1 /* 2 * device quirks for PCI devices 3 * 4 * Copyright Red Hat, Inc. 2012-2015 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/units.h" 15 #include "qemu/error-report.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/range.h" 18 #include "qapi/error.h" 19 #include "qapi/visitor.h" 20 #include <sys/ioctl.h> 21 #include "hw/nvram/fw_cfg.h" 22 #include "pci.h" 23 #include "trace.h" 24 25 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */ 26 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device) 27 { 28 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) && 29 (device == PCI_ANY_ID || device == vdev->device_id); 30 } 31 32 static bool vfio_is_vga(VFIOPCIDevice *vdev) 33 { 34 PCIDevice *pdev = &vdev->pdev; 35 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 36 37 return class == PCI_CLASS_DISPLAY_VGA; 38 } 39 40 /* 41 * List of device ids/vendor ids for which to disable 42 * option rom loading. This avoids the guest hangs during rom 43 * execution as noticed with the BCM 57810 card for lack of a 44 * more better way to handle such issues. 45 * The user can still override by specifying a romfile or 46 * rombar=1. 47 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 48 * for an analysis of the 57810 card hang. When adding 49 * a new vendor id/device id combination below, please also add 50 * your card/environment details and information that could 51 * help in debugging to the bug tracking this issue 52 */ 53 static const struct { 54 uint32_t vendor; 55 uint32_t device; 56 } romblacklist[] = { 57 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ 58 }; 59 60 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 61 { 62 int i; 63 64 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) { 65 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) { 66 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name, 67 romblacklist[i].vendor, 68 romblacklist[i].device); 69 return true; 70 } 71 } 72 return false; 73 } 74 75 /* 76 * Device specific region quirks (mostly backdoors to PCI config space) 77 */ 78 79 /* 80 * The generic window quirks operate on an address and data register, 81 * vfio_generic_window_address_quirk handles the address register and 82 * vfio_generic_window_data_quirk handles the data register. These ops 83 * pass reads and writes through to hardware until a value matching the 84 * stored address match/mask is written. When this occurs, the data 85 * register access emulated PCI config space for the device rather than 86 * passing through accesses. This enables devices where PCI config space 87 * is accessible behind a window register to maintain the virtualization 88 * provided through vfio. 89 */ 90 typedef struct VFIOConfigWindowMatch { 91 uint32_t match; 92 uint32_t mask; 93 } VFIOConfigWindowMatch; 94 95 typedef struct VFIOConfigWindowQuirk { 96 struct VFIOPCIDevice *vdev; 97 98 uint32_t address_val; 99 100 uint32_t address_offset; 101 uint32_t data_offset; 102 103 bool window_enabled; 104 uint8_t bar; 105 106 MemoryRegion *addr_mem; 107 MemoryRegion *data_mem; 108 109 uint32_t nr_matches; 110 VFIOConfigWindowMatch matches[]; 111 } VFIOConfigWindowQuirk; 112 113 static uint64_t vfio_generic_window_quirk_address_read(void *opaque, 114 hwaddr addr, 115 unsigned size) 116 { 117 VFIOConfigWindowQuirk *window = opaque; 118 VFIOPCIDevice *vdev = window->vdev; 119 120 return vfio_region_read(&vdev->bars[window->bar].region, 121 addr + window->address_offset, size); 122 } 123 124 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, 125 uint64_t data, 126 unsigned size) 127 { 128 VFIOConfigWindowQuirk *window = opaque; 129 VFIOPCIDevice *vdev = window->vdev; 130 int i; 131 132 window->window_enabled = false; 133 134 vfio_region_write(&vdev->bars[window->bar].region, 135 addr + window->address_offset, data, size); 136 137 for (i = 0; i < window->nr_matches; i++) { 138 if ((data & ~window->matches[i].mask) == window->matches[i].match) { 139 window->window_enabled = true; 140 window->address_val = data & window->matches[i].mask; 141 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, 142 memory_region_name(window->addr_mem), data); 143 break; 144 } 145 } 146 } 147 148 static const MemoryRegionOps vfio_generic_window_address_quirk = { 149 .read = vfio_generic_window_quirk_address_read, 150 .write = vfio_generic_window_quirk_address_write, 151 .endianness = DEVICE_LITTLE_ENDIAN, 152 }; 153 154 static uint64_t vfio_generic_window_quirk_data_read(void *opaque, 155 hwaddr addr, unsigned size) 156 { 157 VFIOConfigWindowQuirk *window = opaque; 158 VFIOPCIDevice *vdev = window->vdev; 159 uint64_t data; 160 161 /* Always read data reg, discard if window enabled */ 162 data = vfio_region_read(&vdev->bars[window->bar].region, 163 addr + window->data_offset, size); 164 165 if (window->window_enabled) { 166 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); 167 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, 168 memory_region_name(window->data_mem), data); 169 } 170 171 return data; 172 } 173 174 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, 175 uint64_t data, unsigned size) 176 { 177 VFIOConfigWindowQuirk *window = opaque; 178 VFIOPCIDevice *vdev = window->vdev; 179 180 if (window->window_enabled) { 181 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); 182 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, 183 memory_region_name(window->data_mem), data); 184 return; 185 } 186 187 vfio_region_write(&vdev->bars[window->bar].region, 188 addr + window->data_offset, data, size); 189 } 190 191 static const MemoryRegionOps vfio_generic_window_data_quirk = { 192 .read = vfio_generic_window_quirk_data_read, 193 .write = vfio_generic_window_quirk_data_write, 194 .endianness = DEVICE_LITTLE_ENDIAN, 195 }; 196 197 /* 198 * The generic mirror quirk handles devices which expose PCI config space 199 * through a region within a BAR. When enabled, reads and writes are 200 * redirected through to emulated PCI config space. XXX if PCI config space 201 * used memory regions, this could just be an alias. 202 */ 203 typedef struct VFIOConfigMirrorQuirk { 204 struct VFIOPCIDevice *vdev; 205 uint32_t offset; 206 uint8_t bar; 207 MemoryRegion *mem; 208 uint8_t data[]; 209 } VFIOConfigMirrorQuirk; 210 211 static uint64_t vfio_generic_quirk_mirror_read(void *opaque, 212 hwaddr addr, unsigned size) 213 { 214 VFIOConfigMirrorQuirk *mirror = opaque; 215 VFIOPCIDevice *vdev = mirror->vdev; 216 uint64_t data; 217 218 /* Read and discard in case the hardware cares */ 219 (void)vfio_region_read(&vdev->bars[mirror->bar].region, 220 addr + mirror->offset, size); 221 222 data = vfio_pci_read_config(&vdev->pdev, addr, size); 223 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, 224 memory_region_name(mirror->mem), 225 addr, data); 226 return data; 227 } 228 229 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, 230 uint64_t data, unsigned size) 231 { 232 VFIOConfigMirrorQuirk *mirror = opaque; 233 VFIOPCIDevice *vdev = mirror->vdev; 234 235 vfio_pci_write_config(&vdev->pdev, addr, data, size); 236 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, 237 memory_region_name(mirror->mem), 238 addr, data); 239 } 240 241 static const MemoryRegionOps vfio_generic_mirror_quirk = { 242 .read = vfio_generic_quirk_mirror_read, 243 .write = vfio_generic_quirk_mirror_write, 244 .endianness = DEVICE_LITTLE_ENDIAN, 245 }; 246 247 /* Is range1 fully contained within range2? */ 248 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 249 uint64_t first2, uint64_t len2) { 250 return (first1 >= first2 && first1 + len1 <= first2 + len2); 251 } 252 253 #define PCI_VENDOR_ID_ATI 0x1002 254 255 /* 256 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 257 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 258 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 259 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 260 * I/O port BAR address. Originally this was coded to return the virtual BAR 261 * address only if the physical register read returns the actual BAR address, 262 * but users have reported greater success if we return the virtual address 263 * unconditionally. 