xref: /openbmc/qemu/hw/vfio/pci-quirks.c (revision fa59483d)
1 /*
2  * device quirks for PCI devices
3  *
4  * Copyright Red Hat, Inc. 2012-2015
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu/units.h"
15 #include "qemu/error-report.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/range.h"
18 #include "qapi/error.h"
19 #include "qapi/visitor.h"
20 #include <sys/ioctl.h>
21 #include "hw/nvram/fw_cfg.h"
22 #include "pci.h"
23 #include "trace.h"
24 
25 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
26 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
27 {
28     return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
29            (device == PCI_ANY_ID || device == vdev->device_id);
30 }
31 
32 static bool vfio_is_vga(VFIOPCIDevice *vdev)
33 {
34     PCIDevice *pdev = &vdev->pdev;
35     uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
36 
37     return class == PCI_CLASS_DISPLAY_VGA;
38 }
39 
40 /*
41  * List of device ids/vendor ids for which to disable
42  * option rom loading. This avoids the guest hangs during rom
43  * execution as noticed with the BCM 57810 card for lack of a
44  * more better way to handle such issues.
45  * The  user can still override by specifying a romfile or
46  * rombar=1.
47  * Please see https://bugs.launchpad.net/qemu/+bug/1284874
48  * for an analysis of the 57810 card hang. When adding
49  * a new vendor id/device id combination below, please also add
50  * your card/environment details and information that could
51  * help in debugging to the bug tracking this issue
52  */
53 static const struct {
54     uint32_t vendor;
55     uint32_t device;
56 } romblacklist[] = {
57     { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
58 };
59 
60 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
61 {
62     int i;
63 
64     for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
65         if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
66             trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
67                                              romblacklist[i].vendor,
68                                              romblacklist[i].device);
69             return true;
70         }
71     }
72     return false;
73 }
74 
75 /*
76  * Device specific region quirks (mostly backdoors to PCI config space)
77  */
78 
79 /*
80  * The generic window quirks operate on an address and data register,
81  * vfio_generic_window_address_quirk handles the address register and
82  * vfio_generic_window_data_quirk handles the data register.  These ops
83  * pass reads and writes through to hardware until a value matching the
84  * stored address match/mask is written.  When this occurs, the data
85  * register access emulated PCI config space for the device rather than
86  * passing through accesses.  This enables devices where PCI config space
87  * is accessible behind a window register to maintain the virtualization
88  * provided through vfio.
89  */
90 typedef struct VFIOConfigWindowMatch {
91     uint32_t match;
92     uint32_t mask;
93 } VFIOConfigWindowMatch;
94 
95 typedef struct VFIOConfigWindowQuirk {
96     struct VFIOPCIDevice *vdev;
97 
98     uint32_t address_val;
99 
100     uint32_t address_offset;
101     uint32_t data_offset;
102 
103     bool window_enabled;
104     uint8_t bar;
105 
106     MemoryRegion *addr_mem;
107     MemoryRegion *data_mem;
108 
109     uint32_t nr_matches;
110     VFIOConfigWindowMatch matches[];
111 } VFIOConfigWindowQuirk;
112 
113 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
114                                                        hwaddr addr,
115                                                        unsigned size)
116 {
117     VFIOConfigWindowQuirk *window = opaque;
118     VFIOPCIDevice *vdev = window->vdev;
119 
120     return vfio_region_read(&vdev->bars[window->bar].region,
121                             addr + window->address_offset, size);
122 }
123 
124 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
125                                                     uint64_t data,
126                                                     unsigned size)
127 {
128     VFIOConfigWindowQuirk *window = opaque;
129     VFIOPCIDevice *vdev = window->vdev;
130     int i;
131 
132     window->window_enabled = false;
133 
134     vfio_region_write(&vdev->bars[window->bar].region,
135                       addr + window->address_offset, data, size);
136 
137     for (i = 0; i < window->nr_matches; i++) {
138         if ((data & ~window->matches[i].mask) == window->matches[i].match) {
139             window->window_enabled = true;
140             window->address_val = data & window->matches[i].mask;
141             trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
142                                     memory_region_name(window->addr_mem), data);
143             break;
144         }
145     }
146 }
147 
148 static const MemoryRegionOps vfio_generic_window_address_quirk = {
149     .read = vfio_generic_window_quirk_address_read,
150     .write = vfio_generic_window_quirk_address_write,
151     .endianness = DEVICE_LITTLE_ENDIAN,
152 };
153 
154 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
155                                                     hwaddr addr, unsigned size)
156 {
157     VFIOConfigWindowQuirk *window = opaque;
158     VFIOPCIDevice *vdev = window->vdev;
159     uint64_t data;
160 
161     /* Always read data reg, discard if window enabled */
162     data = vfio_region_read(&vdev->bars[window->bar].region,
163                             addr + window->data_offset, size);
164 
165     if (window->window_enabled) {
166         data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
167         trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
168                                     memory_region_name(window->data_mem), data);
169     }
170 
171     return data;
172 }
173 
174 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
175                                                  uint64_t data, unsigned size)
176 {
177     VFIOConfigWindowQuirk *window = opaque;
178     VFIOPCIDevice *vdev = window->vdev;
179 
180     if (window->window_enabled) {
181         vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
182         trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
183                                     memory_region_name(window->data_mem), data);
184         return;
185     }
186 
187     vfio_region_write(&vdev->bars[window->bar].region,
188                       addr + window->data_offset, data, size);
189 }
190 
191 static const MemoryRegionOps vfio_generic_window_data_quirk = {
192     .read = vfio_generic_window_quirk_data_read,
193     .write = vfio_generic_window_quirk_data_write,
194     .endianness = DEVICE_LITTLE_ENDIAN,
195 };
196 
197 /*
198  * The generic mirror quirk handles devices which expose PCI config space
199  * through a region within a BAR.  When enabled, reads and writes are
200  * redirected through to emulated PCI config space.  XXX if PCI config space
201  * used memory regions, this could just be an alias.
202  */
203 typedef struct VFIOConfigMirrorQuirk {
204     struct VFIOPCIDevice *vdev;
205     uint32_t offset;
206     uint8_t bar;
207     MemoryRegion *mem;
208     uint8_t data[];
209 } VFIOConfigMirrorQuirk;
210 
211 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
212                                                hwaddr addr, unsigned size)
213 {
214     VFIOConfigMirrorQuirk *mirror = opaque;
215     VFIOPCIDevice *vdev = mirror->vdev;
216     uint64_t data;
217 
218     /* Read and discard in case the hardware cares */
219     (void)vfio_region_read(&vdev->bars[mirror->bar].region,
220                            addr + mirror->offset, size);
221 
222     data = vfio_pci_read_config(&vdev->pdev, addr, size);
223     trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
224                                          memory_region_name(mirror->mem),
225                                          addr, data);
226     return data;
227 }
228 
229 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
230                                             uint64_t data, unsigned size)
231 {
232     VFIOConfigMirrorQuirk *mirror = opaque;
233     VFIOPCIDevice *vdev = mirror->vdev;
234 
235     vfio_pci_write_config(&vdev->pdev, addr, data, size);
236     trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
237                                           memory_region_name(mirror->mem),
238                                           addr, data);
239 }
240 
241 static const MemoryRegionOps vfio_generic_mirror_quirk = {
242     .read = vfio_generic_quirk_mirror_read,
243     .write = vfio_generic_quirk_mirror_write,
244     .endianness = DEVICE_LITTLE_ENDIAN,
245 };
246 
247 /* Is range1 fully contained within range2?  */
248 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
249                                  uint64_t first2, uint64_t len2) {
250     return (first1 >= first2 && first1 + len1 <= first2 + len2);
251 }
252 
253 #define PCI_VENDOR_ID_ATI               0x1002
254 
255 /*
256  * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
257  * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
258  * BAR4 (older cards like the X550 used BAR1, but we don't care to support
259  * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
260  * I/O port BAR address.  Originally this was coded to return the virtual BAR
261  * address only if the physical register read returns the actual BAR address,
262  * but users have reported greater success if we return the virtual address
263  * unconditionally.
