windows 2580 * seems to be happier with devices if we skip the capability. 2581 */ 2582 return 0; 2583 } 2584 2585 } else { 2586 /* 2587 * Convert Root Complex Integrated Endpoints to regular endpoints. 2588 * These devices don't support LNK/LNK2 capabilities, so make them up. 2589 */ 2590 if (type == PCI_EXP_TYPE_RC_END) { 2591 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 2592 PCI_EXP_TYPE_ENDPOINT << 4, 2593 PCI_EXP_FLAGS_TYPE); 2594 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 2595 PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0); 2596 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); 2597 } 2598 2599 /* Mark the Link Status bits as emulated to allow virtual negotiation */ 2600 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 2601 pci_get_word(vdev->pdev.config + pos + 2602 PCI_EXP_LNKSTA), 2603 PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS); 2604 } 2605 2606 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size); 2607 if (pos >= 0) { 2608 vdev->pdev.exp.exp_cap = pos; 2609 } 2610 2611 return pos; 2612 } 2613 2614 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos) 2615 { 2616 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP); 2617 2618 if (cap & PCI_EXP_DEVCAP_FLR) { 2619 trace_vfio_check_pcie_flr(vdev->vbasedev.name); 2620 vdev->has_flr = true; 2621 } 2622 } 2623 2624 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos) 2625 { 2626 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL); 2627 2628 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) { 2629 trace_vfio_check_pm_reset(vdev->vbasedev.name); 2630 vdev->has_pm_reset = true; 2631 } 2632 } 2633 2634 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos) 2635 { 2636 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP); 2637 2638 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) { 2639 trace_vfio_check_af_flr(vdev->vbasedev.name); 2640 vdev->has_flr = true; 2641 } 2642 } 2643 2644 static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos) 2645 { 2646 PCIDevice *pdev = &vdev->pdev; 2647 uint8_t cap_id, next, size; 2648 int ret; 2649 2650 cap_id = pdev->config[pos]; 2651 next = pdev->config[pos + 1]; 2652 2653 /* 2654 * If it becomes important to configure capabilities to their actual 2655 * size, use this as the default when it's something we don't recognize. 2656 * Since QEMU doesn't actually handle many of the config accesses, 2657 * exact size doesn't seem worthwhile. 2658 */ 2659 size = vfio_std_cap_max_size(pdev, pos); 2660 2661 /* 2662 * pci_add_capability always inserts the new capability at the head 2663 * of the chain. Therefore to end up with a chain that matches the 2664 * physical device, we insert from the end by making this recursive. 2665 * This is also why we pre-caclulate size above as cached config space 2666 * will be changed as we unwind the stack. 2667 */ 2668 if (next) { 2669 ret = vfio_add_std_cap(vdev, next); 2670 if (ret) { 2671 return ret; 2672 } 2673 } else { 2674 /* Begin the rebuild, use QEMU emulated list bits */ 2675 pdev->config[PCI_CAPABILITY_LIST] = 0; 2676 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; 2677 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; 2678 } 2679 2680 /* Use emulated next pointer to allow dropping caps */ 2681 pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff); 2682 2683 switch (cap_id) { 2684 case PCI_CAP_ID_MSI: 2685 ret = vfio_setup_msi(vdev, pos); 2686 break; 2687 case PCI_CAP_ID_EXP: 2688 vfio_check_pcie_flr(vdev, pos); 2689 ret = vfio_setup_pcie_cap(vdev, pos, size); 2690 break; 2691 case PCI_CAP_ID_MSIX: 2692 ret = vfio_setup_msix(vdev, pos); 2693 break; 2694 case PCI_CAP_ID_PM: 2695 vfio_check_pm_reset(vdev, pos); 2696 vdev->pm_cap = pos; 2697 ret = pci_add_capability(pdev, cap_id, pos, size); 2698 break; 2699 case PCI_CAP_ID_AF: 2700 vfio_check_af_flr(vdev, pos); 2701 ret = pci_add_capability(pdev, cap_id, pos, size); 2702 break; 2703 default: 2704 ret = pci_add_capability(pdev, cap_id, pos, size); 2705 break; 2706 } 2707 2708 if (ret < 0) { 2709 error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability " 2710 "0x%x[0x%x]@0x%x: %d", vdev->host.domain, 2711 vdev->host.bus, vdev->host.slot, vdev->host.function, 2712 cap_id, size, pos, ret); 2713 return ret; 2714 } 2715 2716 return 0; 2717 } 2718 2719 static int vfio_add_capabilities(VFIOPCIDevice *vdev) 2720 { 2721 PCIDevice *pdev = &vdev->pdev; 2722 2723 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || 2724 !pdev->config[PCI_CAPABILITY_LIST]) { 2725 return 0; /* Nothing to add */ 2726 } 2727 2728 return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]); 2729 } 2730 2731 static void vfio_pci_pre_reset(VFIOPCIDevice *vdev) 