264 */ 265 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 266 hwaddr addr, unsigned size) 267 { 268 VFIOPCIDevice *vdev = opaque; 269 uint64_t data = vfio_pci_read_config(&vdev->pdev, 270 PCI_BASE_ADDRESS_4 + 1, size); 271 272 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); 273 274 return data; 275 } 276 277 static const MemoryRegionOps vfio_ati_3c3_quirk = { 278 .read = vfio_ati_3c3_quirk_read, 279 .endianness = DEVICE_LITTLE_ENDIAN, 280 }; 281 282 static VFIOQuirk *vfio_quirk_alloc(int nr_mem) 283 { 284 VFIOQuirk *quirk = g_new0(VFIOQuirk, 1); 285 QLIST_INIT(&quirk->ioeventfds); 286 quirk->mem = g_new0(MemoryRegion, nr_mem); 287 quirk->nr_mem = nr_mem; 288 289 return quirk; 290 } 291 292 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd) 293 { 294 QLIST_REMOVE(ioeventfd, next); 295 memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, 296 true, ioeventfd->data, &ioeventfd->e); 297 298 if (ioeventfd->vfio) { 299 struct vfio_device_ioeventfd vfio_ioeventfd; 300 301 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); 302 vfio_ioeventfd.flags = ioeventfd->size; 303 vfio_ioeventfd.data = ioeventfd->data; 304 vfio_ioeventfd.offset = ioeventfd->region->fd_offset + 305 ioeventfd->region_addr; 306 vfio_ioeventfd.fd = -1; 307 308 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) { 309 error_report("Failed to remove vfio ioeventfd for %s+0x%" 310 HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)", 311 memory_region_name(ioeventfd->mr), ioeventfd->addr, 312 ioeventfd->size, ioeventfd->data); 313 } 314 } else { 315 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), 316 NULL, NULL, NULL); 317 } 318 319 event_notifier_cleanup(&ioeventfd->e); 320 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr), 321 (uint64_t)ioeventfd->addr, ioeventfd->size, 322 ioeventfd->data); 323 g_free(ioeventfd); 324 } 325 326 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk) 327 { 328 VFIOIOEventFD *ioeventfd, *tmp; 329 330 QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) { 331 if (ioeventfd->dynamic) { 332 vfio_ioeventfd_exit(vdev, ioeventfd); 333 } 334 } 335 } 336 337 static void vfio_ioeventfd_handler(void *opaque) 338 { 339 VFIOIOEventFD *ioeventfd = opaque; 340 341 if (event_notifier_test_and_clear(&ioeventfd->e)) { 342 vfio_region_write(ioeventfd->region, ioeventfd->region_addr, 343 ioeventfd->data, ioeventfd->size); 344 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr), 345 (uint64_t)ioeventfd->addr, ioeventfd->size, 346 ioeventfd->data); 347 } 348 } 349 350 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev, 351 MemoryRegion *mr, hwaddr addr, 352 unsigned size, uint64_t data, 353 VFIORegion *region, 354 hwaddr region_addr, bool dynamic) 355 { 356 VFIOIOEventFD *ioeventfd; 357 358 if (vdev->no_kvm_ioeventfd) { 359 return NULL; 360 } 361 362 ioeventfd = g_malloc0(sizeof(*ioeventfd)); 363 364 if (event_notifier_init(&ioeventfd->e, 0)) { 365 g_free(ioeventfd); 366 return NULL; 367 } 368 369 /* 370 * MemoryRegion and relative offset, plus additional ioeventfd setup 371 * parameters for configuring and later tearing down KVM ioeventfd. 372 */ 373 ioeventfd->mr = mr; 374 ioeventfd->addr = addr; 375 ioeventfd->size = size; 376 ioeventfd->data = data; 377 ioeventfd->dynamic = dynamic; 378 /* 379 * VFIORegion and relative offset for implementing the userspace 380 * handler. data & size fields shared for both uses. 381 */ 382 ioeventfd->region = region; 383 ioeventfd->region_addr = region_addr; 384 385 if (!vdev->no_vfio_ioeventfd) { 386 struct vfio_device_ioeventfd vfio_ioeventfd; 387 388 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); 389 vfio_ioeventfd.flags = ioeventfd->size; 390 vfio_ioeventfd.data = ioeventfd->data; 391 vfio_ioeventfd.offset = ioeventfd->region->fd_offset + 392 ioeventfd->region_addr; 393 vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e); 394 395 ioeventfd->vfio = !ioctl(vdev->vbasedev.fd, 396 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd); 397 } 398 399 if (!ioeventfd->vfio) { 400 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), 401 vfio_ioeventfd_handler, NULL, ioeventfd); 402 } 403 404 memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, 405 true, ioeventfd->data, &ioeventfd->e); 406 trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr, 407 size, data, ioeventfd->vfio); 408 409 return ioeventfd; 410 } 411 412 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 413 { 414 VFIOQuirk *quirk; 415 416 /* 417 * As long as the BAR is >= 256 bytes it will be aligned such that the 418 * lower byte is always zero. Filter out anything else, if it exists. 419 */ 420 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 421 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 422 return; 423 } 424 425 quirk = vfio_quirk_alloc(1); 426 427 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, 428 "vfio-ati-3c3-quirk", 1); 429 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 430 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); 431 432 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 433 quirk, next); 434 435 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); 436 } 437 438 /* 439 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI 440 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 441 * the MMIO space directly, but a window to this space is provided through 442 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 443 * data register. When the address is programmed to a range of 0x4000-0x4fff 444 * PCI configuration space is available. Experimentation seems to indicate 445 * that read-only may be provided by hardware. 446 */ 447 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) 448 { 449 VFIOQuirk *quirk; 450 VFIOConfigWindowQuirk *window; 451 452 /* This windows doesn't seem to be used except by legacy VGA code */ 453 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 454 !vdev->vga || nr != 4) { 455 return; 456 } 457 458 quirk = vfio_quirk_alloc(2); 459 window = quirk->data = g_malloc0(sizeof(*window) + 460 sizeof(VFIOConfigWindowMatch)); 461 window->vdev = vdev; 462 window->address_offset = 0; 463 window->data_offset = 4; 464 window->nr_matches = 1; 465 window->matches[0].match = 0x4000; 466 window->matches[0].mask = vdev->config_size - 1; 467 window->bar = nr; 468 window->addr_mem = &quirk->mem[0]; 469 window->data_mem = &quirk->mem[1]; 470 471 memory_region_init_io(window->addr_mem, OBJECT(vdev), 472 &vfio_generic_window_address_quirk, window, 473 "vfio-ati-bar4-window-address-quirk", 4); 474 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 475 window->address_offset, 476 window->addr_mem, 1); 477 478 memory_region_init_io(window->data_mem, OBJECT(vdev), 479 &vfio_generic_window_data_quirk, window, 480 "vfio-ati-bar4-window-data-quirk", 4); 481 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 482 window->data_offset, 483 window->data_mem, 1); 484 485 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 486 487 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); 488 } 489 490 /* 491 * Trap the BAR2 MMIO mirror to config space as well. 492 */ 493 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) 494 { 495 VFIOQuirk *quirk; 496 VFIOConfigMirrorQuirk *mirror; 497 498 /* Only enable on newer devices where BAR2 is 64bit */ 499 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 500 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { 501 return; 502 } 503 504 quirk = vfio_quirk_alloc(1); 505 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 506 mirror->mem = quirk->mem; 507 mirror->vdev = vdev; 508 mirror->offset = 0x4000; 509 mirror->bar = nr; 510 511 memory_region_init_io(mirror->mem, OBJECT(vdev), 512 &vfio_generic_mirror_quirk, mirror, 513 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); 514 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 515 mirror->offset, mirror->mem, 1); 516 517 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 518 519 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); 520 } 521 522 /* 523 * Older ATI/AMD cards like the X550 have a similar window to that above. 524 * I/O port BAR1 provides a window to a mirror of PCI config space located 525 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 526 * note it for future reference. 527 */ 528 529 #define PCI_VENDOR_ID_NVIDIA 0x10de 530 531 /* 532 * Nvidia has several different methods to get to config space, the 533 * nouveu project has several of these documented here: 534 * https://github.com/pathscale/envytools/tree/master/hwdocs 535 * 536 * The first quirk is actually not documented in envytools and is found 537 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 538 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 539 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 540 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 541 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 542 * is written for a write to 0x3d4. The BAR0 offset is then accessible 543 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 544 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 545 */ 546 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; 547 static const char *nv3d0_states[] = { "NONE", "SELECT", 548 "WINDOW", "READ", "WRITE" }; 549 550 typedef struct VFIONvidia3d0Quirk { 551 VFIOPCIDevice *vdev; 552 VFIONvidia3d0State state; 553 uint32_t offset; 554 } VFIONvidia3d0Quirk; 555 556 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, 557 hwaddr addr, unsigned size) 558 { 559 VFIONvidia3d0Quirk *quirk = opaque; 560 VFIOPCIDevice *vdev = quirk->vdev; 561 562 quirk->state = NONE; 563 564 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 565 addr + 0x14, size); 566 } 567 568 