264  */
265 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
266                                         hwaddr addr, unsigned size)
267 {
268     VFIOPCIDevice *vdev = opaque;
269     uint64_t data = vfio_pci_read_config(&vdev->pdev,
270                                          PCI_BASE_ADDRESS_4 + 1, size);
271 
272     trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
273 
274     return data;
275 }
276 
277 static const MemoryRegionOps vfio_ati_3c3_quirk = {
278     .read = vfio_ati_3c3_quirk_read,
279     .endianness = DEVICE_LITTLE_ENDIAN,
280 };
281 
282 static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
283 {
284     VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
285     QLIST_INIT(&quirk->ioeventfds);
286     quirk->mem = g_new0(MemoryRegion, nr_mem);
287     quirk->nr_mem = nr_mem;
288 
289     return quirk;
290 }
291 
292 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
293 {
294     QLIST_REMOVE(ioeventfd, next);
295     memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
296                               true, ioeventfd->data, &ioeventfd->e);
297 
298     if (ioeventfd->vfio) {
299         struct vfio_device_ioeventfd vfio_ioeventfd;
300 
301         vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
302         vfio_ioeventfd.flags = ioeventfd->size;
303         vfio_ioeventfd.data = ioeventfd->data;
304         vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
305                                 ioeventfd->region_addr;
306         vfio_ioeventfd.fd = -1;
307 
308         if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
309             error_report("Failed to remove vfio ioeventfd for %s+0x%"
310                          HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
311                          memory_region_name(ioeventfd->mr), ioeventfd->addr,
312                          ioeventfd->size, ioeventfd->data);
313         }
314     } else {
315         qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
316                             NULL, NULL, NULL);
317     }
318 
319     event_notifier_cleanup(&ioeventfd->e);
320     trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
321                               (uint64_t)ioeventfd->addr, ioeventfd->size,
322                               ioeventfd->data);
323     g_free(ioeventfd);
324 }
325 
326 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
327 {
328     VFIOIOEventFD *ioeventfd, *tmp;
329 
330     QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
331         if (ioeventfd->dynamic) {
332             vfio_ioeventfd_exit(vdev, ioeventfd);
333         }
334     }
335 }
336 
337 static void vfio_ioeventfd_handler(void *opaque)
338 {
339     VFIOIOEventFD *ioeventfd = opaque;
340 
341     if (event_notifier_test_and_clear(&ioeventfd->e)) {
342         vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
343                           ioeventfd->data, ioeventfd->size);
344         trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
345                                      (uint64_t)ioeventfd->addr, ioeventfd->size,
346                                      ioeventfd->data);
347     }
348 }
349 
350 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
351                                           MemoryRegion *mr, hwaddr addr,
352                                           unsigned size, uint64_t data,
353                                           VFIORegion *region,
354                                           hwaddr region_addr, bool dynamic)
355 {
356     VFIOIOEventFD *ioeventfd;
357 
358     if (vdev->no_kvm_ioeventfd) {
359         return NULL;
360     }
361 
362     ioeventfd = g_malloc0(sizeof(*ioeventfd));
363 
364     if (event_notifier_init(&ioeventfd->e, 0)) {
365         g_free(ioeventfd);
366         return NULL;
367     }
368 
369     /*
370      * MemoryRegion and relative offset, plus additional ioeventfd setup
371      * parameters for configuring and later tearing down KVM ioeventfd.
372      */
373     ioeventfd->mr = mr;
374     ioeventfd->addr = addr;
375     ioeventfd->size = size;
376     ioeventfd->data = data;
377     ioeventfd->dynamic = dynamic;
378     /*
379      * VFIORegion and relative offset for implementing the userspace
380      * handler.  data & size fields shared for both uses.
381      */
382     ioeventfd->region = region;
383     ioeventfd->region_addr = region_addr;
384 
385     if (!vdev->no_vfio_ioeventfd) {
386         struct vfio_device_ioeventfd vfio_ioeventfd;
387 
388         vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
389         vfio_ioeventfd.flags = ioeventfd->size;
390         vfio_ioeventfd.data = ioeventfd->data;
391         vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
392                                 ioeventfd->region_addr;
393         vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
394 
395         ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
396                                  VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
397     }
398 
399     if (!ioeventfd->vfio) {
400         qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
401                             vfio_ioeventfd_handler, NULL, ioeventfd);
402     }
403 
404     memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
405                               true, ioeventfd->data, &ioeventfd->e);
406     trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
407                               size, data, ioeventfd->vfio);
408 
409     return ioeventfd;
410 }
411 
412 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
413 {
414     VFIOQuirk *quirk;
415 
416     /*
417      * As long as the BAR is >= 256 bytes it will be aligned such that the
418      * lower byte is always zero.  Filter out anything else, if it exists.
419      */
420     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
421         !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
422         return;
423     }
424 
425     quirk = vfio_quirk_alloc(1);
426 
427     memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
428                           "vfio-ati-3c3-quirk", 1);
429     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
430                                 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
431 
432     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
433                       quirk, next);
434 
435     trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
436 }
437 
438 /*
439  * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
440  * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
441  * the MMIO space directly, but a window to this space is provided through
442  * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
443  * data register.  When the address is programmed to a range of 0x4000-0x4fff
444  * PCI configuration space is available.  Experimentation seems to indicate
445  * that read-only may be provided by hardware.
446  */
447 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
448 {
449     VFIOQuirk *quirk;
450     VFIOConfigWindowQuirk *window;
451 
452     /* This windows doesn't seem to be used except by legacy VGA code */
453     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
454         !vdev->vga || nr != 4) {
455         return;
456     }
457 
458     quirk = vfio_quirk_alloc(2);
459     window = quirk->data = g_malloc0(sizeof(*window) +
460                                      sizeof(VFIOConfigWindowMatch));
461     window->vdev = vdev;
462     window->address_offset = 0;
463     window->data_offset = 4;
464     window->nr_matches = 1;
465     window->matches[0].match = 0x4000;
466     window->matches[0].mask = vdev->config_size - 1;
467     window->bar = nr;
468     window->addr_mem = &quirk->mem[0];
469     window->data_mem = &quirk->mem[1];
470 
471     memory_region_init_io(window->addr_mem, OBJECT(vdev),
472                           &vfio_generic_window_address_quirk, window,
473                           "vfio-ati-bar4-window-address-quirk", 4);
474     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
475                                         window->address_offset,
476                                         window->addr_mem, 1);
477 
478     memory_region_init_io(window->data_mem, OBJECT(vdev),
479                           &vfio_generic_window_data_quirk, window,
480                           "vfio-ati-bar4-window-data-quirk", 4);
481     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
482                                         window->data_offset,
483                                         window->data_mem, 1);
484 
485     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
486 
487     trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
488 }
489 
490 /*
491  * Trap the BAR2 MMIO mirror to config space as well.
492  */
493 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
494 {
495     VFIOQuirk *quirk;
496     VFIOConfigMirrorQuirk *mirror;
497 
498     /* Only enable on newer devices where BAR2 is 64bit */
499     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
500         !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
501         return;
502     }
503 
504     quirk = vfio_quirk_alloc(1);
505     mirror = quirk->data = g_malloc0(sizeof(*mirror));
506     mirror->mem = quirk->mem;
507     mirror->vdev = vdev;
508     mirror->offset = 0x4000;
509     mirror->bar = nr;
510 
511     memory_region_init_io(mirror->mem, OBJECT(vdev),
512                           &vfio_generic_mirror_quirk, mirror,
513                           "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
514     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
515                                         mirror->offset, mirror->mem, 1);
516 
517     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
518 
519     trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
520 }
521 
522 /*
523  * Older ATI/AMD cards like the X550 have a similar window to that above.
524  * I/O port BAR1 provides a window to a mirror of PCI config space located
525  * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
526  * note it for future reference.
527  */
528 
529 /*
530  * Nvidia has several different methods to get to config space, the
531  * nouveu project has several of these documented here:
532  * https://github.com/pathscale/envytools/tree/master/hwdocs
533  *
534  * The first quirk is actually not documented in envytools and is found
535  * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
536  * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
537  * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
538  * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
539  * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
540  * is written for a write to 0x3d4.  The BAR0 offset is then accessible
541  * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
542  * that use the I/O port BAR5 window but it doesn't hurt to leave it.
