1 /* 2 * device quirks for PCI devices 3 * 4 * Copyright Red Hat, Inc. 2012-2015 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/error-report.h" 15 #include "qemu/range.h" 16 #include "qapi/error.h" 17 #include "qapi/visitor.h" 18 #include "hw/nvram/fw_cfg.h" 19 #include "pci.h" 20 #include "trace.h" 21 22 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */ 23 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device) 24 { 25 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) && 26 (device == PCI_ANY_ID || device == vdev->device_id); 27 } 28 29 static bool vfio_is_vga(VFIOPCIDevice *vdev) 30 { 31 PCIDevice *pdev = &vdev->pdev; 32 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 33 34 return class == PCI_CLASS_DISPLAY_VGA; 35 } 36 37 /* 38 * List of device ids/vendor ids for which to disable 39 * option rom loading. This avoids the guest hangs during rom 40 * execution as noticed with the BCM 57810 card for lack of a 41 * more better way to handle such issues. 42 * The user can still override by specifying a romfile or 43 * rombar=1. 44 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 45 * for an analysis of the 57810 card hang. When adding 46 * a new vendor id/device id combination below, please also add 47 * your card/environment details and information that could 48 * help in debugging to the bug tracking this issue 49 */ 50 static const struct { 51 uint32_t vendor; 52 uint32_t device; 53 } romblacklist[] = { 54 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ 55 }; 56 57 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 58 { 59 int i; 60 61 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) { 62 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) { 63 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name, 64 romblacklist[i].vendor, 65 romblacklist[i].device); 66 return true; 67 } 68 } 69 return false; 70 } 71 72 /* 73 * Device specific region quirks (mostly backdoors to PCI config space) 74 */ 75 76 /* 77 * The generic window quirks operate on an address and data register, 78 * vfio_generic_window_address_quirk handles the address register and 79 * vfio_generic_window_data_quirk handles the data register. These ops 80 * pass reads and writes through to hardware until a value matching the 81 * stored address match/mask is written. When this occurs, the data 82 * register access emulated PCI config space for the device rather than 83 * passing through accesses. This enables devices where PCI config space 84 * is accessible behind a window register to maintain the virtualization 85 * provided through vfio. 86 */ 87 typedef struct VFIOConfigWindowMatch { 88 uint32_t match; 89 uint32_t mask; 90 } VFIOConfigWindowMatch; 91 92 typedef struct VFIOConfigWindowQuirk { 93 struct VFIOPCIDevice *vdev; 94 95 uint32_t address_val; 96 97 uint32_t address_offset; 98 uint32_t data_offset; 99 100 bool window_enabled; 101 uint8_t bar; 102 103 MemoryRegion *addr_mem; 104 MemoryRegion *data_mem; 105 106 uint32_t nr_matches; 107 VFIOConfigWindowMatch matches[]; 108 } VFIOConfigWindowQuirk; 109 110 static uint64_t vfio_generic_window_quirk_address_read(void *opaque, 111 hwaddr addr, 112 unsigned size) 113 { 114 VFIOConfigWindowQuirk *window = opaque; 115 VFIOPCIDevice *vdev = window->vdev; 116 117 return vfio_region_read(&vdev->bars[window->bar].region, 118 addr + window->address_offset, size); 119 } 120 121 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, 122 uint64_t data, 123 unsigned size) 124 { 125 VFIOConfigWindowQuirk *window = opaque; 126 VFIOPCIDevice *vdev = window->vdev; 127 int i; 128 129 window->window_enabled = false; 130 131 vfio_region_write(&vdev->bars[window->bar].region, 132 addr + window->address_offset, data, size); 133 134 for (i = 0; i < window->nr_matches; i++) { 135 if ((data & ~window->matches[i].mask) == window->matches[i].match) { 136 window->window_enabled = true; 137 window->address_val = data & window->matches[i].mask; 138 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, 139 memory_region_name(window->addr_mem), data); 140 break; 141 } 142 } 143 } 144 145 static const MemoryRegionOps vfio_generic_window_address_quirk = { 146 .read = vfio_generic_window_quirk_address_read, 147 .write = vfio_generic_window_quirk_address_write, 148 .endianness = DEVICE_LITTLE_ENDIAN, 149 }; 150 151 static uint64_t vfio_generic_window_quirk_data_read(void *opaque, 152 hwaddr addr, unsigned size) 153 { 154 VFIOConfigWindowQuirk *window = opaque; 155 VFIOPCIDevice *vdev = window->vdev; 156 uint64_t data; 157 158 /* Always read data reg, discard if window enabled */ 159 data = vfio_region_read(&vdev->bars[window->bar].region, 160 addr + window->data_offset, size); 161 162 if (window->window_enabled) { 163 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); 164 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, 165 memory_region_name(window->data_mem), data); 166 } 167 168 return data; 169 } 170 171 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, 172 uint64_t data, unsigned size) 173 { 174 VFIOConfigWindowQuirk *window = opaque; 175 VFIOPCIDevice *vdev = window->vdev; 176 177 if (window->window_enabled) { 178 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); 179 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, 180 memory_region_name(window->data_mem), data); 181 return; 182 } 183 184 vfio_region_write(&vdev->bars[window->bar].region, 185 addr + window->data_offset, data, size); 186 } 187 188 static const MemoryRegionOps vfio_generic_window_data_quirk = { 189 .read = vfio_generic_window_quirk_data_read, 190 .write = vfio_generic_window_quirk_data_write, 191 .endianness = DEVICE_LITTLE_ENDIAN, 192 }; 193 194 /* 195 * The generic mirror quirk handles devices which expose PCI config space 196 * through a region within a BAR. When enabled, reads and writes are 197 * redirected through to emulated PCI config space. XXX if PCI config space 198 * used memory regions, this could just be an alias. 199 */ 200 typedef struct VFIOConfigMirrorQuirk { 201 struct VFIOPCIDevice *vdev; 202 uint32_t offset; 203 uint8_t bar; 204 MemoryRegion *mem; 205 } VFIOConfigMirrorQuirk; 206 207 static uint64_t vfio_generic_quirk_mirror_read(void *opaque, 208 hwaddr addr, unsigned size) 209 { 210 VFIOConfigMirrorQuirk *mirror = opaque; 211 VFIOPCIDevice *vdev = mirror->vdev; 212 uint64_t data; 213 214 /* Read and discard in case the hardware cares */ 215 (void)vfio_region_read(&vdev->bars[mirror->bar].region, 216 addr + mirror->offset, size); 217 218 data = vfio_pci_read_config(&vdev->pdev, addr, size); 219 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, 220 memory_region_name(mirror->mem), 221 addr, data); 222 return data; 223 } 224 225 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, 226 uint64_t data, unsigned size) 227 { 228 VFIOConfigMirrorQuirk *mirror = opaque; 229 VFIOPCIDevice *vdev = mirror->vdev; 230 231 vfio_pci_write_config(&vdev->pdev, addr, data, size); 232 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, 233 memory_region_name(mirror->mem), 234 addr, data); 235 } 236 237 static const MemoryRegionOps vfio_generic_mirror_quirk = { 238 .read = vfio_generic_quirk_mirror_read, 239 .write = vfio_generic_quirk_mirror_write, 240 .endianness = DEVICE_LITTLE_ENDIAN, 241 }; 242 243 /* Is range1 fully contained within range2? */ 244 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 245 uint64_t first2, uint64_t len2) { 246 return (first1 >= first2 && first1 + len1 <= first2 + len2); 247 } 248 249 #define PCI_VENDOR_ID_ATI 0x1002 250 251 /* 252 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 253 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 254 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 255 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 256 * I/O port BAR address. Originally this was coded to return the virtual BAR 257 * address only if the physical register read returns the actual BAR address, 258 * but users have reported greater success if we return the virtual address 259 * unconditionally. 