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, 569 uint64_t data, unsigned size) 570 { 571 VFIONvidia3d0Quirk *quirk = opaque; 572 VFIOPCIDevice *vdev = quirk->vdev; 573 VFIONvidia3d0State old_state = quirk->state; 574 575 quirk->state = NONE; 576 577 switch (data) { 578 case 0x338: 579 if (old_state == NONE) { 580 quirk->state = SELECT; 581 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 582 nv3d0_states[quirk->state]); 583 } 584 break; 585 case 0x538: 586 if (old_state == WINDOW) { 587 quirk->state = READ; 588 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 589 nv3d0_states[quirk->state]); 590 } 591 break; 592 case 0x738: 593 if (old_state == WINDOW) { 594 quirk->state = WRITE; 595 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 596 nv3d0_states[quirk->state]); 597 } 598 break; 599 } 600 601 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 602 addr + 0x14, data, size); 603 } 604 605 static const MemoryRegionOps vfio_nvidia_3d4_quirk = { 606 .read = vfio_nvidia_3d4_quirk_read, 607 .write = vfio_nvidia_3d4_quirk_write, 608 .endianness = DEVICE_LITTLE_ENDIAN, 609 }; 610 611 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 612 hwaddr addr, unsigned size) 613 { 614 VFIONvidia3d0Quirk *quirk = opaque; 615 VFIOPCIDevice *vdev = quirk->vdev; 616 VFIONvidia3d0State old_state = quirk->state; 617 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 618 addr + 0x10, size); 619 620 quirk->state = NONE; 621 622 if (old_state == READ && 623 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 624 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 625 626 data = vfio_pci_read_config(&vdev->pdev, offset, size); 627 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, 628 offset, size, data); 629 } 630 631 return data; 632 } 633 634 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 635 uint64_t data, unsigned size) 636 { 637 VFIONvidia3d0Quirk *quirk = opaque; 638 VFIOPCIDevice *vdev = quirk->vdev; 639 VFIONvidia3d0State old_state = quirk->state; 640 641 quirk->state = NONE; 642 643 if (old_state == SELECT) { 644 quirk->offset = (uint32_t)data; 645 quirk->state = WINDOW; 646 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 647 nv3d0_states[quirk->state]); 648 } else if (old_state == WRITE) { 649 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 650 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 651 652 vfio_pci_write_config(&vdev->pdev, offset, data, size); 653 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, 654 offset, data, size); 655 return; 656 } 657 } 658 659 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 660 addr + 0x10, data, size); 661 } 662 663 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 664 .read = vfio_nvidia_3d0_quirk_read, 665 .write = vfio_nvidia_3d0_quirk_write, 666 .endianness = DEVICE_LITTLE_ENDIAN, 667 }; 668 669 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 670 { 671 VFIOQuirk *quirk; 672 VFIONvidia3d0Quirk *data; 673 674 if (vdev->no_geforce_quirks || 675 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 676 !vdev->bars[1].region.size) { 677 return; 678 } 679 680 quirk = vfio_quirk_alloc(2); 681 quirk->data = data = g_malloc0(sizeof(*data)); 682 data->vdev = vdev; 683 684 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, 685 data, "vfio-nvidia-3d4-quirk", 2); 686 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 687 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); 688 689 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, 690 data, "vfio-nvidia-3d0-quirk", 2); 691 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 692 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); 693 694 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 695 quirk, next); 696 697 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); 698 } 699 700 /* 701 * The second quirk is documented in envytools. The I/O port BAR5 is just 702 * a set of address/data ports to the MMIO BARs. The BAR we care about is 703 * again BAR0. This backdoor is apparently a bit newer than the one above 704 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 705 * space, including extended space is available at the 4k @0x88000. 706 */ 707 typedef struct VFIONvidiaBAR5Quirk { 708 uint32_t master; 709 uint32_t enable; 710 MemoryRegion *addr_mem; 711 MemoryRegion *data_mem; 712 bool enabled; 713 VFIOConfigWindowQuirk window; /* last for match data */ 714 } VFIONvidiaBAR5Quirk; 715 716 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) 717 { 718 VFIOPCIDevice *vdev = bar5->window.vdev; 719 720 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { 721 return; 722 } 723 724 bar5->enabled = !bar5->enabled; 725 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, 726 bar5->enabled ? "Enable" : "Disable"); 727 memory_region_set_enabled(bar5->addr_mem, bar5->enabled); 728 memory_region_set_enabled(bar5->data_mem, bar5->enabled); 729 } 730 731 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, 732 hwaddr addr, unsigned size) 733 { 734 VFIONvidiaBAR5Quirk *bar5 = opaque; 735 VFIOPCIDevice *vdev = bar5->window.vdev; 736 737 return vfio_region_read(&vdev->bars[5].region, addr, size); 738 } 739 740 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, 741 uint64_t data, unsigned size) 742 { 743 VFIONvidiaBAR5Quirk *bar5 = opaque; 744 VFIOPCIDevice *vdev = bar5->window.vdev; 745 746 vfio_region_write(&vdev->bars[5].region, addr, data, size); 747 748 bar5->master = data; 749 vfio_nvidia_bar5_enable(bar5); 750 } 751 752 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { 753 .read = vfio_nvidia_bar5_quirk_master_read, 754 .write = vfio_nvidia_bar5_quirk_master_write, 755 .endianness = DEVICE_LITTLE_ENDIAN, 756 }; 757 758 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, 759 hwaddr addr, unsigned size) 760 { 761 VFIONvidiaBAR5Quirk *bar5 = opaque; 762 VFIOPCIDevice *vdev = bar5->window.vdev; 763 764 return vfio_region_read(&vdev->bars[5].region, addr + 4, size); 765 } 766 767 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, 768 uint64_t data, unsigned size) 769 { 770 VFIONvidiaBAR5Quirk *bar5 = opaque; 771 VFIOPCIDevice *vdev = bar5->window.vdev; 772 773 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); 774 775 bar5->enable = data; 776 vfio_nvidia_bar5_enable(bar5); 777 } 778 779 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { 780 .read = vfio_nvidia_bar5_quirk_enable_read, 781 .write = vfio_nvidia_bar5_quirk_enable_write, 782 .endianness = DEVICE_LITTLE_ENDIAN, 783 }; 784 785 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) 786 { 787 VFIOQuirk *quirk; 788 VFIONvidiaBAR5Quirk *bar5; 789 VFIOConfigWindowQuirk *window; 790 791 if (vdev->no_geforce_quirks || 792 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 793 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) { 794 return; 795 } 796 797 quirk = vfio_quirk_alloc(4); 798 bar5 = quirk->data = g_malloc0(sizeof(*bar5) + 799 (sizeof(VFIOConfigWindowMatch) * 2)); 800 window = &bar5->window; 801 802 window->vdev = vdev; 803 window->address_offset = 0x8; 804 window->data_offset = 0xc; 805 window->nr_matches = 2; 806 window->matches[0].match = 0x1800; 807 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; 808 window->matches[1].match = 0x88000; 809 window->matches[1].mask = vdev->config_size - 1; 810 window->bar = nr; 811 window->addr_mem = bar5->addr_mem = &quirk->mem[0]; 812 window->data_mem = bar5->data_mem = &quirk->mem[1]; 813 814 memory_region_init_io(window->addr_mem, OBJECT(vdev), 815 &vfio_generic_window_address_quirk, window, 816 "vfio-nvidia-bar5-window-address-quirk", 4); 817 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 818 window->address_offset, 819 window->addr_mem, 1); 820 memory_region_set_enabled(window->addr_mem, false); 821 822 memory_region_init_io(window->data_mem, OBJECT(vdev), 823 &vfio_generic_window_data_quirk, window, 824 "vfio-nvidia-bar5-window-data-quirk", 4); 825 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 826 window->data_offset, 827 window->data_mem, 1); 828 memory_region_set_enabled(window->data_mem, false); 829 830 memory_region_init_io(&quirk->mem[2], OBJECT(vdev), 831 &vfio_nvidia_bar5_quirk_master, bar5, 832 "vfio-nvidia-bar5-master-quirk", 4); 833 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 834 0, &quirk->mem[2], 1); 835 836 memory_region_init_io(&quirk->mem[3], OBJECT(vdev), 837 &vfio_nvidia_bar5_quirk_enable, bar5, 838 "vfio-nvidia-bar5-enable-quirk", 4); 839 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 840 4, &quirk->mem[3], 1); 841 842 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 843 844 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); 845 } 846 847 typedef struct LastDataSet { 848 VFIOQuirk *quirk; 849 hwaddr addr; 850 uint64_t data; 851 unsigned size; 852 int hits; 853 int added; 854 } LastDataSet; 855 856 #define MAX_DYN_IOEVENTFD 10 857 #define HITS_FOR_IOEVENTFD 10 858 859 /* 860 * Finally, BAR0 itself. We want to redirect any accesses to either 861 * 0x1800 or 0x88000 through the PCI config space access functions. 