543  */
544 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
545 static const char *nv3d0_states[] = { "NONE", "SELECT",
546                                       "WINDOW", "READ", "WRITE" };
547 
548 typedef struct VFIONvidia3d0Quirk {
549     VFIOPCIDevice *vdev;
550     VFIONvidia3d0State state;
551     uint32_t offset;
552 } VFIONvidia3d0Quirk;
553 
554 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
555                                            hwaddr addr, unsigned size)
556 {
557     VFIONvidia3d0Quirk *quirk = opaque;
558     VFIOPCIDevice *vdev = quirk->vdev;
559 
560     quirk->state = NONE;
561 
562     return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
563                          addr + 0x14, size);
564 }
565 
566 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
567                                         uint64_t data, unsigned size)
568 {
569     VFIONvidia3d0Quirk *quirk = opaque;
570     VFIOPCIDevice *vdev = quirk->vdev;
571     VFIONvidia3d0State old_state = quirk->state;
572 
573     quirk->state = NONE;
574 
575     switch (data) {
576     case 0x338:
577         if (old_state == NONE) {
578             quirk->state = SELECT;
579             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
580                                               nv3d0_states[quirk->state]);
581         }
582         break;
583     case 0x538:
584         if (old_state == WINDOW) {
585             quirk->state = READ;
586             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
587                                               nv3d0_states[quirk->state]);
588         }
589         break;
590     case 0x738:
591         if (old_state == WINDOW) {
592             quirk->state = WRITE;
593             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
594                                               nv3d0_states[quirk->state]);
595         }
596         break;
597     }
598 
599     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
600                    addr + 0x14, data, size);
601 }
602 
603 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
604     .read = vfio_nvidia_3d4_quirk_read,
605     .write = vfio_nvidia_3d4_quirk_write,
606     .endianness = DEVICE_LITTLE_ENDIAN,
607 };
608 
609 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
610                                            hwaddr addr, unsigned size)
611 {
612     VFIONvidia3d0Quirk *quirk = opaque;
613     VFIOPCIDevice *vdev = quirk->vdev;
614     VFIONvidia3d0State old_state = quirk->state;
615     uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
616                                   addr + 0x10, size);
617 
618     quirk->state = NONE;
619 
620     if (old_state == READ &&
621         (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
622         uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
623 
624         data = vfio_pci_read_config(&vdev->pdev, offset, size);
625         trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
626                                          offset, size, data);
627     }
628 
629     return data;
630 }
631 
632 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
633                                         uint64_t data, unsigned size)
634 {
635     VFIONvidia3d0Quirk *quirk = opaque;
636     VFIOPCIDevice *vdev = quirk->vdev;
637     VFIONvidia3d0State old_state = quirk->state;
638 
639     quirk->state = NONE;
640 
641     if (old_state == SELECT) {
642         quirk->offset = (uint32_t)data;
643         quirk->state = WINDOW;
644         trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
645                                           nv3d0_states[quirk->state]);
646     } else if (old_state == WRITE) {
647         if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
648             uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
649 
650             vfio_pci_write_config(&vdev->pdev, offset, data, size);
651             trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
652                                               offset, data, size);
653             return;
654         }
655     }
656 
657     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
658                    addr + 0x10, data, size);
659 }
660 
661 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
662     .read = vfio_nvidia_3d0_quirk_read,
663     .write = vfio_nvidia_3d0_quirk_write,
664     .endianness = DEVICE_LITTLE_ENDIAN,
665 };
666 
667 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
668 {
669     VFIOQuirk *quirk;
670     VFIONvidia3d0Quirk *data;
671 
672     if (vdev->no_geforce_quirks ||
673         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
674         !vdev->bars[1].region.size) {
675         return;
676     }
677 
678     quirk = vfio_quirk_alloc(2);
679     quirk->data = data = g_malloc0(sizeof(*data));
680     data->vdev = vdev;
681 
682     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
683                           data, "vfio-nvidia-3d4-quirk", 2);
684     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
685                                 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
686 
687     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
688                           data, "vfio-nvidia-3d0-quirk", 2);
689     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
690                                 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
691 
692     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
693                       quirk, next);
694 
695     trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
696 }
697 
698 /*
699  * The second quirk is documented in envytools.  The I/O port BAR5 is just
700  * a set of address/data ports to the MMIO BARs.  The BAR we care about is
701  * again BAR0.  This backdoor is apparently a bit newer than the one above
702  * so we need to not only trap 256 bytes @0x1800, but all of PCI config
703  * space, including extended space is available at the 4k @0x88000.
704  */
705 typedef struct VFIONvidiaBAR5Quirk {
706     uint32_t master;
707     uint32_t enable;
708     MemoryRegion *addr_mem;
709     MemoryRegion *data_mem;
710     bool enabled;
711     VFIOConfigWindowQuirk window; /* last for match data */
712 } VFIONvidiaBAR5Quirk;
713 
714 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
715 {
716     VFIOPCIDevice *vdev = bar5->window.vdev;
717 
718     if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
719         return;
720     }
721 
722     bar5->enabled = !bar5->enabled;
723     trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
724                                        bar5->enabled ?  "Enable" : "Disable");
725     memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
726     memory_region_set_enabled(bar5->data_mem, bar5->enabled);
727 }
728 
729 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
730                                                    hwaddr addr, unsigned size)
731 {
732     VFIONvidiaBAR5Quirk *bar5 = opaque;
733     VFIOPCIDevice *vdev = bar5->window.vdev;
734 
735     return vfio_region_read(&vdev->bars[5].region, addr, size);
736 }
737 
738 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
739                                                 uint64_t data, unsigned size)
740 {
741     VFIONvidiaBAR5Quirk *bar5 = opaque;
742     VFIOPCIDevice *vdev = bar5->window.vdev;
743 
744     vfio_region_write(&vdev->bars[5].region, addr, data, size);
745 
746     bar5->master = data;
747     vfio_nvidia_bar5_enable(bar5);
748 }
749 
750 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
751     .read = vfio_nvidia_bar5_quirk_master_read,
752     .write = vfio_nvidia_bar5_quirk_master_write,
753     .endianness = DEVICE_LITTLE_ENDIAN,
754 };
755 
756 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
757                                                    hwaddr addr, unsigned size)
758 {
759     VFIONvidiaBAR5Quirk *bar5 = opaque;
760     VFIOPCIDevice *vdev = bar5->window.vdev;
761 
762     return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
763 }
764 
765 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
766                                                 uint64_t data, unsigned size)
767 {
768     VFIONvidiaBAR5Quirk *bar5 = opaque;
769     VFIOPCIDevice *vdev = bar5->window.vdev;
770 
771     vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
772 
773     bar5->enable = data;
774     vfio_nvidia_bar5_enable(bar5);
775 }
776 
777 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
778     .read = vfio_nvidia_bar5_quirk_enable_read,
779     .write = vfio_nvidia_bar5_quirk_enable_write,
780     .endianness = DEVICE_LITTLE_ENDIAN,
781 };
782 
783 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
784 {
785     VFIOQuirk *quirk;
786     VFIONvidiaBAR5Quirk *bar5;
787     VFIOConfigWindowQuirk *window;
788 
789     if (vdev->no_geforce_quirks ||
790         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
791         !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
792         return;
793     }
794 
795     quirk = vfio_quirk_alloc(4);
796     bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
797                                    (sizeof(VFIOConfigWindowMatch) * 2));
798     window = &bar5->window;
799 
800     window->vdev = vdev;
801     window->address_offset = 0x8;
802     window->data_offset = 0xc;
803     window->nr_matches = 2;
804     window->matches[0].match = 0x1800;
805     window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
806     window->matches[1].match = 0x88000;
807     window->matches[1].mask = vdev->config_size - 1;
808     window->bar = nr;
809     window->addr_mem = bar5->addr_mem = &quirk->mem[0];
810     window->data_mem = bar5->data_mem = &quirk->mem[1];
811 
812     memory_region_init_io(window->addr_mem, OBJECT(vdev),
813                           &vfio_generic_window_address_quirk, window,
814                           "vfio-nvidia-bar5-window-address-quirk", 4);
815     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
816                                         window->address_offset,
817                                         window->addr_mem, 1);
818     memory_region_set_enabled(window->addr_mem, false);
819 
820     memory_region_init_io(window->data_mem, OBJECT(vdev),
821                           &vfio_generic_window_data_quirk, window,
822                           "vfio-nvidia-bar5-window-data-quirk", 4);
823     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
824                                         window->data_offset,
825                                         window->data_mem, 1);
826     memory_region_set_enabled(window->data_mem, false);
827 
828     memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
829                           &vfio_nvidia_bar5_quirk_master, bar5,
830                           "vfio-nvidia-bar5-master-quirk", 4);
831     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
832                                         0, &quirk->mem[2], 1);
833 
834     memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
835                           &vfio_nvidia_bar5_quirk_enable, bar5,
836                           "vfio-nvidia-bar5-enable-quirk", 4);
837     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
838                                         4, &quirk->mem[3], 1);
839 
840     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
841 
842     trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
843 }
844 
845 typedef struct LastDataSet {
846     VFIOQuirk *quirk;
847     hwaddr addr;
848     uint64_t data;
849     unsigned size;
850     int hits;
851     int added;
852 } LastDataSet;
853 
854 #define MAX_DYN_IOEVENTFD 10
855 #define HITS_FOR_IOEVENTFD 10
856 
857 /*
858  * Finally, BAR0 itself.  We want to redirect any accesses to either
859  * 0x1800 or 0x88000 through the PCI config space access functions.