260 */ 261 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 262 hwaddr addr, unsigned size) 263 { 264 VFIOPCIDevice *vdev = opaque; 265 uint64_t data = vfio_pci_read_config(&vdev->pdev, 266 PCI_BASE_ADDRESS_4 + 1, size); 267 268 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); 269 270 return data; 271 } 272 273 static const MemoryRegionOps vfio_ati_3c3_quirk = { 274 .read = vfio_ati_3c3_quirk_read, 275 .endianness = DEVICE_LITTLE_ENDIAN, 276 }; 277 278 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 279 { 280 VFIOQuirk *quirk; 281 282 /* 283 * As long as the BAR is >= 256 bytes it will be aligned such that the 284 * lower byte is always zero. Filter out anything else, if it exists. 285 */ 286 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 287 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 288 return; 289 } 290 291 quirk = g_malloc0(sizeof(*quirk)); 292 quirk->mem = g_new0(MemoryRegion, 1); 293 quirk->nr_mem = 1; 294 295 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, 296 "vfio-ati-3c3-quirk", 1); 297 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 298 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); 299 300 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 301 quirk, next); 302 303 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); 304 } 305 306 /* 307 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI 308 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 309 * the MMIO space directly, but a window to this space is provided through 310 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 311 * data register. When the address is programmed to a range of 0x4000-0x4fff 312 * PCI configuration space is available. Experimentation seems to indicate 313 * that read-only may be provided by hardware. 314 */ 315 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) 316 { 317 VFIOQuirk *quirk; 318 VFIOConfigWindowQuirk *window; 319 320 /* This windows doesn't seem to be used except by legacy VGA code */ 321 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 322 !vdev->vga || nr != 4) { 323 return; 324 } 325 326 quirk = g_malloc0(sizeof(*quirk)); 327 quirk->mem = g_new0(MemoryRegion, 2); 328 quirk->nr_mem = 2; 329 window = quirk->data = g_malloc0(sizeof(*window) + 330 sizeof(VFIOConfigWindowMatch)); 331 window->vdev = vdev; 332 window->address_offset = 0; 333 window->data_offset = 4; 334 window->nr_matches = 1; 335 window->matches[0].match = 0x4000; 336 window->matches[0].mask = vdev->config_size - 1; 337 window->bar = nr; 338 window->addr_mem = &quirk->mem[0]; 339 window->data_mem = &quirk->mem[1]; 340 341 memory_region_init_io(window->addr_mem, OBJECT(vdev), 342 &vfio_generic_window_address_quirk, window, 343 "vfio-ati-bar4-window-address-quirk", 4); 344 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 345 window->address_offset, 346 window->addr_mem, 1); 347 348 memory_region_init_io(window->data_mem, OBJECT(vdev), 349 &vfio_generic_window_data_quirk, window, 350 "vfio-ati-bar4-window-data-quirk", 4); 351 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 352 window->data_offset, 353 window->data_mem, 1); 354 355 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 356 357 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); 358 } 359 360 /* 361 * Trap the BAR2 MMIO mirror to config space as well. 362 */ 363 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) 364 { 365 VFIOQuirk *quirk; 366 VFIOConfigMirrorQuirk *mirror; 367 368 /* Only enable on newer devices where BAR2 is 64bit */ 369 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 370 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { 371 return; 372 } 373 374 quirk = g_malloc0(sizeof(*quirk)); 375 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 376 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 377 quirk->nr_mem = 1; 378 mirror->vdev = vdev; 379 mirror->offset = 0x4000; 380 mirror->bar = nr; 381 382 memory_region_init_io(mirror->mem, OBJECT(vdev), 383 &vfio_generic_mirror_quirk, mirror, 384 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); 385 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 386 mirror->offset, mirror->mem, 1); 387 388 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 389 390 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); 391 } 392 393 /* 394 * Older ATI/AMD cards like the X550 have a similar window to that above. 395 * I/O port BAR1 provides a window to a mirror of PCI config space located 396 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 397 * note it for future reference. 398 */ 399 400 #define PCI_VENDOR_ID_NVIDIA 0x10de 401 402 /* 403 * Nvidia has several different methods to get to config space, the 404 * nouveu project has several of these documented here: 405 * https://github.com/pathscale/envytools/tree/master/hwdocs 406 * 407 * The first quirk is actually not documented in envytools and is found 408 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 409 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 410 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 411 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 412 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 413 * is written for a write to 0x3d4. The BAR0 offset is then accessible 414 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 415 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 416 */ 417 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; 418 static const char *nv3d0_states[] = { "NONE", "SELECT", 419 "WINDOW", "READ", "WRITE" }; 420 421 typedef struct VFIONvidia3d0Quirk { 422 VFIOPCIDevice *vdev; 423 VFIONvidia3d0State state; 424 uint32_t offset; 425 } VFIONvidia3d0Quirk; 426 427 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, 428 hwaddr addr, unsigned size) 429 { 430 VFIONvidia3d0Quirk *quirk = opaque; 431 VFIOPCIDevice *vdev = quirk->vdev; 432 433 quirk->state = NONE; 434 435 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 436 addr + 0x14, size); 437 } 438 439 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, 440 uint64_t data, unsigned size) 441 { 442 VFIONvidia3d0Quirk *quirk = opaque; 443 VFIOPCIDevice *vdev = quirk->vdev; 444 VFIONvidia3d0State old_state = quirk->state; 445 446 quirk->state = NONE; 447 448 switch (data) { 449 case 0x338: 450 if (old_state == NONE) { 451 quirk->state = SELECT; 452 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 453 nv3d0_states[quirk->state]); 454 } 455 break; 456 case 0x538: 457 if (old_state == WINDOW) { 458 quirk->state = READ; 459 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 460 nv3d0_states[quirk->state]); 461 } 462 break; 463 case 0x738: 464 if (old_state == WINDOW) { 465 quirk->state = WRITE; 466 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 467 nv3d0_states[quirk->state]); 468 } 469 break; 470 } 471 472 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 473 addr + 0x14, data, size); 474 } 475 476 static const MemoryRegionOps vfio_nvidia_3d4_quirk = { 477 .read = vfio_nvidia_3d4_quirk_read, 478 .write = vfio_nvidia_3d4_quirk_write, 479 .endianness = DEVICE_LITTLE_ENDIAN, 480 }; 481 482 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 483 hwaddr addr, unsigned size) 484 { 485 VFIONvidia3d0Quirk *quirk = opaque; 486 VFIOPCIDevice *vdev = quirk->vdev; 487 VFIONvidia3d0State old_state = quirk->state; 488 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 489 addr + 0x10, size); 490 491 quirk->state = NONE; 492 493 if (old_state == READ && 494 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 495 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 496 497 data = vfio_pci_read_config(&vdev->pdev, offset, size); 498 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, 499 offset, size, data); 500 } 501 502 return data; 503 } 504 505 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 506 uint64_t data, unsigned size) 507 { 508 VFIONvidia3d0Quirk *quirk = opaque; 509 VFIOPCIDevice *vdev = quirk->vdev; 510 VFIONvidia3d0State old_state = quirk->state; 511 512 quirk->state = NONE; 513 514 if (old_state == SELECT) { 515 quirk->offset = (uint32_t)data; 516 quirk->state = WINDOW; 517 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 518 