2732 { 2733 PCIDevice *pdev = &vdev->pdev; 2734 uint16_t cmd; 2735 2736 vfio_disable_interrupts(vdev); 2737 2738 /* Make sure the device is in D0 */ 2739 if (vdev->pm_cap) { 2740 uint16_t pmcsr; 2741 uint8_t state; 2742 2743 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); 2744 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 2745 if (state) { 2746 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 2747 vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); 2748 /* vfio handles the necessary delay here */ 2749 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); 2750 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 2751 if (state) { 2752 error_report("vfio: Unable to power on device, stuck in D%d", 2753 state); 2754 } 2755 } 2756 } 2757 2758 /* 2759 * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master. 2760 * Also put INTx Disable in known state. 2761 */ 2762 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); 2763 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | 2764 PCI_COMMAND_INTX_DISABLE); 2765 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); 2766 } 2767 2768 static void vfio_pci_post_reset(VFIOPCIDevice *vdev) 2769 { 2770 vfio_enable_intx(vdev); 2771 } 2772 2773 static bool vfio_pci_host_match(PCIHostDeviceAddress *host1, 2774 PCIHostDeviceAddress *host2) 2775 { 2776 return (host1->domain == host2->domain && host1->bus == host2->bus && 2777 host1->slot == host2->slot && host1->function == host2->function); 2778 } 2779 2780 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single) 2781 { 2782 VFIOGroup *group; 2783 struct vfio_pci_hot_reset_info *info; 2784 struct vfio_pci_dependent_device *devices; 2785 struct vfio_pci_hot_reset *reset; 2786 int32_t *fds; 2787 int ret, i, count; 2788 bool multi = false; 2789 2790 trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi"); 2791 2792 vfio_pci_pre_reset(vdev); 2793 vdev->vbasedev.needs_reset = false; 2794 2795 info = g_malloc0(sizeof(*info)); 2796 info->argsz = sizeof(*info); 2797 2798 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); 2799 if (ret && errno != ENOSPC) { 2800 ret = -errno; 2801 if (!vdev->has_pm_reset) { 2802 error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, " 2803 "no available reset mechanism.", vdev->host.domain, 2804 vdev->host.bus, vdev->host.slot, vdev->host.function); 2805 } 2806 goto out_single; 2807 } 2808 2809 count = info->count; 2810 info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices))); 2811 info->argsz = sizeof(*info) + (count * sizeof(*devices)); 2812 devices = &info->devices[0]; 2813 2814 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); 2815 if (ret) { 2816 ret = -errno; 2817 error_report("vfio: hot reset info failed: %m"); 2818 goto out_single; 2819 } 2820 2821 trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name); 2822 2823 /* Verify that we have all the groups required */ 2824 for (i = 0; i < info->count; i++) { 2825 PCIHostDeviceAddress host; 2826 VFIOPCIDevice *tmp; 2827 VFIODevice *vbasedev_iter; 2828 2829 host.domain = devices[i].segment; 2830 host.bus = devices[i].bus; 2831 host.slot = PCI_SLOT(devices[i].devfn); 2832 host.function = PCI_FUNC(devices[i].devfn); 2833 2834 trace_vfio_pci_hot_reset_dep_devices(host.domain, 2835 host.bus, host.slot, host.function, devices[i].group_id); 2836 2837 if (vfio_pci_host_match(&host, &vdev->host)) { 2838 continue; 2839 } 2840 2841 QLIST_FOREACH(group, &vfio_group_list, next) { 2842 if (group->groupid == devices[i].group_id) { 2843 break; 2844 } 2845 } 2846 2847 if (!group) { 2848 if (!vdev->has_pm_reset) { 2849 error_report("vfio: Cannot reset device %s, " 2850 "depends on group %d which is not owned.", 2851 vdev->vbasedev.name, devices[i].group_id); 2852 } 2853 ret = -EPERM; 2854 goto out; 2855 } 2856 2857 /* Prep dependent devices for reset and clear our marker. */ 2858 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 2859 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { 2860 continue; 2861 } 2862 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); 2863 if (vfio_pci_host_match(&host, &tmp->host)) { 2864 if (single) { 2865 ret = -EINVAL; 2866 goto out_single; 2867 } 2868 vfio_pci_pre_reset(tmp); 2869 tmp->vbasedev.needs_reset = false; 2870 multi = true; 2871 break; 2872 } 2873 } 2874 } 2875 2876 if (!single && !multi) { 2877 ret = -EINVAL; 2878 goto out_single; 2879 } 2880 2881 /* Determine how many group fds need to be passed */ 2882 count = 0; 2883 QLIST_FOREACH(group, &vfio_group_list, next) { 2884 for (i = 0; i < info->count; i++) { 2885 if (group->groupid == devices[i].group_id) { 2886 count++; 2887 break; 2888 } 2889 } 2890 } 2891 2892 reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds))); 