862 */ 863 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, 864 uint64_t data, unsigned size) 865 { 866 VFIOConfigMirrorQuirk *mirror = opaque; 867 VFIOPCIDevice *vdev = mirror->vdev; 868 PCIDevice *pdev = &vdev->pdev; 869 LastDataSet *last = (LastDataSet *)&mirror->data; 870 871 vfio_generic_quirk_mirror_write(opaque, addr, data, size); 872 873 /* 874 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 875 * MSI capability ID register. Both the ID and next register are 876 * read-only, so we allow writes covering either of those to real hw. 877 */ 878 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 879 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 880 vfio_region_write(&vdev->bars[mirror->bar].region, 881 addr + mirror->offset, data, size); 882 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); 883 } 884 885 /* 886 * Automatically add an ioeventfd to handle any repeated write with the 887 * same data and size above the standard PCI config space header. This is 888 * primarily expected to accelerate the MSI-ACK behavior, such as noted 889 * above. Current hardware/drivers should trigger an ioeventfd at config 890 * offset 0x704 (region offset 0x88704), with data 0x0, size 4. 891 * 892 * The criteria of 10 successive hits is arbitrary but reliably adds the 893 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd, 894 * the remaining ones have a greater chance of being seen successively. 895 * To avoid the pathological case of burning up all of QEMU's open file 896 * handles, arbitrarily limit this algorithm from adding no more than 10 897 * ioeventfds, print an error if we would have added an 11th, and then 898 * stop counting. 899 */ 900 if (!vdev->no_kvm_ioeventfd && 901 addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) { 902 if (addr != last->addr || data != last->data || size != last->size) { 903 last->addr = addr; 904 last->data = data; 905 last->size = size; 906 last->hits = 1; 907 } else if (++last->hits >= HITS_FOR_IOEVENTFD) { 908 if (last->added < MAX_DYN_IOEVENTFD) { 909 VFIOIOEventFD *ioeventfd; 910 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size, 911 data, &vdev->bars[mirror->bar].region, 912 mirror->offset + addr, true); 913 if (ioeventfd) { 914 VFIOQuirk *quirk = last->quirk; 915 916 QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next); 917 last->added++; 918 } 919 } else { 920 last->added++; 921 warn_report("NVIDIA ioeventfd queue full for %s, unable to " 922 "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", " 923 "size %u", vdev->vbasedev.name, addr, data, size); 924 } 925 } 926 } 927 } 928 929 static const MemoryRegionOps vfio_nvidia_mirror_quirk = { 930 .read = vfio_generic_quirk_mirror_read, 931 .write = vfio_nvidia_quirk_mirror_write, 932 .endianness = DEVICE_LITTLE_ENDIAN, 933 }; 934 935 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk) 936 { 937 VFIOConfigMirrorQuirk *mirror = quirk->data; 938 LastDataSet *last = (LastDataSet *)&mirror->data; 939 940 last->addr = last->data = last->size = last->hits = last->added = 0; 941 942 vfio_drop_dynamic_eventfds(vdev, quirk); 943 } 944 945 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) 946 { 947 VFIOQuirk *quirk; 948 VFIOConfigMirrorQuirk *mirror; 949 LastDataSet *last; 950 951 if (vdev->no_geforce_quirks || 952 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 953 !vfio_is_vga(vdev) || nr != 0) { 954 return; 955 } 956 957 quirk = vfio_quirk_alloc(1); 958 quirk->reset = vfio_nvidia_bar0_quirk_reset; 959 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); 960 mirror->mem = quirk->mem; 961 mirror->vdev = vdev; 962 mirror->offset = 0x88000; 963 mirror->bar = nr; 964 last = (LastDataSet *)&mirror->data; 965 last->quirk = quirk; 966 967 memory_region_init_io(mirror->mem, OBJECT(vdev), 968 &vfio_nvidia_mirror_quirk, mirror, 969 "vfio-nvidia-bar0-88000-mirror-quirk", 970 vdev->config_size); 971 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 972 mirror->offset, mirror->mem, 1); 973 974 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 975 976 /* The 0x1800 offset mirror only seems to get used by legacy VGA */ 977 if (vdev->vga) { 978 quirk = vfio_quirk_alloc(1); 979 quirk->reset = vfio_nvidia_bar0_quirk_reset; 980 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); 981 mirror->mem = quirk->mem; 982 mirror->vdev = vdev; 983 mirror->offset = 0x1800; 984 mirror->bar = nr; 985 last = (LastDataSet *)&mirror->data; 986 last->quirk = quirk; 987 988 memory_region_init_io(mirror->mem, OBJECT(vdev), 989 &vfio_nvidia_mirror_quirk, mirror, 990 "vfio-nvidia-bar0-1800-mirror-quirk", 991 PCI_CONFIG_SPACE_SIZE); 992 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 993 mirror->offset, mirror->mem, 1); 994 995 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 996 } 997 998 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); 999 } 1000 1001 /* 1002 * TODO - Some Nvidia devices provide config access to their companion HDA 1003 * device and even to their parent bridge via these config space mirrors. 1004 * Add quirks for those regions. 1005 */ 1006 1007 #define PCI_VENDOR_ID_REALTEK 0x10ec 1008 1009 /* 1010 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 1011 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 1012 * register. According to the Linux r8169 driver, the MSI-X table is addressed 1013 * when the "type" portion of the address register is set to 0x1. This appears 1014 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 1015 * "address latched" indicator. Bits 12:15 are a mask field, which we can 1016 * ignore because the MSI-X table should always be accessed as a dword (full 1017 * mask). Bits 0:11 is offset within the type. 1018 * 1019 * Example trace: 1020 * 1021 * Read from MSI-X table offset 0 1022 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 1023 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 1024 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 1025 * 1026 * Write 0xfee00000 to MSI-X table offset 0 1027 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 1028 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 1029 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 1030 */ 1031 typedef struct VFIOrtl8168Quirk { 1032 VFIOPCIDevice *vdev; 1033 uint32_t addr; 1034 uint32_t data; 1035 bool enabled; 1036 } VFIOrtl8168Quirk; 1037 1038 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, 1039 hwaddr addr, unsigned size) 1040 { 1041 VFIOrtl8168Quirk *rtl = opaque; 1042 VFIOPCIDevice *vdev = rtl->vdev; 1043 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); 1044 1045 if (rtl->enabled) { 1046 data = rtl->addr ^ 0x80000000U; /* latch/complete */ 1047 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); 1048 } 1049 1050 return data; 1051 } 1052 1053 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, 1054 uint64_t data, unsigned size) 1055 { 1056 VFIOrtl8168Quirk *rtl = opaque; 1057 VFIOPCIDevice *vdev = rtl->vdev; 1058 1059 rtl->enabled = false; 1060 1061 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ 1062 rtl->enabled = true; 1063 rtl->addr = (uint32_t)data; 1064 1065 if (data & 0x80000000U) { /* Do write */ 1066 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 1067 hwaddr offset = data & 0xfff; 1068 uint64_t val = rtl->data; 1069 1070 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, 1071 (uint16_t)offset, val); 1072 1073 /* Write to the proper guest MSI-X table instead */ 1074 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 1075 offset, val, size, 1076 MEMTXATTRS_UNSPECIFIED); 1077 } 1078 return; /* Do not write guest MSI-X data to hardware */ 1079 } 1080 } 1081 1082 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); 1083 } 1084 1085 static const MemoryRegionOps vfio_rtl_address_quirk = { 1086 .read = vfio_rtl8168_quirk_address_read, 1087 .write = vfio_rtl8168_quirk_address_write, 1088 .valid = { 1089 .min_access_size = 4, 1090 .max_access_size = 4, 1091 .unaligned = false, 1092 }, 1093 .endianness = DEVICE_LITTLE_ENDIAN, 1094 }; 1095 1096 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, 1097 hwaddr addr, unsigned size) 1098 { 1099 VFIOrtl8168Quirk *rtl = opaque; 1100 VFIOPCIDevice *vdev = rtl->vdev; 1101 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); 1102 1103 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 1104 hwaddr offset = rtl->addr & 0xfff; 1105 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, 1106 &data, size, MEMTXATTRS_UNSPECIFIED); 1107 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); 1108 } 1109 1110 return data; 1111 } 1112 1113 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, 1114 uint64_t data, unsigned size) 1115 { 1116 VFIOrtl8168Quirk *rtl = opaque; 1117 VFIOPCIDevice *vdev = rtl->vdev; 1118 1119 rtl->data = (uint32_t)data; 1120 1121 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); 1122 } 1123 1124 static const