nv3d0_states[quirk->state]); 519 } else if (old_state == WRITE) { 520 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 521 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 522 523 vfio_pci_write_config(&vdev->pdev, offset, data, size); 524 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, 525 offset, data, size); 526 return; 527 } 528 } 529 530 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 531 addr + 0x10, data, size); 532 } 533 534 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 535 .read = vfio_nvidia_3d0_quirk_read, 536 .write = vfio_nvidia_3d0_quirk_write, 537 .endianness = DEVICE_LITTLE_ENDIAN, 538 }; 539 540 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 541 { 542 VFIOQuirk *quirk; 543 VFIONvidia3d0Quirk *data; 544 545 if (vdev->no_geforce_quirks || 546 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 547 !vdev->bars[1].region.size) { 548 return; 549 } 550 551 quirk = g_malloc0(sizeof(*quirk)); 552 quirk->data = data = g_malloc0(sizeof(*data)); 553 quirk->mem = g_new0(MemoryRegion, 2); 554 quirk->nr_mem = 2; 555 data->vdev = vdev; 556 557 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, 558 data, "vfio-nvidia-3d4-quirk", 2); 559 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 560 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); 561 562 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, 563 data, "vfio-nvidia-3d0-quirk", 2); 564 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 565 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); 566 567 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 568 quirk, next); 569 570 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); 571 } 572 573 /* 574 * The second quirk is documented in envytools. The I/O port BAR5 is just 575 * a set of address/data ports to the MMIO BARs. The BAR we care about is 576 * again BAR0. This backdoor is apparently a bit newer than the one above 577 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 578 * space, including extended space is available at the 4k @0x88000. 579 */ 580 typedef struct VFIONvidiaBAR5Quirk { 581 uint32_t master; 582 uint32_t enable; 583 MemoryRegion *addr_mem; 584 MemoryRegion *data_mem; 585 bool enabled; 586 VFIOConfigWindowQuirk window; /* last for match data */ 587 } VFIONvidiaBAR5Quirk; 588 589 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) 590 { 591 VFIOPCIDevice *vdev = bar5->window.vdev; 592 593 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { 594 return; 595 } 596 597 bar5->enabled = !bar5->enabled; 598 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, 599 bar5->enabled ? "Enable" : "Disable"); 600 memory_region_set_enabled(bar5->addr_mem, bar5->enabled); 601 memory_region_set_enabled(bar5->data_mem, bar5->enabled); 602 } 603 604 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, 605 hwaddr addr, unsigned size) 606 { 607 VFIONvidiaBAR5Quirk *bar5 = opaque; 608 VFIOPCIDevice *vdev = bar5->window.vdev; 609 610 return vfio_region_read(&vdev->bars[5].region, addr, size); 611 } 612 613 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, 614 uint64_t data, unsigned size) 615 { 616 VFIONvidiaBAR5Quirk *bar5 = opaque; 617 VFIOPCIDevice *vdev = bar5->window.vdev; 618 619 vfio_region_write(&vdev->bars[5].region, addr, data, size); 620 621 bar5->master = data; 622 vfio_nvidia_bar5_enable(bar5); 623 } 624 625 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { 626 .read = vfio_nvidia_bar5_quirk_master_read, 627 .write = vfio_nvidia_bar5_quirk_master_write, 628 .endianness = DEVICE_LITTLE_ENDIAN, 629 }; 630 631 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, 632 hwaddr addr, unsigned size) 633 { 634 VFIONvidiaBAR5Quirk *bar5 = opaque; 635 VFIOPCIDevice *vdev = bar5->window.vdev; 636 637 return vfio_region_read(&vdev->bars[5].region, addr + 4, size); 638 } 639 640 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, 641 uint64_t data, unsigned size) 642 { 643 VFIONvidiaBAR5Quirk *bar5 = opaque; 644 VFIOPCIDevice *vdev = bar5->window.vdev; 645 646 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); 647 648 bar5->enable = data; 649 vfio_nvidia_bar5_enable(bar5); 650 } 651 652 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { 653 .read = vfio_nvidia_bar5_quirk_enable_read, 654 .write = vfio_nvidia_bar5_quirk_enable_write, 655 .endianness = DEVICE_LITTLE_ENDIAN, 656 }; 657 658 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) 659 { 660 VFIOQuirk *quirk; 661 VFIONvidiaBAR5Quirk *bar5; 662 VFIOConfigWindowQuirk *window; 663 664 if (vdev->no_geforce_quirks || 665 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 666 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) { 667 return; 668 } 669 670 quirk = g_malloc0(sizeof(*quirk)); 671 quirk->mem = g_new0(MemoryRegion, 4); 672 quirk->nr_mem = 4; 673 bar5 = quirk->data = g_malloc0(sizeof(*bar5) + 674 (sizeof(VFIOConfigWindowMatch) * 2)); 675 window = &bar5->window; 676 677 window->vdev = vdev; 678 window->address_offset = 0x8; 679 window->data_offset = 0xc; 680 window->nr_matches = 2; 681 window->matches[0].match = 0x1800; 682 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; 683 window->matches[1].match = 0x88000; 684 window->matches[1].mask = vdev->config_size - 1; 685 window->bar = nr; 686 window->addr_mem = bar5->addr_mem = &quirk->mem[0]; 687 window->data_mem = bar5->data_mem = &quirk->mem[1]; 688 689 memory_region_init_io(window->addr_mem, OBJECT(vdev), 690 &vfio_generic_window_address_quirk, window, 691 "vfio-nvidia-bar5-window-address-quirk", 4); 692 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 693 window->address_offset, 694 window->addr_mem, 1); 695 memory_region_set_enabled(window->addr_mem, false); 696 697 memory_region_init_io(window->data_mem, OBJECT(vdev), 698 &vfio_generic_window_data_quirk, window, 699 "vfio-nvidia-bar5-window-data-quirk", 4); 700 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 701 window->data_offset, 702 window->data_mem, 1); 703 memory_region_set_enabled(window->data_mem, false); 704 705 memory_region_init_io(&quirk->mem[2], OBJECT(vdev), 706 &vfio_nvidia_bar5_quirk_master, bar5, 707 "vfio-nvidia-bar5-master-quirk", 4); 708 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 709 0, &quirk->mem[2], 1); 710 711 memory_region_init_io(&quirk->mem[3], OBJECT(vdev), 712 &vfio_nvidia_bar5_quirk_enable, bar5, 713 "vfio-nvidia-bar5-enable-quirk", 4); 714 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 715 4, &quirk->mem[3], 1); 716 717 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 718 719 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); 720 } 721 722 /* 723 * Finally, BAR0 itself. We want to redirect any accesses to either 724 * 0x1800 or 0x88000 through the PCI config space access functions. 725 */ 726 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, 727 uint64_t data, unsigned size) 728 { 729 VFIOConfigMirrorQuirk *mirror = opaque; 730 VFIOPCIDevice *vdev = mirror->vdev; 731 PCIDevice *pdev = &vdev->pdev; 732 733 vfio_generic_quirk_mirror_write(opaque, addr, data, size); 734 735 /* 736 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 737 * MSI capability ID register. Both the ID and next register are 738 * read-only, so we allow writes covering either of those to real hw. 739 */ 740 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 741 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 742 vfio_region_write(&vdev->bars[mirror->bar].region, 743 addr + mirror->offset, data, size); 744 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); 745 } 746 } 747 748 static const MemoryRegionOps vfio_nvidia_mirror_quirk = { 749 .read = vfio_generic_quirk_mirror_read, 750 .write = vfio_nvidia_quirk_mirror_write, 751 .endianness = DEVICE_LITTLE_ENDIAN, 752 }; 753 754 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) 755 { 756 VFIOQuirk *quirk; 757 VFIOConfigMirrorQuirk *mirror; 758 759 if (vdev->no_geforce_quirks || 760 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 761 !vfio_is_vga(vdev) || nr != 0) { 762 return; 763 } 764 765 quirk = g_malloc0(sizeof(*quirk)); 766 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 