2893 reset->argsz = sizeof(*reset) + (count * sizeof(*fds)); 2894 fds = &reset->group_fds[0]; 2895 2896 /* Fill in group fds */ 2897 QLIST_FOREACH(group, &vfio_group_list, next) { 2898 for (i = 0; i < info->count; i++) { 2899 if (group->groupid == devices[i].group_id) { 2900 fds[reset->count++] = group->fd; 2901 break; 2902 } 2903 } 2904 } 2905 2906 /* Bus reset! */ 2907 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset); 2908 g_free(reset); 2909 2910 trace_vfio_pci_hot_reset_result(vdev->vbasedev.name, 2911 ret ? "%m" : "Success"); 2912 2913 out: 2914 /* Re-enable INTx on affected devices */ 2915 for (i = 0; i < info->count; i++) { 2916 PCIHostDeviceAddress host; 2917 VFIOPCIDevice *tmp; 2918 VFIODevice *vbasedev_iter; 2919 2920 host.domain = devices[i].segment; 2921 host.bus = devices[i].bus; 2922 host.slot = PCI_SLOT(devices[i].devfn); 2923 host.function = PCI_FUNC(devices[i].devfn); 2924 2925 if (vfio_pci_host_match(&host, &vdev->host)) { 2926 continue; 2927 } 2928 2929 QLIST_FOREACH(group, &vfio_group_list, next) { 2930 if (group->groupid == devices[i].group_id) { 2931 break; 2932 } 2933 } 2934 2935 if (!group) { 2936 break; 2937 } 2938 2939 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 2940 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { 2941 continue; 2942 } 2943 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); 2944 if (vfio_pci_host_match(&host, &tmp->host)) { 2945 vfio_pci_post_reset(tmp); 2946 break; 2947 } 2948 } 2949 } 2950 out_single: 2951 vfio_pci_post_reset(vdev); 2952 g_free(info); 2953 2954 return ret; 2955 } 2956 2957 /* 2958 * We want to differentiate hot reset of mulitple in-use devices vs hot reset 2959 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case 2960 * of doing hot resets when there is only a single device per bus. The in-use 2961 * here refers to how many VFIODevices are affected. A hot reset that affects 2962 * multiple devices, but only a single in-use device, means that we can call 2963 * it from our bus ->reset() callback since the extent is effectively a single 2964 * device. This allows us to make use of it in the hotplug path. When there 2965 * are multiple in-use devices, we can only trigger the hot reset during a 2966 * system reset and thus from our reset handler. We separate _one vs _multi 2967 * here so that we don't overlap and do a double reset on the system reset 2968 * path where both our reset handler and ->reset() callback are used. Calling 2969 * _one() will only do a hot reset for the one in-use devices case, calling 2970 * _multi() will do nothing if a _one() would have been sufficient. 2971 */ 2972 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev) 2973 { 2974 return vfio_pci_hot_reset(vdev, true); 2975 } 2976 2977 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev) 2978 { 2979 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2980 return vfio_pci_hot_reset(vdev, false); 2981 } 2982 2983 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev) 2984 { 2985 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); 2986 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { 2987 vbasedev->needs_reset = true; 2988 } 2989 } 2990 2991 static VFIODeviceOps vfio_pci_ops = { 2992 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset, 2993 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi, 2994 .vfio_eoi = vfio_eoi, 2995 }; 2996 2997 static int vfio_populate_device(VFIOPCIDevice *vdev) 2998 { 2999 VFIODevice *vbasedev = &vdev->vbasedev; 3000 struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) }; 3001 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; 3002 int i, ret = -1; 3003 3004 /* Sanity check device */ 3005 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) { 3006 error_report("vfio: Um, this isn't a PCI device"); 3007 goto error; 3008 } 3009 3010 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { 3011 error_report("vfio: unexpected number of io regions %u", 3012 vbasedev->num_regions); 3013 goto error; 3014 } 3015 3016 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { 3017 error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs); 3018 goto error; 3019 } 3020 3021 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { 3022 reg_info.index = i; 3023 3024 ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); 3025 if (ret) { 3026 error_report("vfio: Error getting region %d info: %m", i); 3027 goto error; 3028 } 3029 3030 trace_vfio_populate_device_region(vbasedev->name, i, 3031 (unsigned long)reg_info.size, 3032 (unsigned long)reg_info.offset, 3033 (unsigned long)reg_info.flags); 3034 3035 vdev->bars[i].region.vbasedev = vbasedev; 3036 vdev->bars[i].region.flags = reg_info.flags; 3037 vdev->bars[i].region.size = reg_info.size; 3038 vdev->bars[i].region.fd_offset = reg_info.offset; 3039 vdev->bars[i].region.nr = i; 3040 QLIST_INIT(&vdev->bars[i].quirks); 3041 } 3042 3043 reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX; 3044 3045 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); 3046 if (ret) { 3047 error_report("vfio: Error getting config info: %m"); 3048 goto error; 3049 } 3050 3051 trace_vfio_populate_device_config(vdev->vbasedev.name, 3052 (unsigned long)reg_info.size, 3053 (unsigned long)reg_info.offset, 3054 (unsigned long)reg_info.flags); 3055 3056 vdev->config_size = reg_info.size; 3057 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { 3058 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; 3059 } 3060 vdev->config_offset = reg_info.offset; 3061 3062 if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) && 3063 vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) { 3064 struct vfio_region_info vga_info = { 3065 .argsz = sizeof(vga_info), 3066 .index = VFIO_PCI_VGA_REGION_INDEX, 3067 }; 3068 3069 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info); 3070 if (ret) { 3071 error_report( 3072 "vfio: Device does not support requested feature x-vga"); 3073 goto error; 3074 } 3075 3076 if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) || 3077 !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) || 3078 vga_info.size < 0xbffff + 1) { 3079 error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx", 3080 (unsigned long)vga_info.flags, 3081 (unsigned long)vga_info.size); 3082 goto error; 3083 } 3084 3085 vdev->vga.fd_offset = vga_info.offset; 3086 vdev->vga.fd = vdev->vbasedev.fd; 3087 3088 vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; 3089 vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; 3090 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks); 3091 3092 vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; 3093 vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; 3094 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks); 3095 3096 vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; 3097 vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; 3098 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks); 3099 3100 vdev->has_vga = true; 3101 } 3102 3103 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX; 3104 3105 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); 3106 if (ret) { 3107 /* This can fail for an old kernel or legacy PCI dev */ 3108 trace_vfio_populate_device_get_irq_info_failure(); 3109 ret = 0; 3110 } else if (irq_info.count == 1) { 3111 vdev->pci_aer = true; 3112 } else { 3113 error_report("vfio: %s " 3114 "Could not enable error recovery for the device", 3115 vbasedev->name); 3116 } 3117 3118 error: 3119 return ret; 3120 } 3121 3122 static void vfio_put_device(VFIOPCIDevice *vdev) 3123 { 3124 g_free(vdev->vbasedev.name); 3125 if (vdev->msix) { 3126 object_unparent(OBJECT(&vdev->msix->mmap_mem)); 3127 g_free(vdev->msix); 3128 vdev->msix = NULL; 3129 } 3130 vfio_put_base_device(&vdev->vbasedev); 3131 } 3132 3133 static void vfio_err_notifier_handler(void *opaque) 3134 { 3135 VFIOPCIDevice *vdev = opaque; 3136 3137 if (!event_notifier_test_and_clear(&vdev->err_notifier)) { 3138 return; 3139 } 3140 3141 /* 3142 * TBD. Retrieve the error details and decide what action 3143 * needs to be taken. One of the actions could be to pass 3144 * the error to the guest and have the guest driver recover 3145 * from the error. This requires that PCIe capabilities be 3146 * exposed to the guest. For now, we just terminate the 3147 * guest to contain the error. 3148 */ 3149 3150 error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. " 3151 "Please collect any data possible and then kill the guest", 3152 __func__, vdev->host.domain, vdev->host.bus, 3153 vdev->host.slot, vdev->host.function); 3154 3155 vm_stop(RUN_STATE_INTERNAL_ERROR); 3156 } 3157 3158 /* 3159 * Registers error notifier for devices supporting error recovery. 3160 * If we encounter a failure in this function, we report an error 3161 * and continue after disabling error recovery support for the 3162 * device. 