860  */
861 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
862                                            uint64_t data, unsigned size)
863 {
864     VFIOConfigMirrorQuirk *mirror = opaque;
865     VFIOPCIDevice *vdev = mirror->vdev;
866     PCIDevice *pdev = &vdev->pdev;
867     LastDataSet *last = (LastDataSet *)&mirror->data;
868 
869     vfio_generic_quirk_mirror_write(opaque, addr, data, size);
870 
871     /*
872      * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
873      * MSI capability ID register.  Both the ID and next register are
874      * read-only, so we allow writes covering either of those to real hw.
875      */
876     if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
877         vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
878         vfio_region_write(&vdev->bars[mirror->bar].region,
879                           addr + mirror->offset, data, size);
880         trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
881     }
882 
883     /*
884      * Automatically add an ioeventfd to handle any repeated write with the
885      * same data and size above the standard PCI config space header.  This is
886      * primarily expected to accelerate the MSI-ACK behavior, such as noted
887      * above.  Current hardware/drivers should trigger an ioeventfd at config
888      * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
889      *
890      * The criteria of 10 successive hits is arbitrary but reliably adds the
891      * MSI-ACK region.  Note that as some writes are bypassed via the ioeventfd,
892      * the remaining ones have a greater chance of being seen successively.
893      * To avoid the pathological case of burning up all of QEMU's open file
894      * handles, arbitrarily limit this algorithm from adding no more than 10
895      * ioeventfds, print an error if we would have added an 11th, and then
896      * stop counting.
897      */
898     if (!vdev->no_kvm_ioeventfd &&
899         addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
900         if (addr != last->addr || data != last->data || size != last->size) {
901             last->addr = addr;
902             last->data = data;
903             last->size = size;
904             last->hits = 1;
905         } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
906             if (last->added < MAX_DYN_IOEVENTFD) {
907                 VFIOIOEventFD *ioeventfd;
908                 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
909                                         data, &vdev->bars[mirror->bar].region,
910                                         mirror->offset + addr, true);
911                 if (ioeventfd) {
912                     VFIOQuirk *quirk = last->quirk;
913 
914                     QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
915                     last->added++;
916                 }
917             } else {
918                 last->added++;
919                 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
920                             "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
921                             "size %u", vdev->vbasedev.name, addr, data, size);
922             }
923         }
924     }
925 }
926 
927 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
928     .read = vfio_generic_quirk_mirror_read,
929     .write = vfio_nvidia_quirk_mirror_write,
930     .endianness = DEVICE_LITTLE_ENDIAN,
931 };
932 
933 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
934 {
935     VFIOConfigMirrorQuirk *mirror = quirk->data;
936     LastDataSet *last = (LastDataSet *)&mirror->data;
937 
938     last->addr = last->data = last->size = last->hits = last->added = 0;
939 
940     vfio_drop_dynamic_eventfds(vdev, quirk);
941 }
942 
943 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
944 {
945     VFIOQuirk *quirk;
946     VFIOConfigMirrorQuirk *mirror;
947     LastDataSet *last;
948 
949     if (vdev->no_geforce_quirks ||
950         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
951         !vfio_is_vga(vdev) || nr != 0) {
952         return;
953     }
954 
955     quirk = vfio_quirk_alloc(1);
956     quirk->reset = vfio_nvidia_bar0_quirk_reset;
957     mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
958     mirror->mem = quirk->mem;
959     mirror->vdev = vdev;
960     mirror->offset = 0x88000;
961     mirror->bar = nr;
962     last = (LastDataSet *)&mirror->data;
963     last->quirk = quirk;
964 
965     memory_region_init_io(mirror->mem, OBJECT(vdev),
966                           &vfio_nvidia_mirror_quirk, mirror,
967                           "vfio-nvidia-bar0-88000-mirror-quirk",
968                           vdev->config_size);
969     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
970                                         mirror->offset, mirror->mem, 1);
971 
972     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
973 
974     /* The 0x1800 offset mirror only seems to get used by legacy VGA */
975     if (vdev->vga) {
976         quirk = vfio_quirk_alloc(1);
977         quirk->reset = vfio_nvidia_bar0_quirk_reset;
978         mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
979         mirror->mem = quirk->mem;
980         mirror->vdev = vdev;
981         mirror->offset = 0x1800;
982         mirror->bar = nr;
983         last = (LastDataSet *)&mirror->data;
984         last->quirk = quirk;
985 
986         memory_region_init_io(mirror->mem, OBJECT(vdev),
987                               &vfio_nvidia_mirror_quirk, mirror,
988                               "vfio-nvidia-bar0-1800-mirror-quirk",
989                               PCI_CONFIG_SPACE_SIZE);
990         memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
991                                             mirror->offset, mirror->mem, 1);
992 
993         QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
994     }
995 
996     trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
997 }
998 
999 /*
1000  * TODO - Some Nvidia devices provide config access to their companion HDA
1001  * device and even to their parent bridge via these config space mirrors.
1002  * Add quirks for those regions.
1003  */
1004 
1005 #define PCI_VENDOR_ID_REALTEK 0x10ec
1006 
1007 /*
1008  * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
1009  * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1010  * register.  According to the Linux r8169 driver, the MSI-X table is addressed
1011  * when the "type" portion of the address register is set to 0x1.  This appears
1012  * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
1013  * "address latched" indicator.  Bits 12:15 are a mask field, which we can
1014  * ignore because the MSI-X table should always be accessed as a dword (full
1015  * mask).  Bits 0:11 is offset within the type.