767 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 768 quirk->nr_mem = 1; 769 mirror->vdev = vdev; 770 mirror->offset = 0x88000; 771 mirror->bar = nr; 772 773 memory_region_init_io(mirror->mem, OBJECT(vdev), 774 &vfio_nvidia_mirror_quirk, mirror, 775 "vfio-nvidia-bar0-88000-mirror-quirk", 776 vdev->config_size); 777 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 778 mirror->offset, mirror->mem, 1); 779 780 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 781 782 /* The 0x1800 offset mirror only seems to get used by legacy VGA */ 783 if (vdev->vga) { 784 quirk = g_malloc0(sizeof(*quirk)); 785 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 786 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 787 quirk->nr_mem = 1; 788 mirror->vdev = vdev; 789 mirror->offset = 0x1800; 790 mirror->bar = nr; 791 792 memory_region_init_io(mirror->mem, OBJECT(vdev), 793 &vfio_nvidia_mirror_quirk, mirror, 794 "vfio-nvidia-bar0-1800-mirror-quirk", 795 PCI_CONFIG_SPACE_SIZE); 796 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 797 mirror->offset, mirror->mem, 1); 798 799 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 800 } 801 802 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); 803 } 804 805 /* 806 * TODO - Some Nvidia devices provide config access to their companion HDA 807 * device and even to their parent bridge via these config space mirrors. 808 * Add quirks for those regions. 809 */ 810 811 #define PCI_VENDOR_ID_REALTEK 0x10ec 812 813 /* 814 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 815 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 816 * register. According to the Linux r8169 driver, the MSI-X table is addressed 817 * when the "type" portion of the address register is set to 0x1. This appears 818 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 819 * "address latched" indicator. Bits 12:15 are a mask field, which we can 820 * ignore because the MSI-X table should always be accessed as a dword (full 821 * mask). Bits 0:11 is offset within the type. 822 * 823 * Example trace: 824 * 825 * Read from MSI-X table offset 0 826 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 827 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 828 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 829 * 830 * Write 0xfee00000 to MSI-X table offset 0 831 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 832 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 833 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 834 */ 835 typedef struct VFIOrtl8168Quirk { 836 VFIOPCIDevice *vdev; 837 uint32_t addr; 838 uint32_t data; 839 bool enabled; 840 } VFIOrtl8168Quirk; 841 842 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, 843 hwaddr addr, unsigned size) 844 { 845 VFIOrtl8168Quirk *rtl = opaque; 846 VFIOPCIDevice *vdev = rtl->vdev; 847 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); 848 849 if (rtl->enabled) { 850 data = rtl->addr ^ 0x80000000U; /* latch/complete */ 851 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); 852 } 853 854 return data; 855 } 856 857 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, 858 uint64_t data, unsigned size) 859 { 860 VFIOrtl8168Quirk *rtl = opaque; 861 VFIOPCIDevice *vdev = rtl->vdev; 862 863 rtl->enabled = false; 864 865 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ 866 rtl->enabled = true; 867 rtl->addr = (uint32_t)data; 868 869 if (data & 0x80000000U) { /* Do write */ 870 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 871 hwaddr offset = data & 0xfff; 872 uint64_t val = rtl->data; 873 874 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, 875 (uint16_t)offset, val); 876 877 /* Write to the proper guest MSI-X table instead */ 878 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 879 offset, val, size, 880 MEMTXATTRS_UNSPECIFIED); 881 } 882 return; /* Do not write guest MSI-X data to hardware */ 883 } 884 } 885 886 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); 887 } 888 889 static const MemoryRegionOps vfio_rtl_address_quirk = { 890 .read = vfio_rtl8168_quirk_address_read, 891 .write = vfio_rtl8168_quirk_address_write, 892 .valid = { 893 .min_access_size = 4, 894 .max_access_size = 4, 895 .unaligned = false, 896 }, 897 .endianness = DEVICE_LITTLE_ENDIAN, 898 }; 899 900 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, 901 hwaddr addr, unsigned size) 902 { 903 VFIOrtl8168Quirk *rtl = opaque; 904 VFIOPCIDevice *vdev = rtl->vdev; 905 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); 906 907 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 908 hwaddr offset = rtl->addr & 0xfff; 909 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, 910 &data, size, MEMTXATTRS_UNSPECIFIED); 911 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); 912 } 913 914 return data; 915 } 916 917 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, 918 uint64_t data, unsigned size) 919 { 920 VFIOrtl8168Quirk *rtl = opaque; 921 VFIOPCIDevice *vdev = rtl->vdev; 922 923 rtl->data = (uint32_t)data; 924 925 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); 926 } 927 928 static const MemoryRegionOps vfio_rtl_data_quirk = { 929 .read = vfio_rtl8168_quirk_data_read, 930 .write = vfio_rtl8168_quirk_data_write, 931 .valid = { 932 .min_access_size = 4, 933 .max_access_size = 4, 934 .unaligned = false, 935 }, 936 .endianness = DEVICE_LITTLE_ENDIAN, 937 }; 938 939 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) 940 { 941 VFIOQuirk *quirk; 942 VFIOrtl8168Quirk *rtl; 943 944 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { 945 return; 946 } 947 948 quirk = g_malloc0(sizeof(*quirk)); 949 quirk->mem = g_new0(MemoryRegion, 2); 950 quirk->nr_mem = 2; 951 quirk->data = rtl = g_malloc0(sizeof(*rtl)); 952 rtl->vdev = vdev; 953 954 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), 955 &vfio_rtl_address_quirk, rtl, 956 "vfio-rtl8168-window-address-quirk", 4); 957 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 958 0x74, &quirk->mem[0], 1); 959 960 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), 961 &vfio_rtl_data_quirk, rtl, 962 "vfio-rtl8168-window-data-quirk", 4); 963 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 964 0x70, &quirk->mem[1], 1); 965 966 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 967 968 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); 969 } 970 971 /* 972 * Intel IGD support 973 * 974 * Obviously IGD is not a discrete device, this is evidenced not only by it 975 * being integrated into the CPU, but by the various chipset and BIOS 976 * dependencies that it brings along with it. Intel is trying to move away 977 * from this and Broadwell and newer devices can run in what Intel calls 978 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing 979 * more is required beyond assigning the IGD device to a VM. There are 980 * however support limitations to this mode. It only supports IGD as a 981 * secondary graphics device in the VM and it doesn't officially support any 982 * physical outputs. 983 * 984 * The code here attempts to enable what we'll call legacy mode assignment, 985 * IGD retains most of the capabilities we expect for it to have on bare 986 * metal. To enable this mode, the IGD device must be assigned to the VM 987 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA 988 * support, we must have VM BIOS support for reserving and populating some 989 * of the required tables, and we need to tweak the chipset with revisions 990 * and IDs and an LPC/ISA bridge device. The intention is to make all of 991 * this happen automatically by installing the device at the correct VM PCI 992 * bus address. If any of the conditions are not met, we cross our fingers 993 * and hope the user knows better. 