3163 */ 3164 static void vfio_register_err_notifier(VFIOPCIDevice *vdev) 3165 { 3166 int ret; 3167 int argsz; 3168 struct vfio_irq_set *irq_set; 3169 int32_t *pfd; 3170 3171 if (!vdev->pci_aer) { 3172 return; 3173 } 3174 3175 if (event_notifier_init(&vdev->err_notifier, 0)) { 3176 error_report("vfio: Unable to init event notifier for error detection"); 3177 vdev->pci_aer = false; 3178 return; 3179 } 3180 3181 argsz = sizeof(*irq_set) + sizeof(*pfd); 3182 3183 irq_set = g_malloc0(argsz); 3184 irq_set->argsz = argsz; 3185 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3186 VFIO_IRQ_SET_ACTION_TRIGGER; 3187 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; 3188 irq_set->start = 0; 3189 irq_set->count = 1; 3190 pfd = (int32_t *)&irq_set->data; 3191 3192 *pfd = event_notifier_get_fd(&vdev->err_notifier); 3193 qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev); 3194 3195 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 3196 if (ret) { 3197 error_report("vfio: Failed to set up error notification"); 3198 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 3199 event_notifier_cleanup(&vdev->err_notifier); 3200 vdev->pci_aer = false; 3201 } 3202 g_free(irq_set); 3203 } 3204 3205 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev) 3206 { 3207 int argsz; 3208 struct vfio_irq_set *irq_set; 3209 int32_t *pfd; 3210 int ret; 3211 3212 if (!vdev->pci_aer) { 3213 return; 3214 } 3215 3216 argsz = sizeof(*irq_set) + sizeof(*pfd); 3217 3218 irq_set = g_malloc0(argsz); 3219 irq_set->argsz = argsz; 3220 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3221 VFIO_IRQ_SET_ACTION_TRIGGER; 3222 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; 3223 irq_set->start = 0; 3224 irq_set->count = 1; 3225 pfd = (int32_t *)&irq_set->data; 3226 *pfd = -1; 3227 3228 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); 3229 if (ret) { 3230 error_report("vfio: Failed to de-assign error fd: %m"); 3231 } 3232 g_free(irq_set); 3233 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier), 3234 NULL, NULL, vdev); 3235 event_notifier_cleanup(&vdev->err_notifier); 3236 } 3237 3238 static void vfio_req_notifier_handler(void *opaque) 3239 { 3240 VFIOPCIDevice *vdev = opaque; 3241 3242 if (!event_notifier_test_and_clear(&vdev->req_notifier)) { 3243 return; 3244 } 3245 3246 qdev_unplug(&vdev->pdev.qdev, NULL); 3247 } 3248 3249 static void vfio_register_req_notifier(VFIOPCIDevice *vdev) 3250 { 3251 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), 3252 .index = VFIO_PCI_REQ_IRQ_INDEX }; 3253 int argsz; 3254 struct vfio_irq_set *irq_set; 3255 int32_t *pfd; 3256 3257 if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) { 3258 return; 3259 } 3260 3261 if (ioctl(vdev->vbasedev.fd, 3262 VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) { 3263 return; 3264 } 3265 3266 if (event_notifier_init(&vdev->req_notifier, 0)) { 3267 error_report("vfio: Unable to init event notifier for device request"); 3268 return; 3269 } 3270 3271 argsz = sizeof(*irq_set) + sizeof(*pfd); 3272 3273 irq_set = g_malloc0(argsz); 3274 irq_set->argsz = argsz; 3275 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3276 VFIO_IRQ_SET_ACTION_TRIGGER; 3277 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; 3278 irq_set->start = 0; 3279 irq_set->count = 1; 3280 pfd = (int32_t *)&irq_set->data; 3281 3282 *pfd = event_notifier_get_fd(&vdev->req_notifier); 3283 qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev); 3284 3285 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 3286 error_report("vfio: Failed to set up device request notification"); 3287 qemu_set_fd_handler(*pfd, NULL, NULL, vdev); 3288 event_notifier_cleanup(&vdev->req_notifier); 3289 } else { 3290 vdev->req_enabled = true; 3291 } 3292 3293 g_free(irq_set); 3294 } 3295 3296 static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev) 3297 { 3298 int argsz; 3299 struct vfio_irq_set *irq_set; 3300 int32_t *pfd; 3301 3302 if (!vdev->req_enabled) { 3303 return; 3304 } 3305 3306 argsz = sizeof(*irq_set) + sizeof(*pfd); 3307 3308 irq_set = g_malloc0(argsz); 3309 irq_set->argsz = argsz; 3310 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | 3311 VFIO_IRQ_SET_ACTION_TRIGGER; 3312 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; 3313 irq_set->start = 0; 3314 irq_set->count = 1; 3315 pfd = (int32_t *)&irq_set->data; 3316 *pfd = -1; 3317 3318 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { 3319 error_report("vfio: Failed to de-assign device request fd: %m"); 3320 } 3321 g_free(irq_set); 3322 qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier), 3323 NULL, NULL, vdev); 3324 event_notifier_cleanup(&vdev->req_notifier); 3325 3326 vdev->req_enabled = false; 3327 } 3328 3329 /* 3330 * AMD Radeon PCI config reset, based on Linux: 3331 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() 3332 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset 3333 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() 3334 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() 3335 * IDs: include/drm/drm_pciids.h 3336 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 3337 * 3338 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the 3339 * hardware that should be fixed on future ASICs. The