1016  *
1017  * Example trace:
1018  *
1019  * Read from MSI-X table offset 0
1020  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1021  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1022  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1023  *
1024  * Write 0xfee00000 to MSI-X table offset 0
1025  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1026  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1027  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1028  */
1029 typedef struct VFIOrtl8168Quirk {
1030     VFIOPCIDevice *vdev;
1031     uint32_t addr;
1032     uint32_t data;
1033     bool enabled;
1034 } VFIOrtl8168Quirk;
1035 
1036 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1037                                                 hwaddr addr, unsigned size)
1038 {
1039     VFIOrtl8168Quirk *rtl = opaque;
1040     VFIOPCIDevice *vdev = rtl->vdev;
1041     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1042 
1043     if (rtl->enabled) {
1044         data = rtl->addr ^ 0x80000000U; /* latch/complete */
1045         trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1046     }
1047 
1048     return data;
1049 }
1050 
1051 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1052                                              uint64_t data, unsigned size)
1053 {
1054     VFIOrtl8168Quirk *rtl = opaque;
1055     VFIOPCIDevice *vdev = rtl->vdev;
1056 
1057     rtl->enabled = false;
1058 
1059     if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1060         rtl->enabled = true;
1061         rtl->addr = (uint32_t)data;
1062 
1063         if (data & 0x80000000U) { /* Do write */
1064             if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1065                 hwaddr offset = data & 0xfff;
1066                 uint64_t val = rtl->data;
1067 
1068                 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1069                                                     (uint16_t)offset, val);
1070 
1071                 /* Write to the proper guest MSI-X table instead */
1072                 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1073                                              offset, val, size,
1074                                              MEMTXATTRS_UNSPECIFIED);
1075             }
1076             return; /* Do not write guest MSI-X data to hardware */
1077         }
1078     }
1079 
1080     vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1081 }
1082 
1083 static const MemoryRegionOps vfio_rtl_address_quirk = {
1084     .read = vfio_rtl8168_quirk_address_read,
1085     .write = vfio_rtl8168_quirk_address_write,
1086     .valid = {
1087         .min_access_size = 4,
1088         .max_access_size = 4,
1089         .unaligned = false,
1090     },
1091     .endianness = DEVICE_LITTLE_ENDIAN,
1092 };
1093 
1094 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1095                                              hwaddr addr, unsigned size)
1096 {
1097     VFIOrtl8168Quirk *rtl = opaque;
1098     VFIOPCIDevice *vdev = rtl->vdev;
1099     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1100 
1101     if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1102         hwaddr offset = rtl->addr & 0xfff;
1103         memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1104                                     &data, size, MEMTXATTRS_UNSPECIFIED);
1105         trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1106     }
1107 
1108     return data;
1109 }
1110 
1111 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1112                                           uint64_t data, unsigned size)
1113 {
1114     VFIOrtl8168Quirk *rtl = opaque;
1115     VFIOPCIDevice *vdev = rtl->vdev;
1116 
1117     rtl->data = (uint32_t)data;
1118 
1119     vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1120 }
1121 
1122 static const MemoryRegionOps vfio_rtl_data_quirk = {
1123     .read = vfio_rtl8168_quirk_data_read,
1124     .write = vfio_rtl8168_quirk_data_write,
1125     .valid = {
1126         .min_access_size = 4,
1127         .max_access_size = 4,
1128         .unaligned = false,
1129     },
1130     .endianness = DEVICE_LITTLE_ENDIAN,
1131 };
1132 
1133 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1134 {
1135     VFIOQuirk *quirk;
1136     VFIOrtl8168Quirk *rtl;
1137 
1138     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1139         return;
1140     }
1141 
1142     quirk = vfio_quirk_alloc(2);
1143     quirk->data = rtl = g_malloc0(sizeof(*rtl));
1144     rtl->vdev = vdev;
1145 
1146     memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1147                           &vfio_rtl_address_quirk, rtl,
1148                           "vfio-rtl8168-window-address-quirk", 4);
1149     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1150                                         0x74, &quirk->mem[0], 1);
1151 
1152     memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1153                           &vfio_rtl_data_quirk, rtl,
1154                           "vfio-rtl8168-window-data-quirk", 4);
1155     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1156                                         0x70, &quirk->mem[1], 1);
1157 
1158     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1159 
1160     trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1161 }
1162 
1163 /*
1164  * Intel IGD support
1165  *
1166  * Obviously IGD is not a discrete device, this is evidenced not only by it
1167  * being integrated into the CPU, but by the various chipset and BIOS
1168  * dependencies that it brings along with it.  Intel is trying to move away
1169  * from this and Broadwell and newer devices can run in what Intel calls
1170  * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
1171  * more is required beyond assigning the IGD device to a VM.  There are
1172  * however support limitations to this mode.  It only supports IGD as a
1173  * secondary graphics device in the VM and it doesn't officially support any
1174  * physical outputs.
1175  *
1176  * The code here attempts to enable what we'll call legacy mode assignment,
1177  * IGD retains most of the capabilities we expect for it to have on bare
1178  * metal.  To enable this mode, the IGD device must be assigned to the VM
1179  * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1180  * support, we must have VM BIOS support for reserving and populating some
1181  * of the required tables, and we need to tweak the chipset with revisions
1182  * and IDs and an LPC/ISA bridge device.  The intention is to make all of
1183  * this happen automatically by installing the device at the correct VM PCI
1184  * bus address.  If any of the conditions are not met, we cross our fingers
1185  * and hope the user knows better.
1186  *
1187  * NB - It is possible to enable physical outputs in UPT mode by supplying
1188  * an OpRegion table.  We don't do this by default because the guest driver
1189  * behaves differently if an OpRegion is provided and no monitor is attached
1190  * vs no OpRegion and a monitor being attached or not.  Effectively, if a
1191  * headless setup is desired, the OpRegion gets in the way of that.
1192  */
1193 
1194 /*
1195  * This presumes the device is already known to be an Intel VGA device, so we
1196  * take liberties in which device ID bits match which generation.  This should
1197  * not be taken as an indication that all the devices are supported, or even
1198  * supportable, some of them don't even support VT-d.
1199  * See linux:include/drm/i915_pciids.h for IDs.
1200  */
1201 static int igd_gen(VFIOPCIDevice *vdev)
1202 {
1203     if ((vdev->device_id & 0xfff) == 0xa84) {
1204         return 8; /* Broxton */
1205     }
1206 
1207     switch (vdev->device_id & 0xff00) {
1208     /* Old, untested, unavailable, unknown */
1209     case 0x0000:
1210     case 0x2500:
1211     case 0x2700:
1212     case 0x2900:
1213     case 0x2a00:
1214     case 0x2e00:
1215     case 0x3500:
1216     case 0xa000:
1217         return -1;
1218     /* SandyBridge, IvyBridge, ValleyView, Haswell */
1219     case 0x0100:
1220     case 0x0400:
1221     case 0x0a00:
1222     case 0x0c00:
1223     case 0x0d00:
1224     case 0x0f00:
1225         return 6;
1226     /* BroadWell, CherryView, SkyLake, KabyLake */
1227     case 0x1600:
1228     case 0x1900:
1229     case 0x2200:
1230     case 0x5900:
1231         return 8;
1232     }
1233 
1234     return 8; /* Assume newer is compatible */
1235 }
1236 
1237 typedef struct VFIOIGDQuirk {
1238     struct VFIOPCIDevice *vdev;
1239     uint32_t index;
1240     uint32_t bdsm;
1241 } VFIOIGDQuirk;
1242 
1243 #define IGD_GMCH 0x50 /* Graphics Control Register */
1244 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1245 #define IGD_ASLS 0xfc /* ASL Storage Register */
1246 
1247 /*
1248  * The OpRegion includes the Video BIOS Table, which seems important for
1249  * telling the driver what sort of outputs it has.  Without this, the device
1250  * may work in the guest, but we may not get output.  This also requires BIOS
1251  * support to reserve and populate a section of guest memory sufficient for
1252  * the table and to write the base address of that memory to the ASLS register
1253  * of the IGD device.
1254  */
1255 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1256                                struct vfio_region_info *info, Error **errp)
1257 {
1258     int ret;
1259 
1260     vdev->igd_opregion = g_malloc0(info->size);
1261     ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1262                 info->size, info->offset);
1263     if (ret != info->size) {
1264         error_setg(errp, "failed to read IGD OpRegion");
1265         g_free(vdev->igd_opregion);
1266         vdev->igd_opregion = NULL;
1267         return -EINVAL;
1268     }
1269 
1270     /*
1271      * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1272      * allocate 32bit reserved memory for, copy these contents into, and write
1273      * the reserved memory base address to the device ASLS register at 0xFC.
1274      * Alignment of this reserved region seems flexible, but using a 4k page
1275      * alignment seems to work well.  This interface assumes a single IGD
1276      * device, which may be at VM address 00:02.0 in legacy mode or another
1277      * address in UPT mode.
1278      *
1279      * NB, there may be future use cases discovered where the VM should have
1280      * direct interaction with the host OpRegion, in which case the write to
1281      * the ASLS register would trigger MemoryRegion setup to enable that.
1282      */
1283     fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1284                     vdev->igd_opregion, info->size);
1285 
1286     trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1287 
1288     pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1289     pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1290     pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1291 
1292     return 0;
1293 }
1294 
1295 /*
1296  * The rather short list of registers that we copy from the host devices.
1297  * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1298  * host bridge values may or may not be needed depending on the guest OS.
1299  * Since we're only munging revision and subsystem values on the host bridge,
1300  * we don't require our own device.  The LPC/ISA bridge needs to be our very
1301  * own though.