994 * 995 * NB - It is possible to enable physical outputs in UPT mode by supplying 996 * an OpRegion table. We don't do this by default because the guest driver 997 * behaves differently if an OpRegion is provided and no monitor is attached 998 * vs no OpRegion and a monitor being attached or not. Effectively, if a 999 * headless setup is desired, the OpRegion gets in the way of that. 1000 */ 1001 1002 /* 1003 * This presumes the device is already known to be an Intel VGA device, so we 1004 * take liberties in which device ID bits match which generation. This should 1005 * not be taken as an indication that all the devices are supported, or even 1006 * supportable, some of them don't even support VT-d. 1007 * See linux:include/drm/i915_pciids.h for IDs. 1008 */ 1009 static int igd_gen(VFIOPCIDevice *vdev) 1010 { 1011 if ((vdev->device_id & 0xfff) == 0xa84) { 1012 return 8; /* Broxton */ 1013 } 1014 1015 switch (vdev->device_id & 0xff00) { 1016 /* Old, untested, unavailable, unknown */ 1017 case 0x0000: 1018 case 0x2500: 1019 case 0x2700: 1020 case 0x2900: 1021 case 0x2a00: 1022 case 0x2e00: 1023 case 0x3500: 1024 case 0xa000: 1025 return -1; 1026 /* SandyBridge, IvyBridge, ValleyView, Haswell */ 1027 case 0x0100: 1028 case 0x0400: 1029 case 0x0a00: 1030 case 0x0c00: 1031 case 0x0d00: 1032 case 0x0f00: 1033 return 6; 1034 /* BroadWell, CherryView, SkyLake, KabyLake */ 1035 case 0x1600: 1036 case 0x1900: 1037 case 0x2200: 1038 case 0x5900: 1039 return 8; 1040 } 1041 1042 return 8; /* Assume newer is compatible */ 1043 } 1044 1045 typedef struct VFIOIGDQuirk { 1046 struct VFIOPCIDevice *vdev; 1047 uint32_t index; 1048 uint32_t bdsm; 1049 } VFIOIGDQuirk; 1050 1051 #define IGD_GMCH 0x50 /* Graphics Control Register */ 1052 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */ 1053 #define IGD_ASLS 0xfc /* ASL Storage Register */ 1054 1055 /* 1056 * The OpRegion includes the Video BIOS Table, which seems important for 1057 * telling the driver what sort of outputs it has. Without this, the device 1058 * may work in the guest, but we may not get output. This also requires BIOS 1059 * support to reserve and populate a section of guest memory sufficient for 1060 * the table and to write the base address of that memory to the ASLS register 1061 * of the IGD device. 1062 */ 1063 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, 1064 struct vfio_region_info *info, Error **errp) 1065 { 1066 int ret; 1067 1068 vdev->igd_opregion = g_malloc0(info->size); 1069 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, 1070 info->size, info->offset); 1071 if (ret != info->size) { 1072 error_setg(errp, "failed to read IGD OpRegion"); 1073 g_free(vdev->igd_opregion); 1074 vdev->igd_opregion = NULL; 1075 return -EINVAL; 1076 } 1077 1078 /* 1079 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to 1080 * allocate 32bit reserved memory for, copy these contents into, and write 1081 * the reserved memory base address to the device ASLS register at 0xFC. 1082 * Alignment of this reserved region seems flexible, but using a 4k page 1083 * alignment seems to work well. This interface assumes a single IGD 1084 * device, which may be at VM address 00:02.0 in legacy mode or another 1085 * address in UPT mode. 1086 * 1087 * NB, there may be future use cases discovered where the VM should have 1088 * direct interaction with the host OpRegion, in which case the write to 1089 * the ASLS register would trigger MemoryRegion setup to enable that. 1090 */ 1091 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", 1092 vdev->igd_opregion, info->size); 1093 1094 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); 1095 1096 pci_set_long(vdev->pdev.config + IGD_ASLS, 0); 1097 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); 1098 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); 1099 1100 return 0; 1101 } 1102 1103 /* 1104 * The rather short list of registers that we copy from the host devices. 1105 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the 1106 * host bridge values may or may not be needed depending on the guest OS. 1107 * Since we're only munging revision and subsystem values on the host bridge, 1108 * we don't require our own device. The LPC/ISA bridge needs to be our very 1109 * own though. 1110 */ 1111 typedef struct { 1112 uint8_t offset; 1113 uint8_t len; 1114 } IGDHostInfo; 1115 1116 static const IGDHostInfo igd_host_bridge_infos[] = { 1117 {PCI_REVISION_ID, 2}, 1118 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1119 {PCI_SUBSYSTEM_ID, 2}, 1120 }; 1121 1122 static const IGDHostInfo igd_lpc_bridge_infos[] = { 1123 {PCI_VENDOR_ID, 2}, 1124 {PCI_DEVICE_ID, 2}, 1125 {PCI_REVISION_ID, 2}, 1126 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1127 {PCI_SUBSYSTEM_ID, 2}, 1128 }; 1129 1130 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev, 1131 struct vfio_region_info *info, 1132 const IGDHostInfo *list, int len) 1133 { 1134 int i, ret; 1135 1136 for (i = 0; i < len; i++) { 1137 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset, 1138 list[i].len, info->offset + list[i].offset); 1139 if (ret != list[i].len) { 1140 error_report("IGD copy failed: %m"); 1141 return -errno; 1142 } 1143 } 1144 1145 return 0; 1146 } 1147 1148 /* 1149 * Stuff a few values into the host bridge. 1150 */ 1151 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev, 1152 struct vfio_region_info *info) 1153 { 1154 PCIBus *bus; 1155 PCIDevice *host_bridge; 1156 int ret; 1157 1158 bus = pci_device_root_bus(&vdev->pdev); 1159 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0)); 1160 1161 if (!host_bridge) { 1162 error_report("Can't find host bridge"); 1163 return -ENODEV; 1164 } 1165 1166 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos, 1167 ARRAY_SIZE(igd_host_bridge_infos)); 1168 if (!ret) { 1169 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name); 1170 } 1171 1172 return ret; 1173 } 1174 1175 /* 1176 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write 1177 * arbitrary values into just any bridge, so we must create our own. We try 1178 * to handle if the user has created it for us, which they might want to do 1179 * to enable multifunction so we don't occupy the whole PCI slot. 1180 */ 1181 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp) 1182 { 1183 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) { 1184 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0"); 1185 } 1186 } 1187 1188 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data) 1189 { 1190 DeviceClass *dc = DEVICE_CLASS(klass); 1191 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1192 1193 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1194 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment"; 1195 dc->hotpluggable = false; 1196 k->realize = vfio_pci_igd_lpc_bridge_realize; 1197 k->class_id = PCI_CLASS_BRIDGE_ISA; 1198 } 1199 1200 static TypeInfo vfio_pci_igd_lpc_bridge_info = { 1201 .name = "vfio-pci-igd-lpc-bridge", 1202 .parent = TYPE_PCI_DEVICE, 1203 .class_init = vfio_pci_igd_lpc_bridge_class_init, 1204 .interfaces = (InterfaceInfo[]) { 1205 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1206 { }, 1207 }, 1208 }; 1209 1210 static void vfio_pci_igd_register_types(void) 1211 { 1212 type_register_static(&vfio_pci_igd_lpc_bridge_info); 1213 } 1214 1215 type_init(vfio_pci_igd_register_types) 1216 1217 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev, 1218 struct vfio_region_info *info) 1219 { 1220 PCIDevice *lpc_bridge; 1221 int ret; 1222 1223 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1224 0, PCI_DEVFN(0x1f, 0)); 1225 if (!lpc_bridge) { 1226 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev), 1227 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge"); 1228 } 1229 1230 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos, 1231 ARRAY_SIZE(igd_lpc_bridge_infos)); 1232 if (!ret) { 1233 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name); 1234 } 1235 1236 return ret; 1237 } 1238 1239 /* 1240 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE 1241 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore 1242 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index 1243 * for programming the GTT. 1244 * 1245 * See linux:include/drm/i915_drm.h for shift and mask values. 