symptom of this is that 3340 * once the accerlated driver loads, Windows guests will bsod on subsequent 3341 * attmpts to load the driver, such as after VM reset or shutdown/restart. To 3342 * work around this, we do an AMD specific PCI config reset, followed by an SMC 3343 * reset. The PCI config reset only works if SMC firmware is running, so we 3344 * have a dependency on the state of the device as to whether this reset will 3345 * be effective. There are still cases where we won't be able to kick the 3346 * device into working, but this greatly improves the usability overall. The 3347 * config reset magic is relatively common on AMD GPUs, but the setup and SMC 3348 * poking is largely ASIC specific. 3349 */ 3350 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) 3351 { 3352 uint32_t clk, pc_c; 3353 3354 /* 3355 * Registers 200h and 204h are index and data registers for acessing 3356 * indirect configuration registers within the device. 3357 */ 3358 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 3359 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 3360 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); 3361 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 3362 3363 return (!(clk & 1) && (0x20100 <= pc_c)); 3364 } 3365 3366 /* 3367 * The scope of a config reset is controlled by a mode bit in the misc register 3368 * and a fuse, exposed as a bit in another register. The fuse is the default 3369 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula 3370 * scope = !(misc ^ fuse), where the resulting scope is defined the same as 3371 * the fuse. A truth table therefore tells us that if misc == fuse, we need 3372 * to flip the value of the bit in the misc register. 3373 */ 3374 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) 3375 { 3376 uint32_t misc, fuse; 3377 bool a, b; 3378 3379 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); 3380 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 3381 b = fuse & 64; 3382 3383 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); 3384 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 3385 a = misc & 2; 3386 3387 if (a == b) { 3388 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); 3389 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ 3390 } 3391 } 3392 3393 static int vfio_radeon_reset(VFIOPCIDevice *vdev) 3394 { 3395 PCIDevice *pdev = &vdev->pdev; 3396 int i, ret = 0; 3397 uint32_t data; 3398 3399 /* Defer to a kernel implemented reset */ 3400 if (vdev->vbasedev.reset_works) { 3401 return -ENODEV; 3402 } 3403 3404 /* Enable only memory BAR access */ 3405 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); 3406 3407 /* Reset only works if SMC firmware is loaded and running */ 3408 if (!vfio_radeon_smc_is_running(vdev)) { 3409 ret = -EINVAL; 3410 goto out; 3411 } 3412 3413 /* Make sure only the GFX function is reset */ 3414 vfio_radeon_set_gfx_only_reset(vdev); 3415 3416 /* AMD PCI config reset */ 3417 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); 3418 usleep(100); 3419 3420 /* Read back the memory size to make sure we're out of reset */ 3421 for (i = 0; i < 100000; i++) { 3422 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { 3423 break; 3424 } 3425 usleep(1); 3426 } 3427 3428 /* Reset SMC */ 3429 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); 3430 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 3431 data |= 1; 3432 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 3433 3434 /* Disable SMC clock */ 3435 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 3436 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 3437 data |= 1; 3438 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 3439 3440 out: 3441 /* Restore PCI command register */ 3442 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); 3443 3444 return ret; 3445 } 3446 3447 static void vfio_setup_resetfn(VFIOPCIDevice *vdev) 3448 { 3449 PCIDevice *pdev = &vdev->pdev; 3450 uint16_t vendor, device; 3451 3452 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID); 3453 device = pci_get_word(pdev->config + PCI_DEVICE_ID); 3454 3455 switch (vendor) { 3456 case 0x1002: 3457 switch (device) { 3458 /* Bonaire */ 3459 case 0x6649: /* Bonaire [FirePro W5100] */ 3460 case 0x6650: 3461 case 0x6651: 3462 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ 3463 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ 3464 case 0x665d: /* Bonaire [Radeon R7 200 Series] */ 3465 /* Hawaii */ 3466 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ 3467 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ 3468 case 0x67A2: 3469 case 0x67A8: 3470 case 0x67A9: 3471 case 0x67AA: 3472 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ 3473 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ 3474 case 0x67B8: 3475 case 0x67B9: 3476 case 0x67BA: 3477 case 0x67BE: 3478 vdev->resetfn = vfio_radeon_reset; 3479 break; 3480 } 3481 break; 3482 } 3483 } 3484 3485 static int vfio_initfn(PCIDevice *pdev) 3486 { 3487 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3488 VFIODevice *vbasedev_iter; 3489 VFIOGroup *group; 3490 char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name; 3491 ssize_t len; 3492 struct stat st; 3493 int groupid; 3494 int ret; 3495 3496 /* Check that the host device exists */ 3497 snprintf(path, sizeof(path), 3498 "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/", 3499 vdev->host.domain, vdev->host.bus, vdev->host.slot, 3500 vdev->host.function); 3501 if (stat(path, &st) < 0) { 3502 error_report("vfio: error: no such host device: %s", path); 3503 return -errno; 3504 } 3505 3506 vdev->vbasedev.ops = &vfio_pci_ops; 3507 3508 vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI; 3509 vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x", 3510 vdev->host.domain, vdev->host.bus, 3511 vdev->host.slot, vdev->host.function); 3512 3513 strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1); 3514 3515 len = readlink(path, iommu_group_path, sizeof(path)); 3516 if (len <= 0 || len >= sizeof(path)) { 3517 error_report("vfio: error no iommu_group for device"); 3518 return len < 0 ? -errno : -ENAMETOOLONG; 3519 } 3520 3521 iommu_group_path[len] = 0; 3522 group_name = basename(iommu_group_path); 3523 3524 if (sscanf(group_name, "%d", &groupid) != 1) { 3525 error_report("vfio: error reading %s: %m", path); 3526 return -errno; 3527 } 3528 3529 trace_vfio_initfn(vdev->vbasedev.name, groupid); 3530 3531 group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev)); 3532 if (!group) { 3533 error_report("vfio: failed to get group %d", groupid); 3534 return -ENOENT; 3535 } 3536 3537 snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x", 3538 vdev->host.domain, vdev->host.bus, vdev->host.slot, 3539 vdev->host.function); 3540 3541 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { 3542 if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) { 3543 error_report("vfio: error: device %s is already attached", path); 3544 vfio_put_group(group); 3545 return -EBUSY; 3546 } 3547 } 3548 3549 ret = vfio_get_device(group, path, &vdev->vbasedev); 3550 if (ret) { 3551 error_report("vfio: failed to get device %s", path); 3552 vfio_put_group(group); 3553 return ret; 3554 } 3555 3556 ret = vfio_populate_device(vdev); 3557 if (ret) { 3558 return ret; 3559 } 3560 3561 /* Get a copy of config space */ 3562 ret = pread(vdev->vbasedev.fd, vdev->pdev.config, 3563 MIN(pci_config_size(&vdev->pdev), vdev->config_size), 3564 vdev->config_offset); 3565 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { 3566 ret = ret < 0 ? -errno : -EFAULT; 3567 error_report("vfio: Failed to read device config space"); 3568 return ret; 3569 } 3570 3571 /* vfio emulates a lot for us, but some bits need extra love */ 3572 vdev->emulated_config_bits = g_malloc0(vdev->config_size); 3573 3574 /* QEMU can choose to expose the ROM or not */ 3575 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); 3576 3577 /* QEMU can change multi-function devices to single function, or reverse */ 3578 vdev->emulated_config_bits[PCI_HEADER_TYPE] = 3579 PCI_HEADER_TYPE_MULTI_FUNCTION; 3580 3581 /* Restore or clear multifunction, this is always controlled by QEMU */ 3582 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 3583 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; 3584 } else { 3585 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; 3586 } 3587 3588 /* 3589 * Clear host resource mapping info. If we choose not to register a 3590 * BAR, such as might be the case with the option ROM, we can get 3591 * confusing, unwritable, residual addresses from the host here. 3592 */ 3593 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); 3594 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); 3595 3596 vfio_pci_size_rom(vdev); 3597 3598 ret = vfio_early_setup_msix(vdev); 3599 if (ret) { 3600 return ret; 3601 } 3602 3603 vfio_map_bars(vdev); 3604 3605 ret = vfio_add_capabilities(vdev); 3606 if (ret) { 3607 goto out_teardown; 3608 } 3609 3610 /* QEMU emulates all of MSI & MSIX */ 3611 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { 3612 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, 3613 MSIX_CAP_LENGTH); 3614 } 3615 3616 if (pdev->cap_present & QEMU_PCI_CAP_MSI) { 3617 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, 3618 vdev->msi_cap_size); 3619 } 3620 3621 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { 3622 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3623 