1302  */
1303 typedef struct {
1304     uint8_t offset;
1305     uint8_t len;
1306 } IGDHostInfo;
1307 
1308 static const IGDHostInfo igd_host_bridge_infos[] = {
1309     {PCI_REVISION_ID,         2},
1310     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1311     {PCI_SUBSYSTEM_ID,        2},
1312 };
1313 
1314 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1315     {PCI_VENDOR_ID,           2},
1316     {PCI_DEVICE_ID,           2},
1317     {PCI_REVISION_ID,         2},
1318     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1319     {PCI_SUBSYSTEM_ID,        2},
1320 };
1321 
1322 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1323                              struct vfio_region_info *info,
1324                              const IGDHostInfo *list, int len)
1325 {
1326     int i, ret;
1327 
1328     for (i = 0; i < len; i++) {
1329         ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1330                     list[i].len, info->offset + list[i].offset);
1331         if (ret != list[i].len) {
1332             error_report("IGD copy failed: %m");
1333             return -errno;
1334         }
1335     }
1336 
1337     return 0;
1338 }
1339 
1340 /*
1341  * Stuff a few values into the host bridge.
1342  */
1343 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1344                                   struct vfio_region_info *info)
1345 {
1346     PCIBus *bus;
1347     PCIDevice *host_bridge;
1348     int ret;
1349 
1350     bus = pci_device_root_bus(&vdev->pdev);
1351     host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1352 
1353     if (!host_bridge) {
1354         error_report("Can't find host bridge");
1355         return -ENODEV;
1356     }
1357 
1358     ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1359                             ARRAY_SIZE(igd_host_bridge_infos));
1360     if (!ret) {
1361         trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1362     }
1363 
1364     return ret;
1365 }
1366 
1367 /*
1368  * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1369  * arbitrary values into just any bridge, so we must create our own.  We try
1370  * to handle if the user has created it for us, which they might want to do
1371  * to enable multifunction so we don't occupy the whole PCI slot.
1372  */
1373 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1374 {
1375     if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1376         error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1377     }
1378 }
1379 
1380 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1381 {
1382     DeviceClass *dc = DEVICE_CLASS(klass);
1383     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1384 
1385     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1386     dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1387     dc->hotpluggable = false;
1388     k->realize = vfio_pci_igd_lpc_bridge_realize;
1389     k->class_id = PCI_CLASS_BRIDGE_ISA;
1390 }
1391 
1392 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1393     .name = "vfio-pci-igd-lpc-bridge",
1394     .parent = TYPE_PCI_DEVICE,
1395     .class_init = vfio_pci_igd_lpc_bridge_class_init,
1396     .interfaces = (InterfaceInfo[]) {
1397         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1398         { },
1399     },
1400 };
1401 
1402 static void vfio_pci_igd_register_types(void)
1403 {
1404     type_register_static(&vfio_pci_igd_lpc_bridge_info);
1405 }
1406 
1407 type_init(vfio_pci_igd_register_types)
1408 
1409 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1410                                  struct vfio_region_info *info)
1411 {
1412     PCIDevice *lpc_bridge;
1413     int ret;
1414 
1415     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1416                                  0, PCI_DEVFN(0x1f, 0));
1417     if (!lpc_bridge) {
1418         lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1419                                  PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1420     }
1421 
1422     ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1423                             ARRAY_SIZE(igd_lpc_bridge_infos));
1424     if (!ret) {
1425         trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1426     }
1427 
1428     return ret;
1429 }
1430 
1431 /*
1432  * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1433  * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1434  * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1435  * for programming the GTT.
1436  *
1437  * See linux:include/drm/i915_drm.h for shift and mask values.
1438  */
1439 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1440 {
1441     uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1442     int ggms, gen = igd_gen(vdev);
1443 
1444     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1445     ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1446     if (gen > 6) {
1447         ggms = 1 << ggms;
1448     }
1449 
1450     ggms *= MiB;
1451 
1452     return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8);
1453 }
1454 
1455 /*
1456  * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1457  * Somehow the host stolen memory range is used for this, but how the ROM gets
1458  * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1459  * reprograms the GTT through the IOBAR where we can trap it and transpose the
1460  * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1461  * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1462  * IOBAR address and data registers to detect a write sequence targeting the
1463  * GTTADR.  This code is developed by observed behavior and doesn't have a
1464  * direct spec reference, unfortunately.
1465  */
1466 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1467                                          hwaddr addr, unsigned size)
1468 {
1469     VFIOIGDQuirk *igd = opaque;
1470     VFIOPCIDevice *vdev = igd->vdev;
1471 
1472     igd->index = ~0;
1473 
1474     return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1475 }
1476 
1477 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1478                                       uint64_t data, unsigned size)
1479 {
1480     VFIOIGDQuirk *igd = opaque;
1481     VFIOPCIDevice *vdev = igd->vdev;
1482     uint64_t val = data;
1483     int gen = igd_gen(vdev);
1484 
1485     /*
1486      * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1487      * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1488      * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1489      * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1490      * to a 4k page, which we translate to a page from the VM allocated region,
1491      * pointed to by the BDSM register.  If this is not set, we fail.
1492      *
1493      * We trap writes to the full configured GTT size, but we typically only
1494      * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1495      * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1496      * write of that last entry does work, but is hopefully unnecessary since
1497      * we clear the previous GTT on initialization.
1498      */
1499     if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1500         if (gen < 8 || (igd->index % 8 == 1)) {
1501             uint32_t base;
1502 
1503             base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1504             if (!base) {
1505                 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1506                          "BIOS reserved stolen memory.  Unsupported BIOS?");
1507             }
1508 
1509             val = data - igd->bdsm + base;
1510         } else {
1511             val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1512         }
1513 
1514         trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1515                                       igd->index, data, val);
1516     }
1517 
1518     vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1519 
1520     igd->index = ~0;
1521 }
1522 
1523 static const MemoryRegionOps vfio_igd_data_quirk = {
1524     .read = vfio_igd_quirk_data_read,
1525     .write = vfio_igd_quirk_data_write,
1526     .endianness = DEVICE_LITTLE_ENDIAN,
1527 };
1528 
1529 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1530                                           hwaddr addr, unsigned size)
1531 {
1532     VFIOIGDQuirk *igd = opaque;
1533     VFIOPCIDevice *vdev = igd->vdev;
1534 
1535     igd->index = ~0;
1536 
1537     return vfio_region_read(&vdev->bars[4].region, addr, size);
1538 }
1539 
1540 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1541                                        uint64_t data, unsigned size)
1542 {
1543     VFIOIGDQuirk *igd = opaque;
1544     VFIOPCIDevice *vdev = igd->vdev;
1545 
1546     igd->index = data;
1547 
1548     vfio_region_write(&vdev->bars[4].region, addr, data, size);
1549 }
1550 
1551 static const MemoryRegionOps vfio_igd_index_quirk = {
1552     .read = vfio_igd_quirk_index_read,
1553     .write = vfio_igd_quirk_index_write,
1554     .endianness = DEVICE_LITTLE_ENDIAN,
1555 };
1556 
1557 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1558 {
1559     struct vfio_region_info *rom = NULL, *opregion = NULL,
1560                             *host = NULL, *lpc = NULL;
1561     VFIOQuirk *quirk;
1562     VFIOIGDQuirk *igd;
1563     PCIDevice *lpc_bridge;
1564     int i, ret, ggms_mb, gms_mb = 0, gen;
1565     uint64_t *bdsm_size;
1566     uint32_t gmch;
1567     uint16_t cmd_orig, cmd;
1568     Error *err = NULL;
1569 
1570     /*
1571      * This must be an Intel VGA device at address 00:02.0 for us to even
1572      * consider enabling legacy mode.  The vBIOS has dependencies on the
1573      * PCI bus address.
1574      */
1575     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1576         !vfio_is_vga(vdev) || nr != 4 ||
1577         &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1578                                        0, PCI_DEVFN(0x2, 0))) {
1579         return;
1580     }
1581 
1582     /*
1583      * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1584      * can stuff host values into, so if there's already one there and it's not
1585      * one we can hack on, legacy mode is no-go.  Sorry Q35.