1246 */ 1247 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev) 1248 { 1249 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1250 int ggms, gen = igd_gen(vdev); 1251 1252 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1253 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1254 if (gen > 6) { 1255 ggms = 1 << ggms; 1256 } 1257 1258 ggms *= 1024 * 1024; 1259 1260 return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8); 1261 } 1262 1263 /* 1264 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes. 1265 * Somehow the host stolen memory range is used for this, but how the ROM gets 1266 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it 1267 * reprograms the GTT through the IOBAR where we can trap it and transpose the 1268 * programming to the VM allocated buffer. That buffer gets reserved by the VM 1269 * firmware via the fw_cfg entry added below. Here we're just monitoring the 1270 * IOBAR address and data registers to detect a write sequence targeting the 1271 * GTTADR. This code is developed by observed behavior and doesn't have a 1272 * direct spec reference, unfortunately. 1273 */ 1274 static uint64_t vfio_igd_quirk_data_read(void *opaque, 1275 hwaddr addr, unsigned size) 1276 { 1277 VFIOIGDQuirk *igd = opaque; 1278 VFIOPCIDevice *vdev = igd->vdev; 1279 1280 igd->index = ~0; 1281 1282 return vfio_region_read(&vdev->bars[4].region, addr + 4, size); 1283 } 1284 1285 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr, 1286 uint64_t data, unsigned size) 1287 { 1288 VFIOIGDQuirk *igd = opaque; 1289 VFIOPCIDevice *vdev = igd->vdev; 1290 uint64_t val = data; 1291 int gen = igd_gen(vdev); 1292 1293 /* 1294 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie. 1295 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE 1296 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so 1297 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points 1298 * to a 4k page, which we translate to a page from the VM allocated region, 1299 * pointed to by the BDSM register. If this is not set, we fail. 1300 * 1301 * We trap writes to the full configured GTT size, but we typically only 1302 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often 1303 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous 1304 * write of that last entry does work, but is hopefully unnecessary since 1305 * we clear the previous GTT on initialization. 1306 */ 1307 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) { 1308 if (gen < 8 || (igd->index % 8 == 1)) { 1309 uint32_t base; 1310 1311 base = pci_get_long(vdev->pdev.config + IGD_BDSM); 1312 if (!base) { 1313 hw_error("vfio-igd: Guest attempted to program IGD GTT before " 1314 "BIOS reserved stolen memory. Unsupported BIOS?"); 1315 } 1316 1317 val = data - igd->bdsm + base; 1318 } else { 1319 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */ 1320 } 1321 1322 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name, 1323 igd->index, data, val); 1324 } 1325 1326 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size); 1327 1328 igd->index = ~0; 1329 } 1330 1331 static const MemoryRegionOps vfio_igd_data_quirk = { 1332 .read = vfio_igd_quirk_data_read, 1333 .write = vfio_igd_quirk_data_write, 1334 .endianness = DEVICE_LITTLE_ENDIAN, 1335 }; 1336 1337 static uint64_t vfio_igd_quirk_index_read(void *opaque, 1338 hwaddr addr, unsigned size) 1339 { 1340 VFIOIGDQuirk *igd = opaque; 1341 VFIOPCIDevice *vdev = igd->vdev; 1342 1343 igd->index = ~0; 1344 1345 return vfio_region_read(&vdev->bars[4].region, addr, size); 1346 } 1347 1348 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr, 1349 uint64_t data, unsigned size) 1350 { 1351 VFIOIGDQuirk *igd = opaque; 1352 VFIOPCIDevice *vdev = igd->vdev; 1353 1354 igd->index = data; 1355 1356 vfio_region_write(&vdev->bars[4].region, addr, data, size); 1357 } 1358 1359 static const MemoryRegionOps vfio_igd_index_quirk = { 1360 .read = vfio_igd_quirk_index_read, 1361 .write = vfio_igd_quirk_index_write, 1362 .endianness = DEVICE_LITTLE_ENDIAN, 1363 }; 1364 1365 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) 1366 { 1367 struct vfio_region_info *rom = NULL, *opregion = NULL, 1368 *host = NULL, *lpc = NULL; 1369 VFIOQuirk *quirk; 1370 VFIOIGDQuirk *igd; 1371 PCIDevice *lpc_bridge; 1372 int i, ret, ggms_mb, gms_mb = 0, gen; 1373 uint64_t *bdsm_size; 1374 uint32_t gmch; 1375 uint16_t cmd_orig, cmd; 1376 Error *err = NULL; 1377 1378 /* 1379 * This must be an Intel VGA device at address 00:02.0 for us to even 1380 * consider enabling legacy mode. The vBIOS has dependencies on the 1381 * PCI bus address. 1382 */ 1383 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || 1384 !vfio_is_vga(vdev) || nr != 4 || 1385 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 1386 0, PCI_DEVFN(0x2, 0))) { 1387 return; 1388 } 1389 1390 /* 1391 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we 1392 * can stuff host values into, so if there's already one there and it's not 1393 * one we can hack on, legacy mode is no-go. Sorry Q35. 1394 */ 1395 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1396 0, PCI_DEVFN(0x1f, 0)); 1397 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), 1398 "vfio-pci-igd-lpc-bridge")) { 1399 error_report("IGD device %s cannot support legacy mode due to existing " 1400 "devices at address 1f.0", vdev->vbasedev.name); 1401 return; 1402 } 1403 1404 /* 1405 * IGD is not a standard, they like to change their specs often. We 1406 * only attempt to support back to SandBridge and we hope that newer 1407 * devices maintain compatibility with generation 8. 1408 */ 1409 gen = igd_gen(vdev); 1410 if (gen != 6 && gen != 8) { 1411 error_report("IGD device %s is unsupported in legacy mode, " 1412 "try SandyBridge or newer", vdev->vbasedev.name); 1413 return; 1414 } 1415 1416 /* 1417 * Most of what we're doing here is to enable the ROM to run, so if 1418 * there's no ROM, there's no point in setting up this quirk. 1419 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. 1420 */ 1421 ret = vfio_get_region_info(&vdev->vbasedev, 1422 VFIO_PCI_ROM_REGION_INDEX, &rom); 1423 if ((ret || !rom->size) && !vdev->pdev.romfile) { 1424 error_report("IGD device %s has no ROM, legacy mode disabled", 1425 vdev->vbasedev.name); 1426 goto out; 1427 } 1428 1429 /* 1430 * Ignore the hotplug corner case, mark the ROM failed, we can't 1431 * create the devices we need for legacy mode in the hotplug scenario. 1432 */ 1433 if (vdev->pdev.qdev.hotplugged) { 1434 error_report("IGD device %s hotplugged, ROM disabled, " 1435 "legacy mode disabled", vdev->vbasedev.name); 1436 vdev->rom_read_failed = true; 1437 goto out; 1438 } 1439 1440 /* 1441 * Check whether we have all the vfio device specific regions to 1442 * support legacy mode (added in Linux v4.6). If not, bail. 1443 */ 1444 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1445 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1446 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); 1447 if (ret) { 1448 error_report("IGD device %s does not support OpRegion access," 1449 "legacy mode disabled", vdev->vbasedev.name); 1450 goto out; 1451 } 1452 1453 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1454 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1455 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); 1456 if (ret) { 1457 error_report("IGD device %s does not support host bridge access," 1458 "legacy mode disabled", vdev->vbasedev.name); 1459 goto out; 1460 } 1461 1462 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1463 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1464 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); 1465 if (ret) { 1466 error_report("IGD device %s does not support LPC bridge access," 1467 "legacy mode disabled", vdev->vbasedev.name); 1468 goto out; 1469 } 1470 1471 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); 1472 1473 /* 1474 * If IGD VGA Disable is clear (expected) and VGA is not already enabled, 1475 * try to enable it. Probably shouldn't be using legacy mode without VGA, 1476 * but also no point in us enabling VGA if disabled in hardware. 