vfio_intx_mmap_enable, vdev); 3624 pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq); 3625 ret = vfio_enable_intx(vdev); 3626 if (ret) { 3627 goto out_teardown; 3628 } 3629 } 3630 3631 vfio_register_err_notifier(vdev); 3632 vfio_register_req_notifier(vdev); 3633 vfio_setup_resetfn(vdev); 3634 3635 return 0; 3636 3637 out_teardown: 3638 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); 3639 vfio_teardown_msi(vdev); 3640 vfio_unregister_bars(vdev); 3641 return ret; 3642 } 3643 3644 static void vfio_instance_finalize(Object *obj) 3645 { 3646 PCIDevice *pci_dev = PCI_DEVICE(obj); 3647 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev); 3648 VFIOGroup *group = vdev->vbasedev.group; 3649 3650 vfio_unmap_bars(vdev); 3651 g_free(vdev->emulated_config_bits); 3652 g_free(vdev->rom); 3653 vfio_put_device(vdev); 3654 vfio_put_group(group); 3655 } 3656 3657 static void vfio_exitfn(PCIDevice *pdev) 3658 { 3659 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3660 3661 vfio_unregister_req_notifier(vdev); 3662 vfio_unregister_err_notifier(vdev); 3663 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); 3664 vfio_disable_interrupts(vdev); 3665 if (vdev->intx.mmap_timer) { 3666 timer_free(vdev->intx.mmap_timer); 3667 } 3668 vfio_teardown_msi(vdev); 3669 vfio_unregister_bars(vdev); 3670 } 3671 3672 static void vfio_pci_reset(DeviceState *dev) 3673 { 3674 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev); 3675 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); 3676 3677 trace_vfio_pci_reset(vdev->vbasedev.name); 3678 3679 vfio_pci_pre_reset(vdev); 3680 3681 if (vdev->resetfn && !vdev->resetfn(vdev)) { 3682 goto post_reset; 3683 } 3684 3685 if (vdev->vbasedev.reset_works && 3686 (vdev->has_flr || !vdev->has_pm_reset) && 3687 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { 3688 trace_vfio_pci_reset_flr(vdev->vbasedev.name); 3689 goto post_reset; 3690 } 3691 3692 /* See if we can do our own bus reset */ 3693 if (!vfio_pci_hot_reset_one(vdev)) { 3694 goto post_reset; 3695 } 3696 3697 /* If nothing else works and the device supports PM reset, use it */ 3698 if (vdev->vbasedev.reset_works && vdev->has_pm_reset && 3699 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { 3700 trace_vfio_pci_reset_pm(vdev->vbasedev.name); 3701 goto post_reset; 3702 } 3703 3704 post_reset: 3705 vfio_pci_post_reset(vdev); 3706 } 3707 3708 static void vfio_instance_init(Object *obj) 3709 { 3710 PCIDevice *pci_dev = PCI_DEVICE(obj); 3711 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj)); 3712 3713 device_add_bootindex_property(obj, &vdev->bootindex, 3714 "bootindex", NULL, 3715 &pci_dev->qdev, NULL); 3716 } 3717 3718 static Property vfio_pci_dev_properties[] = { 3719 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host), 3720 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice, 3721 intx.mmap_timeout, 1100), 3722 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features, 3723 VFIO_FEATURE_ENABLE_VGA_BIT, false), 3724 DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features, 3725 VFIO_FEATURE_ENABLE_REQ_BIT, true), 3726 DEFINE_PROP_INT32("bootindex", VFIOPCIDevice, bootindex, -1), 3727 DEFINE_PROP_BOOL("x-mmap", VFIOPCIDevice, vbasedev.allow_mmap, true), 3728 /* 3729 * TODO - support passed fds... is this necessary? 3730 * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name), 3731 * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name), 3732 */ 3733 DEFINE_PROP_END_OF_LIST(), 3734 }; 3735 3736 static const VMStateDescription vfio_pci_vmstate = { 3737 .name = "vfio-pci", 3738 .unmigratable = 1, 3739 }; 3740 3741 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) 3742 { 3743 DeviceClass *dc = DEVICE_CLASS(klass); 3744 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); 3745 3746 dc->reset = vfio_pci_reset; 3747 dc->props = vfio_pci_dev_properties; 3748 dc->vmsd = &vfio_pci_vmstate; 3749 dc->desc = "VFIO-based PCI device assignment"; 3750 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 3751 pdc->init = vfio_initfn; 3752 pdc->exit = vfio_exitfn; 3753 pdc->config_read = vfio_pci_read_config; 3754 pdc->config_write = vfio_pci_write_config; 3755 pdc->is_express = 1; /* We might be */ 3756 } 3757 3758 static const TypeInfo vfio_pci_dev_info = { 3759 .name = "vfio-pci", 3760 .parent = TYPE_PCI_DEVICE, 3761 .instance_size = sizeof(VFIOPCIDevice), 3762 .class_init = vfio_pci_dev_class_init, 3763 .instance_init = vfio_instance_init, 3764 .instance_finalize = vfio_instance_finalize, 3765 }; 3766 3767 static void register_vfio_pci_dev_type(void) 3768 { 3769 type_register_static(&vfio_pci_dev_info); 3770 } 3771 3772 type_init(register_vfio_pci_dev_type) 3773