1586      */
1587     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1588                                  0, PCI_DEVFN(0x1f, 0));
1589     if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1590                                            "vfio-pci-igd-lpc-bridge")) {
1591         error_report("IGD device %s cannot support legacy mode due to existing "
1592                      "devices at address 1f.0", vdev->vbasedev.name);
1593         return;
1594     }
1595 
1596     /*
1597      * IGD is not a standard, they like to change their specs often.  We
1598      * only attempt to support back to SandBridge and we hope that newer
1599      * devices maintain compatibility with generation 8.
1600      */
1601     gen = igd_gen(vdev);
1602     if (gen != 6 && gen != 8) {
1603         error_report("IGD device %s is unsupported in legacy mode, "
1604                      "try SandyBridge or newer", vdev->vbasedev.name);
1605         return;
1606     }
1607 
1608     /*
1609      * Most of what we're doing here is to enable the ROM to run, so if
1610      * there's no ROM, there's no point in setting up this quirk.
1611      * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1612      */
1613     ret = vfio_get_region_info(&vdev->vbasedev,
1614                                VFIO_PCI_ROM_REGION_INDEX, &rom);
1615     if ((ret || !rom->size) && !vdev->pdev.romfile) {
1616         error_report("IGD device %s has no ROM, legacy mode disabled",
1617                      vdev->vbasedev.name);
1618         goto out;
1619     }
1620 
1621     /*
1622      * Ignore the hotplug corner case, mark the ROM failed, we can't
1623      * create the devices we need for legacy mode in the hotplug scenario.
1624      */
1625     if (vdev->pdev.qdev.hotplugged) {
1626         error_report("IGD device %s hotplugged, ROM disabled, "
1627                      "legacy mode disabled", vdev->vbasedev.name);
1628         vdev->rom_read_failed = true;
1629         goto out;
1630     }
1631 
1632     /*
1633      * Check whether we have all the vfio device specific regions to
1634      * support legacy mode (added in Linux v4.6).  If not, bail.
1635      */
1636     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1637                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1638                         VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1639     if (ret) {
1640         error_report("IGD device %s does not support OpRegion access,"
1641                      "legacy mode disabled", vdev->vbasedev.name);
1642         goto out;
1643     }
1644 
1645     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1646                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1647                         VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1648     if (ret) {
1649         error_report("IGD device %s does not support host bridge access,"
1650                      "legacy mode disabled", vdev->vbasedev.name);
1651         goto out;
1652     }
1653 
1654     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1655                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1656                         VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1657     if (ret) {
1658         error_report("IGD device %s does not support LPC bridge access,"
1659                      "legacy mode disabled", vdev->vbasedev.name);
1660         goto out;
1661     }
1662 
1663     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1664 
1665     /*
1666      * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1667      * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1668      * but also no point in us enabling VGA if disabled in hardware.
1669      */
1670     if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1671         error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1672         error_report("IGD device %s failed to enable VGA access, "
1673                      "legacy mode disabled", vdev->vbasedev.name);
1674         goto out;
1675     }
1676 
1677     /* Create our LPC/ISA bridge */
1678     ret = vfio_pci_igd_lpc_init(vdev, lpc);
1679     if (ret) {
1680         error_report("IGD device %s failed to create LPC bridge, "
1681                      "legacy mode disabled", vdev->vbasedev.name);
1682         goto out;
1683     }
1684 
1685     /* Stuff some host values into the VM PCI host bridge */
1686     ret = vfio_pci_igd_host_init(vdev, host);
1687     if (ret) {
1688         error_report("IGD device %s failed to modify host bridge, "
1689                      "legacy mode disabled", vdev->vbasedev.name);
1690         goto out;
1691     }
1692 
1693     /* Setup OpRegion access */
1694     ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1695     if (ret) {
1696         error_append_hint(&err, "IGD legacy mode disabled\n");
1697         error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1698         goto out;
1699     }
1700 
1701     /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1702     quirk = vfio_quirk_alloc(2);
1703     igd = quirk->data = g_malloc0(sizeof(*igd));
1704     igd->vdev = vdev;
1705     igd->index = ~0;
1706     igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1707     igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */
1708 
1709     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1710                           igd, "vfio-igd-index-quirk", 4);
1711     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1712                                         0, &quirk->mem[0], 1);
1713 
1714     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1715                           igd, "vfio-igd-data-quirk", 4);
1716     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1717                                         4, &quirk->mem[1], 1);
1718 
1719     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1720 
1721     /* Determine the size of stolen memory needed for GTT */
1722     ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1723     if (gen > 6) {
1724         ggms_mb = 1 << ggms_mb;
1725     }
1726 
1727     /*
1728      * Assume we have no GMS memory, but allow it to be overrided by device
1729      * option (experimental).  The spec doesn't actually allow zero GMS when
1730      * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1731      * so let's not waste VM memory for it.
1732      */
1733     gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1734 
1735     if (vdev->igd_gms) {
1736         if (vdev->igd_gms <= 0x10) {
1737             gms_mb = vdev->igd_gms * 32;
1738             gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1739         } else {
1740             error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1741             vdev->igd_gms = 0;
1742         }
1743     }
1744 
1745     /*
1746      * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1747      * must allocate a 1MB aligned reserved memory region below 4GB with
1748      * the requested size (in bytes) for use by the Intel PCI class VGA
1749      * device at VM address 00:02.0.  The base address of this reserved
1750      * memory region must be written to the device BDSM regsiter at PCI
1751      * config offset 0x5C.
1752      */
1753     bdsm_size = g_malloc(sizeof(*bdsm_size));
1754     *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB);
1755     fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1756                     bdsm_size, sizeof(*bdsm_size));
1757 
1758     /* GMCH is read-only, emulated */
1759     pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1760     pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1761     pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1762 
1763     /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1764     pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1765     pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1766     pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1767 
1768     /*
1769      * This IOBAR gives us access to GTTADR, which allows us to write to
1770      * the GTT itself.  So let's go ahead and write zero to all the GTT
1771      * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1772      * before talking to the device.
1773      */
1774     if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1775               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1776         error_report("IGD device %s - failed to read PCI command register",
1777                      vdev->vbasedev.name);
1778     }
1779 
1780     cmd = cmd_orig | PCI_COMMAND_IO;
1781 
1782     if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1783                vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1784         error_report("IGD device %s - failed to write PCI command register",
1785                      vdev->vbasedev.name);
1786     }
1787 
1788     for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1789         vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1790         vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1791     }
1792 
1793     if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1794                vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1795         error_report("IGD device %s - failed to restore PCI command register",
1796                      vdev->vbasedev.name);
1797     }
1798 
1799     trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1800 
1801 out:
1802     g_free(rom);
1803     g_free(opregion);
1804     g_free(host);
1805     g_free(lpc);
1806 }
1807 
1808 /*
1809  * Common quirk probe entry points.