MemoryRegionOps vfio_rtl_data_quirk = { 1125 .read = vfio_rtl8168_quirk_data_read, 1126 .write = vfio_rtl8168_quirk_data_write, 1127 .valid = { 1128 .min_access_size = 4, 1129 .max_access_size = 4, 1130 .unaligned = false, 1131 }, 1132 .endianness = DEVICE_LITTLE_ENDIAN, 1133 }; 1134 1135 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) 1136 { 1137 VFIOQuirk *quirk; 1138 VFIOrtl8168Quirk *rtl; 1139 1140 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { 1141 return; 1142 } 1143 1144 quirk = vfio_quirk_alloc(2); 1145 quirk->data = rtl = g_malloc0(sizeof(*rtl)); 1146 rtl->vdev = vdev; 1147 1148 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), 1149 &vfio_rtl_address_quirk, rtl, 1150 "vfio-rtl8168-window-address-quirk", 4); 1151 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1152 0x74, &quirk->mem[0], 1); 1153 1154 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), 1155 &vfio_rtl_data_quirk, rtl, 1156 "vfio-rtl8168-window-data-quirk", 4); 1157 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1158 0x70, &quirk->mem[1], 1); 1159 1160 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1161 1162 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); 1163 } 1164 1165 /* 1166 * Intel IGD support 1167 * 1168 * Obviously IGD is not a discrete device, this is evidenced not only by it 1169 * being integrated into the CPU, but by the various chipset and BIOS 1170 * dependencies that it brings along with it. Intel is trying to move away 1171 * from this and Broadwell and newer devices can run in what Intel calls 1172 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing 1173 * more is required beyond assigning the IGD device to a VM. There are 1174 * however support limitations to this mode. It only supports IGD as a 1175 * secondary graphics device in the VM and it doesn't officially support any 1176 * physical outputs. 1177 * 1178 * The code here attempts to enable what we'll call legacy mode assignment, 1179 * IGD retains most of the capabilities we expect for it to have on bare 1180 * metal. To enable this mode, the IGD device must be assigned to the VM 1181 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA 1182 * support, we must have VM BIOS support for reserving and populating some 1183 * of the required tables, and we need to tweak the chipset with revisions 1184 * and IDs and an LPC/ISA bridge device. The intention is to make all of 1185 * this happen automatically by installing the device at the correct VM PCI 1186 * bus address. If any of the conditions are not met, we cross our fingers 1187 * and hope the user knows better. 1188 * 1189 * NB - It is possible to enable physical outputs in UPT mode by supplying 1190 * an OpRegion table. We don't do this by default because the guest driver 1191 * behaves differently if an OpRegion is provided and no monitor is attached 1192 * vs no OpRegion and a monitor being attached or not. Effectively, if a 1193 * headless setup is desired, the OpRegion gets in the way of that. 1194 */ 1195 1196 /* 1197 * This presumes the device is already known to be an Intel VGA device, so we 1198 * take liberties in which device ID bits match which generation. This should 1199 * not be taken as an indication that all the devices are supported, or even 1200 * supportable, some of them don't even support VT-d. 1201 * See linux:include/drm/i915_pciids.h for IDs. 1202 */ 1203 static int igd_gen(VFIOPCIDevice *vdev) 1204 { 1205 if ((vdev->device_id & 0xfff) == 0xa84) { 1206 return 8; /* Broxton */ 1207 } 1208 1209 switch (vdev->device_id & 0xff00) { 1210 /* Old, untested, unavailable, unknown */ 1211 case 0x0000: 1212 case 0x2500: 1213 case 0x2700: 1214 case 0x2900: 1215 case 0x2a00: 1216 case 0x2e00: 1217 case 0x3500: 1218 case 0xa000: 1219 return -1; 1220 /* SandyBridge, IvyBridge, ValleyView, Haswell */ 1221 case 0x0100: 1222 case 0x0400: 1223 case 0x0a00: 1224 case 0x0c00: 1225 case 0x0d00: 1226 case 0x0f00: 1227 return 6; 1228 /* BroadWell, CherryView, SkyLake, KabyLake */ 1229 case 0x1600: 1230 case 0x1900: 1231 case 0x2200: 1232 case 0x5900: 1233 return 8; 1234 } 1235 1236 return 8; /* Assume newer is compatible */ 1237 } 1238 1239 typedef struct VFIOIGDQuirk { 1240 struct VFIOPCIDevice *vdev; 1241 uint32_t index; 1242 uint32_t bdsm; 1243 } VFIOIGDQuirk; 1244 1245 #define IGD_GMCH 0x50 /* Graphics Control Register */ 1246 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */ 1247 #define IGD_ASLS 0xfc /* ASL Storage Register */ 1248 1249 /* 1250 * The OpRegion includes the Video BIOS Table, which seems important for 1251 * telling the driver what sort of outputs it has. Without this, the device 1252 * may work in the guest, but we may not get output. This also requires BIOS 1253 * support to reserve and populate a section of guest memory sufficient for 1254 * the table and to write the base address of that memory to the ASLS register 1255 * of the IGD device. 1256 */ 1257 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, 1258 struct vfio_region_info *info, Error **errp) 1259 { 1260 int ret; 1261 1262 vdev->igd_opregion = g_malloc0(info->size); 1263 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, 1264 info->size, info->offset); 1265 if (ret != info->size) { 1266 error_setg(errp, "failed to read IGD OpRegion"); 1267 g_free(vdev->igd_opregion); 1268 vdev->igd_opregion = NULL; 1269 return -EINVAL; 1270 } 1271 1272 /* 1273 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to 1274 * allocate 32bit reserved memory for, copy these contents into, and write 1275 * the reserved memory base address to the device ASLS register at 0xFC. 1276 * Alignment of this reserved region seems flexible, but using a 4k page 1277 * alignment seems to work well. This interface assumes a single IGD 1278 * device, which may be at VM address 00:02.0 in legacy mode or another 1279 * address in UPT mode. 1280 * 1281 * NB, there may be future use cases discovered where the VM should have 1282 * direct interaction with the host OpRegion, in which case the write to 1283 * the ASLS register would trigger MemoryRegion setup to enable that. 1284 */ 1285 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", 1286 vdev->igd_opregion, info->size); 1287 1288 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); 1289 1290 pci_set_long(vdev->pdev.config + IGD_ASLS, 0); 1291 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); 1292 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * The rather short list of registers that we copy from the host devices. 1299 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the 1300 * host bridge values may or may not be needed depending on the guest OS. 1301 * Since we're only munging revision and subsystem values on the host bridge, 1302 * we don't require our own device. The LPC/ISA bridge needs to be our very 1303 * own though. 1304 */ 1305 typedef struct { 1306 uint8_t offset; 1307 uint8_t len; 1308 } IGDHostInfo; 1309 1310 static const IGDHostInfo igd_host_bridge_infos[] = { 1311 {PCI_REVISION_ID, 2}, 1312 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1313 {PCI_SUBSYSTEM_ID, 2}, 1314 }; 1315 1316 static const IGDHostInfo igd_lpc_bridge_infos[] = { 1317 {PCI_VENDOR_ID, 2}, 1318 {PCI_DEVICE_ID, 2}, 1319 {PCI_REVISION_ID, 2}, 1320 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1321 {PCI_SUBSYSTEM_ID, 2}, 1322 }; 1323 1324 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev, 1325 struct vfio_region_info *info, 1326 const IGDHostInfo *list, int len) 1327 { 1328 int i, ret; 1329 1330 for (i = 0; i < len; i++) { 1331 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset, 1332 list[i].len, info->offset + list[i].offset); 1333 if (ret != list[i].len) { 1334 error_report("IGD copy failed: %m"); 1335 return -errno; 1336 } 1337 } 1338 1339 return 0; 1340 } 1341 1342 /* 1343 * Stuff a few values into the host bridge. 