1477 */ 1478 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) { 1479 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); 1480 error_report("IGD device %s failed to enable VGA access, " 1481 "legacy mode disabled", vdev->vbasedev.name); 1482 goto out; 1483 } 1484 1485 /* Create our LPC/ISA bridge */ 1486 ret = vfio_pci_igd_lpc_init(vdev, lpc); 1487 if (ret) { 1488 error_report("IGD device %s failed to create LPC bridge, " 1489 "legacy mode disabled", vdev->vbasedev.name); 1490 goto out; 1491 } 1492 1493 /* Stuff some host values into the VM PCI host bridge */ 1494 ret = vfio_pci_igd_host_init(vdev, host); 1495 if (ret) { 1496 error_report("IGD device %s failed to modify host bridge, " 1497 "legacy mode disabled", vdev->vbasedev.name); 1498 goto out; 1499 } 1500 1501 /* Setup OpRegion access */ 1502 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err); 1503 if (ret) { 1504 error_append_hint(&err, "IGD legacy mode disabled\n"); 1505 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); 1506 goto out; 1507 } 1508 1509 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ 1510 quirk = g_malloc0(sizeof(*quirk)); 1511 quirk->mem = g_new0(MemoryRegion, 2); 1512 quirk->nr_mem = 2; 1513 igd = quirk->data = g_malloc0(sizeof(*igd)); 1514 igd->vdev = vdev; 1515 igd->index = ~0; 1516 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4); 1517 igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */ 1518 1519 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, 1520 igd, "vfio-igd-index-quirk", 4); 1521 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1522 0, &quirk->mem[0], 1); 1523 1524 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, 1525 igd, "vfio-igd-data-quirk", 4); 1526 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1527 4, &quirk->mem[1], 1); 1528 1529 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1530 1531 /* Determine the size of stolen memory needed for GTT */ 1532 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1533 if (gen > 6) { 1534 ggms_mb = 1 << ggms_mb; 1535 } 1536 1537 /* 1538 * Assume we have no GMS memory, but allow it to be overrided by device 1539 * option (experimental). The spec doesn't actually allow zero GMS when 1540 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused, 1541 * so let's not waste VM memory for it. 1542 */ 1543 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8)); 1544 1545 if (vdev->igd_gms) { 1546 if (vdev->igd_gms <= 0x10) { 1547 gms_mb = vdev->igd_gms * 32; 1548 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8); 1549 } else { 1550 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms); 1551 vdev->igd_gms = 0; 1552 } 1553 } 1554 1555 /* 1556 * Request reserved memory for stolen memory via fw_cfg. VM firmware 1557 * must allocate a 1MB aligned reserved memory region below 4GB with 1558 * the requested size (in bytes) for use by the Intel PCI class VGA 1559 * device at VM address 00:02.0. The base address of this reserved 1560 * memory region must be written to the device BDSM regsiter at PCI 1561 * config offset 0x5C. 1562 */ 1563 bdsm_size = g_malloc(sizeof(*bdsm_size)); 1564 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024); 1565 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", 1566 bdsm_size, sizeof(*bdsm_size)); 1567 1568 /* GMCH is read-only, emulated */ 1569 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); 1570 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); 1571 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); 1572 1573 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ 1574 pci_set_long(vdev->pdev.config + IGD_BDSM, 0); 1575 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); 1576 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); 1577 1578 /* 1579 * This IOBAR gives us access to GTTADR, which allows us to write to 1580 * the GTT itself. So let's go ahead and write zero to all the GTT 1581 * entries to avoid spurious DMA faults. Be sure I/O access is enabled 1582 * before talking to the device. 1583 */ 1584 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1585 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1586 error_report("IGD device %s - failed to read PCI command register", 1587 vdev->vbasedev.name); 1588 } 1589 1590 cmd = cmd_orig | PCI_COMMAND_IO; 1591 1592 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), 1593 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { 1594 error_report("IGD device %s - failed to write PCI command register", 1595 vdev->vbasedev.name); 1596 } 1597 1598 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { 1599 vfio_region_write(&vdev->bars[4].region, 0, i, 4); 1600 vfio_region_write(&vdev->bars[4].region, 4, 0, 4); 1601 } 1602 1603 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1604 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1605 error_report("IGD device %s - failed to restore PCI command register", 1606 vdev->vbasedev.name); 1607 } 1608 1609 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); 1610 1611 out: 1612 g_free(rom); 1613 g_free(opregion); 1614 g_free(host); 1615 g_free(lpc); 1616 } 1617 1618 /* 1619 * Common quirk probe entry points. 1620 */ 1621 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 1622 { 1623 vfio_vga_probe_ati_3c3_quirk(vdev); 1624 vfio_vga_probe_nvidia_3d0_quirk(vdev); 1625 } 1626 1627 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) 1628 { 1629 VFIOQuirk *quirk; 1630 int i, j; 1631 1632 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1633 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { 1634 for (j = 0; j < quirk->nr_mem; j++) { 1635 memory_region_del_subregion(&vdev->vga->region[i].mem, 1636 &quirk->mem[j]); 1637 } 1638 } 1639 } 1640 } 1641 1642 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) 1643 { 1644 int i, j; 1645 1646 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1647 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { 1648 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); 1649 QLIST_REMOVE(quirk, next); 1650 for (j = 0; j < quirk->nr_mem; j++) { 1651 object_unparent(OBJECT(&quirk->mem[j])); 1652 } 1653 g_free(quirk->mem); 1654 g_free(quirk->data); 1655 g_free(quirk); 1656 } 1657 } 1658 } 1659 1660 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 1661 { 1662 vfio_probe_ati_bar4_quirk(vdev, nr); 1663 vfio_probe_ati_bar2_quirk(vdev, nr); 1664 vfio_probe_nvidia_bar5_quirk(vdev, nr); 1665 vfio_probe_nvidia_bar0_quirk(vdev, nr); 1666 vfio_probe_rtl8168_bar2_quirk(vdev, nr); 1667 vfio_probe_igd_bar4_quirk(vdev, nr); 1668 } 1669 1670 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) 1671 { 1672 VFIOBAR *bar = &vdev->bars[nr]; 1673 VFIOQuirk *quirk; 1674 int i; 1675 1676 QLIST_FOREACH(quirk, &bar->quirks, next) { 1677 for (i = 0; i < quirk->nr_mem; i++) { 1678 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); 1679 } 1680 } 1681 } 1682 1683 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) 1684 { 1685 VFIOBAR *bar = &vdev->bars[nr]; 1686 int i; 1687 1688 while (!QLIST_EMPTY(&bar->quirks)) { 1689 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 1690 QLIST_REMOVE(quirk, next); 1691 for (i = 0; i < quirk->nr_mem; i++) { 1692 object_unparent(OBJECT(&quirk->mem[i])); 1693 } 1694 g_free(quirk->mem); 1695 g_free(quirk->data); 1696 g_free(quirk); 1697 } 1698 } 1699 1700 /* 1701 * Reset quirks 1702 */ 1703 1704 /* 1705 * AMD Radeon PCI config reset, based on Linux: 1706 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() 1707 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset 1708 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() 1709 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() 1710 * IDs: include/drm/drm_pciids.h 1711 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 1712 * 1713 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the 1714 * hardware that should be fixed on future ASICs. The symptom of this is that 1715 * once the accerlated driver loads, Windows guests will bsod on subsequent 1716 * attmpts to load the driver, such as after VM reset or shutdown/restart. To 1717 * work around this, we do an AMD specific PCI config reset, followed by an SMC 1718 * reset. The PCI config reset only works if SMC firmware is running, so we 1719 * have a dependency on the state of the device as to whether this reset will 1720 * be effective. There are still cases where we won't be able to kick the 1721 * device into working, but this greatly improves the usability overall. The 1722 * config reset magic is relatively common on AMD GPUs, but the setup and SMC 1723 * poking is largely ASIC specific. 