1810  */
1811 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1812 {
1813     vfio_vga_probe_ati_3c3_quirk(vdev);
1814     vfio_vga_probe_nvidia_3d0_quirk(vdev);
1815 }
1816 
1817 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1818 {
1819     VFIOQuirk *quirk;
1820     int i, j;
1821 
1822     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1823         QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1824             for (j = 0; j < quirk->nr_mem; j++) {
1825                 memory_region_del_subregion(&vdev->vga->region[i].mem,
1826                                             &quirk->mem[j]);
1827             }
1828         }
1829     }
1830 }
1831 
1832 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1833 {
1834     int i, j;
1835 
1836     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1837         while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1838             VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1839             QLIST_REMOVE(quirk, next);
1840             for (j = 0; j < quirk->nr_mem; j++) {
1841                 object_unparent(OBJECT(&quirk->mem[j]));
1842             }
1843             g_free(quirk->mem);
1844             g_free(quirk->data);
1845             g_free(quirk);
1846         }
1847     }
1848 }
1849 
1850 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1851 {
1852     vfio_probe_ati_bar4_quirk(vdev, nr);
1853     vfio_probe_ati_bar2_quirk(vdev, nr);
1854     vfio_probe_nvidia_bar5_quirk(vdev, nr);
1855     vfio_probe_nvidia_bar0_quirk(vdev, nr);
1856     vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1857     vfio_probe_igd_bar4_quirk(vdev, nr);
1858 }
1859 
1860 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1861 {
1862     VFIOBAR *bar = &vdev->bars[nr];
1863     VFIOQuirk *quirk;
1864     int i;
1865 
1866     QLIST_FOREACH(quirk, &bar->quirks, next) {
1867         while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1868             vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1869         }
1870 
1871         for (i = 0; i < quirk->nr_mem; i++) {
1872             memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1873         }
1874     }
1875 }
1876 
1877 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1878 {
1879     VFIOBAR *bar = &vdev->bars[nr];
1880     int i;
1881 
1882     while (!QLIST_EMPTY(&bar->quirks)) {
1883         VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1884         QLIST_REMOVE(quirk, next);
1885         for (i = 0; i < quirk->nr_mem; i++) {
1886             object_unparent(OBJECT(&quirk->mem[i]));
1887         }
1888         g_free(quirk->mem);
1889         g_free(quirk->data);
1890         g_free(quirk);
1891     }
1892 }
1893 
1894 /*
1895  * Reset quirks
1896  */
1897 void vfio_quirk_reset(VFIOPCIDevice *vdev)
1898 {
1899     int i;
1900 
1901     for (i = 0; i < PCI_ROM_SLOT; i++) {
1902         VFIOQuirk *quirk;
1903         VFIOBAR *bar = &vdev->bars[i];
1904 
1905         QLIST_FOREACH(quirk, &bar->quirks, next) {
1906             if (quirk->reset) {
1907                 quirk->reset(vdev, quirk);
1908             }
1909         }
1910     }
1911 }
1912 
1913 /*
1914  * AMD Radeon PCI config reset, based on Linux:
1915  *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1916  *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1917  *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1918  *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1919  * IDs: include/drm/drm_pciids.h
1920  * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1921  *
1922  * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1923  * hardware that should be fixed on future ASICs.  The symptom of this is that
1924  * once the accerlated driver loads, Windows guests will bsod on subsequent
1925  * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1926  * work around this, we do an AMD specific PCI config reset, followed by an SMC
1927  * reset.  The PCI config reset only works if SMC firmware is running, so we
1928  * have a dependency on the state of the device as to whether this reset will
1929  * be effective.  There are still cases where we won't be able to kick the
1930  * device into working, but this greatly improves the usability overall.  The
1931  * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1932  * poking is largely ASIC specific.
1933  */
1934 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1935 {
1936     uint32_t clk, pc_c;
1937 
1938     /*
1939      * Registers 200h and 204h are index and data registers for accessing
1940      * indirect configuration registers within the device.
1941      */
1942     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1943     clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1944     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1945     pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1946 
1947     return (!(clk & 1) && (0x20100 <= pc_c));
1948 }
1949 
1950 /*
1951  * The scope of a config reset is controlled by a mode bit in the misc register
1952  * and a fuse, exposed as a bit in another register.  The fuse is the default
1953  * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1954  * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1955  * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1956  * to flip the value of the bit in the misc register.
1957  */
1958 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1959 {
1960     uint32_t misc, fuse;
1961     bool a, b;
1962 
1963     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1964     fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1965     b = fuse & 64;
1966 
1967     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1968     misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1969     a = misc & 2;
1970 
1971     if (a == b) {
1972         vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1973         vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1974     }
1975 }
1976 
1977 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1978 {
1979     PCIDevice *pdev = &vdev->pdev;
1980     int i, ret = 0;
1981     uint32_t data;
1982 
1983     /* Defer to a kernel implemented reset */
1984     if (vdev->vbasedev.reset_works) {
1985         trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1986         return -ENODEV;
1987     }
1988 
1989     /* Enable only memory BAR access */
1990     vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1991 
1992     /* Reset only works if SMC firmware is loaded and running */
1993     if (!vfio_radeon_smc_is_running(vdev)) {
1994         ret = -EINVAL;
1995         trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1996         goto out;
1997     }
1998 
1999     /* Make sure only the GFX function is reset */
2000     vfio_radeon_set_gfx_only_reset(vdev);
2001 
2002     /* AMD PCI config reset */
2003     vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
2004     usleep(100);
2005 
2006     /* Read back the memory size to make sure we're out of reset */
2007     for (i = 0; i < 100000; i++) {
2008         if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
2009             goto reset_smc;
2010         }
2011         usleep(1);
2012     }
2013 
2014     trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
2015 
2016 reset_smc:
2017     /* Reset SMC */
2018     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
2019     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2020     data |= 1;
2021     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2022 
2023     /* Disable SMC clock */
2024     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
2025     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2026     data |= 1;
2027     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2028 
2029     trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
2030 
2031 out:
2032     /* Restore PCI command register */
2033     vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
2034 
2035     return ret;
2036 }
2037 
2038 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2039 {
2040     switch (vdev->vendor_id) {
2041     case 0x1002:
2042         switch (vdev->device_id) {
2043         /* Bonaire */
2044         case 0x6649: /* Bonaire [FirePro W5100] */
2045         case 0x6650:
2046         case 0x6651:
2047         case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2048         case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2049         case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2050         /* Hawaii */
2051         case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2052         case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2053         case 0x67A2:
2054         case 0x67A8:
2055         case 0x67A9:
2056         case 0x67AA:
2057         case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2058         case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2059         case 0x67B8:
2060         case 0x67B9:
2061         case 0x67BA:
2062         case 0x67BE:
2063             vdev->resetfn = vfio_radeon_reset;
2064             trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2065             break;
2066         }
2067         break;
2068     }
2069 }
2070 
2071 /*
2072  * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2073  * devices as a member of a clique.  Devices within the same clique ID
2074  * are capable of direct P2P.  It's the user's responsibility that this
2075  * is correct.  The spec says that this may reside at any unused config
2076  * offset, but reserves and recommends hypervisors place this at C8h.
2077  * The spec also states that the hypervisor should place this capability
2078  * at the end of the capability list, thus next is defined as 0h.
2079  *
2080  * +----------------+----------------+----------------+----------------+
2081  * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  |
2082  * +----------------+----------------+----------------+----------------+
2083  * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        |
2084  * +---------------------------------+---------------------------------+
2085  *
2086  * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2087  */
2088 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2089                                        const char *name, void *opaque,
2090                                        Error **errp)
2091 {
2092     DeviceState *dev = DEVICE(obj);
2093     Property *prop = opaque;
2094     uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2095 
2096     visit_type_uint8(v, name, ptr, errp);
2097 }
2098 
2099 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2100                                        const char *name, void *opaque,
2101                                        Error **errp)
2102 {
2103     DeviceState *dev = DEVICE(obj);
2104     Property *prop = opaque;
2105     uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2106     Error *local_err = NULL;
2107 
2108     if (dev->realized) {
2109         qdev_prop_set_after_realize(dev, name, errp);
2110         return;
2111     }
2112 
2113     visit_type_uint8(v, name, &value, &local_err);
2114     if (local_err) {
2115         error_propagate(errp, local_err);
2116         return;
2117     }
2118 
2119     if (value & ~0xF) {
2120         error_setg(errp, "Property %s: valid range 0-15", name);
2121         return;
2122     }
2123 
2124     *ptr = value;
2125 }
2126 
2127 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2128     .name = "uint4",
2129     .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2130     .get = get_nv_gpudirect_clique_id,
2131     .set = set_nv_gpudirect_clique_id,
2132 };
2133 
2134 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2135 {
2136     PCIDevice *pdev = &vdev->pdev;
2137     int ret, pos = 0xC8;
2138 
2139     if (vdev->nv_gpudirect_clique == 0xFF) {
2140         return 0;
2141     }
2142 
2143     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2144         error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2145         return -EINVAL;
2146     }
2147 
2148     if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2149         PCI_BASE_CLASS_DISPLAY) {
2150         error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2151         return -EINVAL;
2152     }
2153 
2154     ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2155     if (ret < 0) {
2156         error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2157         return ret;
2158     }
2159 
2160     memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2161     pos += PCI_CAP_FLAGS;
2162     pci_set_byte(pdev->config + pos++, 8);
2163     pci_set_byte(pdev->config + pos++, 'P');
2164     pci_set_byte(pdev->config + pos++, '2');
2165     pci_set_byte(pdev->config + pos++, 'P');
2166     pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2167     pci_set_byte(pdev->config + pos, 0);
2168 
2169     return 0;
2170 }
2171 
2172 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2173 {
2174     int ret;
2175 
2176     ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2177     if (ret) {
2178         return ret;
2179     }
2180 
2181     return 0;
2182 }
2183