1344 */ 1345 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev, 1346 struct vfio_region_info *info) 1347 { 1348 PCIBus *bus; 1349 PCIDevice *host_bridge; 1350 int ret; 1351 1352 bus = pci_device_root_bus(&vdev->pdev); 1353 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0)); 1354 1355 if (!host_bridge) { 1356 error_report("Can't find host bridge"); 1357 return -ENODEV; 1358 } 1359 1360 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos, 1361 ARRAY_SIZE(igd_host_bridge_infos)); 1362 if (!ret) { 1363 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name); 1364 } 1365 1366 return ret; 1367 } 1368 1369 /* 1370 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write 1371 * arbitrary values into just any bridge, so we must create our own. We try 1372 * to handle if the user has created it for us, which they might want to do 1373 * to enable multifunction so we don't occupy the whole PCI slot. 1374 */ 1375 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp) 1376 { 1377 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) { 1378 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0"); 1379 } 1380 } 1381 1382 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data) 1383 { 1384 DeviceClass *dc = DEVICE_CLASS(klass); 1385 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1386 1387 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1388 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment"; 1389 dc->hotpluggable = false; 1390 k->realize = vfio_pci_igd_lpc_bridge_realize; 1391 k->class_id = PCI_CLASS_BRIDGE_ISA; 1392 } 1393 1394 static TypeInfo vfio_pci_igd_lpc_bridge_info = { 1395 .name = "vfio-pci-igd-lpc-bridge", 1396 .parent = TYPE_PCI_DEVICE, 1397 .class_init = vfio_pci_igd_lpc_bridge_class_init, 1398 .interfaces = (InterfaceInfo[]) { 1399 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1400 { }, 1401 }, 1402 }; 1403 1404 static void vfio_pci_igd_register_types(void) 1405 { 1406 type_register_static(&vfio_pci_igd_lpc_bridge_info); 1407 } 1408 1409 type_init(vfio_pci_igd_register_types) 1410 1411 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev, 1412 struct vfio_region_info *info) 1413 { 1414 PCIDevice *lpc_bridge; 1415 int ret; 1416 1417 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1418 0, PCI_DEVFN(0x1f, 0)); 1419 if (!lpc_bridge) { 1420 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev), 1421 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge"); 1422 } 1423 1424 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos, 1425 ARRAY_SIZE(igd_lpc_bridge_infos)); 1426 if (!ret) { 1427 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name); 1428 } 1429 1430 return ret; 1431 } 1432 1433 /* 1434 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE 1435 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore 1436 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index 1437 * for programming the GTT. 1438 * 1439 * See linux:include/drm/i915_drm.h for shift and mask values. 1440 */ 1441 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev) 1442 { 1443 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1444 int ggms, gen = igd_gen(vdev); 1445 1446 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1447 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1448 if (gen > 6) { 1449 ggms = 1 << ggms; 1450 } 1451 1452 ggms *= MiB; 1453 1454 return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8); 1455 } 1456 1457 /* 1458 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes. 1459 * Somehow the host stolen memory range is used for this, but how the ROM gets 1460 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it 1461 * reprograms the GTT through the IOBAR where we can trap it and transpose the 1462 * programming to the VM allocated buffer. That buffer gets reserved by the VM 1463 * firmware via the fw_cfg entry added below. Here we're just monitoring the 1464 * IOBAR address and data registers to detect a write sequence targeting the 1465 * GTTADR. This code is developed by observed behavior and doesn't have a 1466 * direct spec reference, unfortunately. 1467 */ 1468 static uint64_t vfio_igd_quirk_data_read(void *opaque, 1469 hwaddr addr, unsigned size) 1470 { 1471 VFIOIGDQuirk *igd = opaque; 1472 VFIOPCIDevice *vdev = igd->vdev; 1473 1474 igd->index = ~0; 1475 1476 return vfio_region_read(&vdev->bars[4].region, addr + 4, size); 1477 } 1478 1479 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr, 1480 uint64_t data, unsigned size) 1481 { 1482 VFIOIGDQuirk *igd = opaque; 1483 VFIOPCIDevice *vdev = igd->vdev; 1484 uint64_t val = data; 1485 int gen = igd_gen(vdev); 1486 1487 /* 1488 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie. 1489 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE 1490 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so 1491 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points 1492 * to a 4k page, which we translate to a page from the VM allocated region, 1493 * pointed to by the BDSM register. If this is not set, we fail. 1494 * 1495 * We trap writes to the full configured GTT size, but we typically only 1496 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often 1497 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous 1498 * write of that last entry does work, but is hopefully unnecessary since 1499 * we clear the previous GTT on initialization. 1500 */ 1501 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) { 1502 if (gen < 8 || (igd->index % 8 == 1)) { 1503 uint32_t base; 1504 1505 base = pci_get_long(vdev->pdev.config + IGD_BDSM); 1506 if (!base) { 1507 hw_error("vfio-igd: Guest attempted to program IGD GTT before " 1508 "BIOS reserved stolen memory. Unsupported BIOS?"); 1509 } 1510 1511 val = data - igd->bdsm + base; 1512 } else { 1513 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */ 1514 } 1515 1516 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name, 1517 igd->index, data, val); 1518 } 1519 1520 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size); 1521 1522 igd->index = ~0; 1523 } 1524 1525 static const MemoryRegionOps vfio_igd_data_quirk = { 1526 .read = vfio_igd_quirk_data_read, 1527 .write = vfio_igd_quirk_data_write, 1528 .endianness = DEVICE_LITTLE_ENDIAN, 1529 }; 1530 1531 static uint64_t vfio_igd_quirk_index_read(void *opaque, 1532 hwaddr addr, unsigned size) 1533 { 1534 VFIOIGDQuirk *igd = opaque; 1535 VFIOPCIDevice *vdev = igd->vdev; 1536 1537 igd->index = ~0; 1538 1539 return vfio_region_read(&vdev->bars[4].region, addr, size); 1540 } 1541 1542 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr, 1543 uint64_t data, unsigned size) 1544 { 1545 VFIOIGDQuirk *igd = opaque; 1546 VFIOPCIDevice *vdev = igd->vdev; 1547 1548 igd->index = data; 1549 1550 vfio_region_write(&vdev->bars[4].region, addr, data, size); 1551 } 1552 1553 static const MemoryRegionOps vfio_igd_index_quirk = { 1554 .read = vfio_igd_quirk_index_read, 1555 .write = vfio_igd_quirk_index_write, 1556 .endianness = DEVICE_LITTLE_ENDIAN, 1557 }; 1558 1559 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) 1560 { 1561 struct vfio_region_info *rom = NULL, *opregion = NULL, 1562 *host = NULL, *lpc = NULL; 1563 VFIOQuirk *quirk; 1564 VFIOIGDQuirk *igd; 1565 PCIDevice *lpc_bridge; 1566 int i, ret, ggms_mb, gms_mb = 0, gen; 1567 uint64_t *bdsm_size; 1568 uint32_t gmch; 1569 uint16_t cmd_orig, cmd; 1570 Error *err = NULL; 1571 1572 /* 1573 * This must be an Intel VGA device at address 00:02.0 for us to even 1574 * consider enabling legacy mode. The vBIOS has dependencies on the 1575 * PCI bus address. 1576 */ 1577 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || 1578 !vfio_is_vga(vdev) || nr != 4 || 1579 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 1580 0, PCI_DEVFN(0x2, 0))) { 1581 return; 1582 } 1583 1584 /* 1585 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we 1586 * can stuff host values into, so if there's already one there and it's not 1587 * one we can hack on, legacy mode is no-go. Sorry Q35. 1588 */ 1589 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1590 0, PCI_DEVFN(0x1f, 0)); 1591 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), 1592 "vfio-pci-igd-lpc-bridge")) { 1593 error_report("IGD device %s cannot support legacy mode due to existing " 1594 "devices at address 1f.0", vdev->vbasedev.name); 1595 return; 1596 } 1597 1598 /* 1599 * IGD is not a standard, they like to change their specs often. We 1600 * only attempt to support back to SandBridge and we hope that newer 1601 * devices maintain compatibility with generation 8. 1602 */ 1603 gen = igd_gen(vdev); 1604 if (gen != 6 && gen != 8) { 1605 error_report("IGD device %s is unsupported in legacy mode, " 1606 "try SandyBridge or newer", vdev->vbasedev.name); 1607 return; 1608 } 1609 1610 /* 1611 * Most of what we're doing here is to enable the ROM to run, so if 1612 * there's no ROM, there's no point in setting up this quirk. 1613 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. 1614 */ 1615 ret = vfio_get_region_info(&vdev->vbasedev, 1616 VFIO_PCI_ROM_REGION_INDEX, &rom); 1617 if ((ret || !rom->size) && !vdev->pdev.romfile) { 1618 error_report("IGD device %s has no ROM, legacy mode disabled", 1619 vdev->vbasedev.name); 1620 goto out; 1621 } 1622 1623 /* 1624 * Ignore the hotplug corner case, mark the ROM failed, we can't 1625 * create the devices we need for legacy mode in the hotplug scenario. 