1724 */ 1725 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) 1726 { 1727 uint32_t clk, pc_c; 1728 1729 /* 1730 * Registers 200h and 204h are index and data registers for accessing 1731 * indirect configuration registers within the device. 1732 */ 1733 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1734 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1735 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); 1736 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1737 1738 return (!(clk & 1) && (0x20100 <= pc_c)); 1739 } 1740 1741 /* 1742 * The scope of a config reset is controlled by a mode bit in the misc register 1743 * and a fuse, exposed as a bit in another register. The fuse is the default 1744 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula 1745 * scope = !(misc ^ fuse), where the resulting scope is defined the same as 1746 * the fuse. A truth table therefore tells us that if misc == fuse, we need 1747 * to flip the value of the bit in the misc register. 1748 */ 1749 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) 1750 { 1751 uint32_t misc, fuse; 1752 bool a, b; 1753 1754 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); 1755 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1756 b = fuse & 64; 1757 1758 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); 1759 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1760 a = misc & 2; 1761 1762 if (a == b) { 1763 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); 1764 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ 1765 } 1766 } 1767 1768 static int vfio_radeon_reset(VFIOPCIDevice *vdev) 1769 { 1770 PCIDevice *pdev = &vdev->pdev; 1771 int i, ret = 0; 1772 uint32_t data; 1773 1774 /* Defer to a kernel implemented reset */ 1775 if (vdev->vbasedev.reset_works) { 1776 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); 1777 return -ENODEV; 1778 } 1779 1780 /* Enable only memory BAR access */ 1781 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); 1782 1783 /* Reset only works if SMC firmware is loaded and running */ 1784 if (!vfio_radeon_smc_is_running(vdev)) { 1785 ret = -EINVAL; 1786 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); 1787 goto out; 1788 } 1789 1790 /* Make sure only the GFX function is reset */ 1791 vfio_radeon_set_gfx_only_reset(vdev); 1792 1793 /* AMD PCI config reset */ 1794 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); 1795 usleep(100); 1796 1797 /* Read back the memory size to make sure we're out of reset */ 1798 for (i = 0; i < 100000; i++) { 1799 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { 1800 goto reset_smc; 1801 } 1802 usleep(1); 1803 } 1804 1805 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); 1806 1807 reset_smc: 1808 /* Reset SMC */ 1809 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); 1810 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1811 data |= 1; 1812 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 1813 1814 /* Disable SMC clock */ 1815 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1816 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1817 data |= 1; 1818 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 1819 1820 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); 1821 1822 out: 1823 /* Restore PCI command register */ 1824 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); 1825 1826 return ret; 1827 } 1828 1829 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) 1830 { 1831 switch (vdev->vendor_id) { 1832 case 0x1002: 1833 switch (vdev->device_id) { 1834 /* Bonaire */ 1835 case 0x6649: /* Bonaire [FirePro W5100] */ 1836 case 0x6650: 1837 case 0x6651: 1838 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ 1839 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ 1840 case 0x665d: /* Bonaire [Radeon R7 200 Series] */ 1841 /* Hawaii */ 1842 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ 1843 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ 1844 case 0x67A2: 1845 case 0x67A8: 1846 case 0x67A9: 1847 case 0x67AA: 1848 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ 1849 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ 1850 case 0x67B8: 1851 case 0x67B9: 1852 case 0x67BA: 1853 case 0x67BE: 1854 vdev->resetfn = vfio_radeon_reset; 1855 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); 1856 break; 1857 } 1858 break; 1859 } 1860 } 1861 1862 /* 1863 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify 1864 * devices as a member of a clique. Devices within the same clique ID 1865 * are capable of direct P2P. It's the user's responsibility that this 1866 * is correct. The spec says that this may reside at any unused config 1867 * offset, but reserves and recommends hypervisors place this at C8h. 1868 * The spec also states that the hypervisor should place this capability 1869 * at the end of the capability list, thus next is defined as 0h. 1870 * 1871 * +----------------+----------------+----------------+----------------+ 1872 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) | 1873 * +----------------+----------------+----------------+----------------+ 1874 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') | 1875 * +---------------------------------+---------------------------------+ 1876 * 1877 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf 1878 */ 1879 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v, 1880 const char *name, void *opaque, 1881 Error **errp) 1882 { 1883 DeviceState *dev = DEVICE(obj); 1884 Property *prop = opaque; 1885 uint8_t *ptr = qdev_get_prop_ptr(dev, prop); 1886 1887 visit_type_uint8(v, name, ptr, errp); 1888 } 1889 1890 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v, 1891 const char *name, void *opaque, 1892 Error **errp) 1893 { 1894 DeviceState *dev = DEVICE(obj); 1895 Property *prop = opaque; 1896 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop); 1897 Error *local_err = NULL; 1898 1899 if (dev->realized) { 1900 qdev_prop_set_after_realize(dev, name, errp); 1901 return; 1902 } 1903 1904 visit_type_uint8(v, name, &value, &local_err); 1905 if (local_err) { 1906 error_propagate(errp, local_err); 1907 return; 1908 } 1909 1910 if (value & ~0xF) { 1911 error_setg(errp, "Property %s: valid range 0-15", name); 1912 return; 1913 } 1914 1915 *ptr = value; 1916 } 1917 1918 const PropertyInfo qdev_prop_nv_gpudirect_clique = { 1919 .name = "uint4", 1920 .description = "NVIDIA GPUDirect Clique ID (0 - 15)", 1921 .get = get_nv_gpudirect_clique_id, 1922 .set = set_nv_gpudirect_clique_id, 1923 }; 1924 1925 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp) 1926 { 1927 PCIDevice *pdev = &vdev->pdev; 1928 int ret, pos = 0xC8; 1929 1930 if (vdev->nv_gpudirect_clique == 0xFF) { 1931 return 0; 1932 } 1933 1934 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { 1935 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor"); 1936 return -EINVAL; 1937 } 1938 1939 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) != 1940 PCI_BASE_CLASS_DISPLAY) { 1941 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class"); 1942 return -EINVAL; 1943 } 1944 1945 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp); 1946 if (ret < 0) { 1947 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: "); 1948 return ret; 1949 } 1950 1951 memset(vdev->emulated_config_bits + pos, 0xFF, 8); 1952 pos += PCI_CAP_FLAGS; 1953 pci_set_byte(pdev->config + pos++, 8); 1954 pci_set_byte(pdev->config + pos++, 'P'); 1955 pci_set_byte(pdev->config + pos++, '2'); 1956 pci_set_byte(pdev->config + pos++, 'P'); 1957 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3); 1958 pci_set_byte(pdev->config + pos, 0); 1959 1960 return 0; 1961 } 1962 1963 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp) 1964 { 1965 int ret; 1966 1967 ret = vfio_add_nv_gpudirect_cap(vdev, errp); 1968 if (ret) { 1969 return ret; 1970 } 1971 1972 return 0; 1973 } 1974