1626 */ 1627 if (vdev->pdev.qdev.hotplugged) { 1628 error_report("IGD device %s hotplugged, ROM disabled, " 1629 "legacy mode disabled", vdev->vbasedev.name); 1630 vdev->rom_read_failed = true; 1631 goto out; 1632 } 1633 1634 /* 1635 * Check whether we have all the vfio device specific regions to 1636 * support legacy mode (added in Linux v4.6). If not, bail. 1637 */ 1638 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1639 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1640 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); 1641 if (ret) { 1642 error_report("IGD device %s does not support OpRegion access," 1643 "legacy mode disabled", vdev->vbasedev.name); 1644 goto out; 1645 } 1646 1647 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1648 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1649 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); 1650 if (ret) { 1651 error_report("IGD device %s does not support host bridge access," 1652 "legacy mode disabled", vdev->vbasedev.name); 1653 goto out; 1654 } 1655 1656 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1657 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1658 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); 1659 if (ret) { 1660 error_report("IGD device %s does not support LPC bridge access," 1661 "legacy mode disabled", vdev->vbasedev.name); 1662 goto out; 1663 } 1664 1665 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); 1666 1667 /* 1668 * If IGD VGA Disable is clear (expected) and VGA is not already enabled, 1669 * try to enable it. Probably shouldn't be using legacy mode without VGA, 1670 * but also no point in us enabling VGA if disabled in hardware. 1671 */ 1672 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) { 1673 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 1674 error_report("IGD device %s failed to enable VGA access, " 1675 "legacy mode disabled", vdev->vbasedev.name); 1676 goto out; 1677 } 1678 1679 /* Create our LPC/ISA bridge */ 1680 ret = vfio_pci_igd_lpc_init(vdev, lpc); 1681 if (ret) { 1682 error_report("IGD device %s failed to create LPC bridge, " 1683 "legacy mode disabled", vdev->vbasedev.name); 1684 goto out; 1685 } 1686 1687 /* Stuff some host values into the VM PCI host bridge */ 1688 ret = vfio_pci_igd_host_init(vdev, host); 1689 if (ret) { 1690 error_report("IGD device %s failed to modify host bridge, " 1691 "legacy mode disabled", vdev->vbasedev.name); 1692 goto out; 1693 } 1694 1695 /* Setup OpRegion access */ 1696 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err); 1697 if (ret) { 1698 error_append_hint(&err, "IGD legacy mode disabled\n"); 1699 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 1700 goto out; 1701 } 1702 1703 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ 1704 quirk = vfio_quirk_alloc(2); 1705 igd = quirk->data = g_malloc0(sizeof(*igd)); 1706 igd->vdev = vdev; 1707 igd->index = ~0; 1708 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4); 1709 igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */ 1710 1711 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, 1712 igd, "vfio-igd-index-quirk", 4); 1713 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1714 0, &quirk->mem[0], 1); 1715 1716 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, 1717 igd, "vfio-igd-data-quirk", 4); 1718 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1719 4, &quirk->mem[1], 1); 1720 1721 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1722 1723 /* Determine the size of stolen memory needed for GTT */ 1724 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1725 if (gen > 6) { 1726 ggms_mb = 1 << ggms_mb; 1727 } 1728 1729 /* 1730 * Assume we have no GMS memory, but allow it to be overrided by device 1731 * option (experimental). The spec doesn't actually allow zero GMS when 1732 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused, 1733 * so let's not waste VM memory for it. 1734 */ 1735 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8)); 1736 1737 if (vdev->igd_gms) { 1738 if (vdev->igd_gms <= 0x10) { 1739 gms_mb = vdev->igd_gms * 32; 1740 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8); 1741 } else { 1742 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms); 1743 vdev->igd_gms = 0; 1744 } 1745 } 1746 1747 /* 1748 * Request reserved memory for stolen memory via fw_cfg. VM firmware 1749 * must allocate a 1MB aligned reserved memory region below 4GB with 1750 * the requested size (in bytes) for use by the Intel PCI class VGA 1751 * device at VM address 00:02.0. The base address of this reserved 1752 * memory region must be written to the device BDSM regsiter at PCI 1753 * config offset 0x5C. 1754 */ 1755 bdsm_size = g_malloc(sizeof(*bdsm_size)); 1756 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB); 1757 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", 1758 bdsm_size, sizeof(*bdsm_size)); 1759 1760 /* GMCH is read-only, emulated */ 1761 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); 1762 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); 1763 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); 1764 1765 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ 1766 pci_set_long(vdev->pdev.config + IGD_BDSM, 0); 1767 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); 1768 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); 1769 1770 /* 1771 * This IOBAR gives us access to GTTADR, which allows us to write to 1772 * the GTT itself. So let's go ahead and write zero to all the GTT 1773 * entries to avoid spurious DMA faults. Be sure I/O access is enabled 1774 * before talking to the device. 1775 */ 1776 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1777 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1778 error_report("IGD device %s - failed to read PCI command register", 1779 vdev->vbasedev.name); 1780 } 1781 1782 cmd = cmd_orig | PCI_COMMAND_IO; 1783 1784 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), 1785 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { 1786 error_report("IGD device %s - failed to write PCI command register", 1787 vdev->vbasedev.name); 1788 } 1789 1790 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { 1791 vfio_region_write(&vdev->bars[4].region, 0, i, 4); 1792 vfio_region_write(&vdev->bars[4].region, 4, 0, 4); 1793 } 1794 1795 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1796 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1797 error_report("IGD device %s - failed to restore PCI command register", 1798 vdev->vbasedev.name); 1799 } 1800 1801 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); 1802 1803 out: 1804 g_free(rom); 1805 g_free(opregion); 1806 g_free(host); 1807 g_free(lpc); 1808 } 1809 1810 /* 1811 * Common quirk probe entry points. 1812 */ 1813 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 1814 { 1815 vfio_vga_probe_ati_3c3_quirk(vdev); 1816 vfio_vga_probe_nvidia_3d0_quirk(vdev); 1817 } 1818 1819 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) 1820 { 1821 VFIOQuirk *quirk; 1822 int i, j; 1823 1824 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1825 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { 1826 for (j = 0; j < quirk->nr_mem; j++) { 1827 memory_region_del_subregion(&vdev->vga->region[i].mem, 1828 &quirk->mem[j]); 1829 } 1830 } 1831 } 1832 } 1833 1834 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) 1835 { 1836 int i, j; 1837 1838 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1839 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { 1840 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); 1841 QLIST_REMOVE(quirk, next); 1842 for (j = 0; j < quirk->nr_mem; j++) { 1843 object_unparent(OBJECT(&quirk->mem[j])); 1844 } 1845 g_free(quirk->mem); 1846 g_free(quirk->data); 1847 g_free(quirk); 1848 } 1849 } 1850 } 1851 1852 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 1853 { 1854 vfio_probe_ati_bar4_quirk(vdev, nr); 1855 vfio_probe_ati_bar2_quirk(vdev, nr); 1856 vfio_probe_nvidia_bar5_quirk(vdev, nr); 1857 vfio_probe_nvidia_bar0_quirk(vdev, nr); 1858 vfio_probe_rtl8168_bar2_quirk(vdev, nr); 1859 vfio_probe_igd_bar4_quirk(vdev, nr); 1860 } 1861 1862 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) 1863 { 1864 VFIOBAR *bar = &vdev->bars[nr]; 1865 VFIOQuirk *quirk; 1866 int i; 1867 1868 QLIST_FOREACH(quirk, &bar->quirks, next) { 1869 while (!QLIST_EMPTY(&quirk->ioeventfds)) { 1870 vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds)); 1871 } 1872 1873 for (i = 0; i < quirk->nr_mem; i++) { 1874 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); 1875 } 1876 } 1877 } 1878 1879 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) 1880 { 1881 VFIOBAR *bar = &vdev->bars[nr]; 1882 int i; 1883 1884 while (!QLIST_EMPTY(&bar->quirks)) { 1885 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 1886 QLIST_REMOVE(quirk, next); 1887 for (i = 0; i < quirk->nr_mem; i++) { 1888 object_unparent(OBJECT(&quirk->mem[i])); 1889 } 1890 g_free(quirk->mem); 1891 g_free(quirk->data); 1892 g_free(quirk); 1893 } 1894 } 1895 1896 /* 1897 * Reset quirks 1898 */ 1899 void vfio_quirk_reset(VFIOPCIDevice *vdev) 1900 { 1901 int i; 1902 1903 for (i = 0; i < PCI_ROM_SLOT; i++) { 1904 VFIOQuirk *quirk; 1905 VFIOBAR *bar = &vdev->bars[i]; 1906 1907 QLIST_FOREACH(quirk, &bar->quirks, next) { 1908 if (quirk->reset) { 1909 quirk->reset(vdev, quirk); 1910 } 1911 } 1912 } 1913 } 1914 1915 /* 1916 * AMD Radeon PCI config reset, based on Linux: 1917 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() 1918 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset 1919 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() 1920 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() 1921 * IDs: include/drm/drm_pciids.h 1922 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 1923 * 1924 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the 1925 * hardware that should be fixed on future ASICs. The symptom of this is that 1926 * once the accerlated driver loads, Windows guests will bsod on subsequent 1927 * attmpts to load the driver, such as after VM reset or shutdown/restart. To 1928 * work around this, we do an AMD specific PCI config reset, followed by an SMC 1929 * reset. The PCI config reset only works if SMC firmware is running, so we 1930 * have a dependency on the state of the device as to whether this reset will 1931 * be effective. There are still cases where we won't be able to kick the 1932 * device into working, but this greatly improves the usability overall. The 1933 * config reset magic is relatively common on AMD GPUs, but the setup and SMC 1934 * poking is largely ASIC specific. 1935 */ 1936 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) 1937 { 1938 uint32_t clk, pc_c; 1939 1940 /* 1941 * Registers 200h and 204h are index and data registers for accessing 1942 * indirect configuration registers within the device. 1943 */ 1944 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1945 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1946 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); 1947 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1948 1949 return (!(clk & 1) && (0x20100 <= pc_c)); 1950 } 1951 1952 /* 1953 * The scope of a config reset is controlled by a mode bit in the misc register 1954 * and a fuse, exposed as a bit in another register. The fuse is the default 1955 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula 1956 * scope = !(misc ^ fuse), where the resulting scope is defined the same as 1957 * the fuse. A truth table therefore tells us that if misc == fuse, we need 1958 * to flip the value of the bit in the misc register. 1959 */ 1960 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) 1961 { 1962 uint32_t misc, fuse; 1963 bool a, b; 1964 1965 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); 1966 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1967 b = fuse & 64; 1968 1969 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); 1970 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1971 a = misc & 2; 1972 1973 if (a == b) { 1974 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); 1975 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ 1976 } 1977 } 1978 1979 static int vfio_radeon_reset(VFIOPCIDevice *vdev) 1980 { 1981 PCIDevice *pdev = &vdev->pdev; 1982 int i, ret = 0; 1983 uint32_t data; 1984 1985 /* Defer to a kernel implemented reset */ 1986 if (vdev->vbasedev.reset_works) { 1987 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); 1988 return -ENODEV; 1989 } 1990 1991 /* Enable only memory BAR access */ 1992 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); 1993 1994 /* Reset only works if SMC firmware is loaded and running */ 1995 if (!vfio_radeon_smc_is_running(vdev)) { 1996 ret = -EINVAL; 1997 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); 1998 goto out; 1999 } 2000 2001 /* Make sure only the GFX function is reset */ 2002 vfio_radeon_set_gfx_only_reset(vdev); 2003 2004 /* AMD PCI config reset */ 2005 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); 2006 usleep(100); 2007 2008 /* Read back the memory size to make sure we're out of reset */ 2009 for (i = 0; i < 100000; i++) { 2010 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { 2011 goto reset_smc; 2012 } 2013 usleep(1); 2014 } 2015 2016 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); 2017 2018 reset_smc: 2019 /* Reset SMC */ 2020 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); 2021 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 2022 data |= 1; 2023 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 2024 2025 /* Disable SMC clock */ 2026 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 2027 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 2028 data |= 1; 2029 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 2030 2031 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); 2032 2033 out: 2034 /* Restore PCI command register */ 2035 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); 2036 2037 return ret; 2038 } 2039 2040 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) 2041 { 2042 switch (vdev->vendor_id) { 2043 case 0x1002: 2044 switch (vdev->device_id) { 2045 /* Bonaire */ 2046 case 0x6649: /* Bonaire [FirePro W5100] */ 2047 case 0x6650: 2048 case 0x6651: 2049 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ 2050 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ 2051 case 0x665d: /* Bonaire [Radeon R7 200 Series] */ 2052 /* Hawaii */ 2053 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ 2054 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ 2055 case 0x67A2: 2056 case 0x67A8: 2057 case 0x67A9: 2058 case 0x67AA: 2059 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ 2060 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ 2061 case 0x67B8: 2062 case 0x67B9: 2063 case 0x67BA: 2064 case 0x67BE: 2065 vdev->resetfn = vfio_radeon_reset; 2066 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); 2067 break; 2068 } 2069 break; 2070 } 2071 } 2072 2073 /* 2074 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify 2075 * devices as a member of a clique. Devices within the same clique ID 2076 * are capable of direct P2P. It's the user's responsibility that this 2077 * is correct. The spec says that this may reside at any unused config 2078 * offset, but reserves and recommends hypervisors place this at C8h. 2079 * The spec also states that the hypervisor should place this capability 2080 * at the end of the capability list, thus next is defined as 0h. 2081 * 2082 * +----------------+----------------+----------------+----------------+ 2083 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) | 2084 * +----------------+----------------+----------------+----------------+ 2085 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') | 2086 * +---------------------------------+---------------------------------+ 2087 * 2088 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf 2089 */ 2090 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v, 2091 const char *name, void *opaque, 2092 Error **errp) 2093 { 2094 DeviceState *dev = DEVICE(obj); 2095 Property *prop = opaque; 2096 uint8_t *ptr = qdev_get_prop_ptr(dev, prop); 2097 2098 visit_type_uint8(v, name, ptr, errp); 2099 } 2100 2101 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v, 2102 const char *name, void *opaque, 2103 Error **errp) 2104 { 2105 DeviceState *dev = DEVICE(obj); 2106 Property *prop = opaque; 2107 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop); 2108 Error *local_err = NULL; 2109 2110 if (dev->realized) { 2111 qdev_prop_set_after_realize(dev, name, errp); 2112 return; 2113 } 2114 2115 visit_type_uint8(v, name, &value, &local_err); 2116 if (local_err) { 2117 error_propagate(errp, local_err); 2118 return; 2119 } 2120 2121 if (value & ~0xF) { 2122 error_setg(errp, "Property %s: valid range 0-15", name); 2123 return; 2124 } 2125 2126 *ptr = value; 2127 } 2128 2129 const PropertyInfo qdev_prop_nv_gpudirect_clique = { 2130 .name = "uint4", 2131 .description = "NVIDIA GPUDirect Clique ID (0 - 15)", 2132 .get = get_nv_gpudirect_clique_id, 2133 .set = set_nv_gpudirect_clique_id, 2134 }; 2135 2136 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp) 2137 { 2138 PCIDevice *pdev = &vdev->pdev; 2139 int ret, pos = 0xC8; 2140 2141 if (vdev->nv_gpudirect_clique == 0xFF) { 2142 return 0; 2143 } 2144 2145 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { 2146 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor"); 2147 return -EINVAL; 2148 } 2149 2150 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) != 2151 PCI_BASE_CLASS_DISPLAY) { 2152 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class"); 2153 return -EINVAL; 2154 } 2155 2156 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp); 2157 if (ret < 0) { 2158 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: "); 2159 return ret; 2160 } 2161 2162 memset(vdev->emulated_config_bits + pos, 0xFF, 8); 2163 pos += PCI_CAP_FLAGS; 2164 pci_set_byte(pdev->config + pos++, 8); 2165 pci_set_byte(pdev->config + pos++, 'P'); 2166 pci_set_byte(pdev->config + pos++, '2'); 2167 pci_set_byte(pdev->config + pos++, 'P'); 2168 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3); 2169 pci_set_byte(pdev->config + pos, 0); 2170 2171 return 0; 2172 } 2173 2174 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp) 2175 { 2176 int ret; 2177 2178 ret = vfio_add_nv_gpudirect_cap(vdev, errp); 2179 if (ret) { 2180 return ret; 2181 } 2182 2183 return 0; 2184 } 2185