1 /* 2 * device quirks for PCI devices 3 * 4 * Copyright Red Hat, Inc. 2012-2015 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include CONFIG_DEVICES 15 #include "exec/memop.h" 16 #include "qemu/units.h" 17 #include "qemu/log.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "qemu/module.h" 21 #include "qemu/range.h" 22 #include "qapi/error.h" 23 #include "qapi/visitor.h" 24 #include <sys/ioctl.h> 25 #include "hw/nvram/fw_cfg.h" 26 #include "hw/qdev-properties.h" 27 #include "pci.h" 28 #include "trace.h" 29 30 /* 31 * List of device ids/vendor ids for which to disable 32 * option rom loading. This avoids the guest hangs during rom 33 * execution as noticed with the BCM 57810 card for lack of a 34 * more better way to handle such issues. 35 * The user can still override by specifying a romfile or 36 * rombar=1. 37 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 38 * for an analysis of the 57810 card hang. When adding 39 * a new vendor id/device id combination below, please also add 40 * your card/environment details and information that could 41 * help in debugging to the bug tracking this issue 42 */ 43 static const struct { 44 uint32_t vendor; 45 uint32_t device; 46 } rom_denylist[] = { 47 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ 48 }; 49 50 bool vfio_opt_rom_in_denylist(VFIOPCIDevice *vdev) 51 { 52 int i; 53 54 for (i = 0 ; i < ARRAY_SIZE(rom_denylist); i++) { 55 if (vfio_pci_is(vdev, rom_denylist[i].vendor, rom_denylist[i].device)) { 56 trace_vfio_quirk_rom_in_denylist(vdev->vbasedev.name, 57 rom_denylist[i].vendor, 58 rom_denylist[i].device); 59 return true; 60 } 61 } 62 return false; 63 } 64 65 /* 66 * Device specific region quirks (mostly backdoors to PCI config space) 67 */ 68 69 /* 70 * The generic window quirks operate on an address and data register, 71 * vfio_generic_window_address_quirk handles the address register and 72 * vfio_generic_window_data_quirk handles the data register. These ops 73 * pass reads and writes through to hardware until a value matching the 74 * stored address match/mask is written. When this occurs, the data 75 * register access emulated PCI config space for the device rather than 76 * passing through accesses. This enables devices where PCI config space 77 * is accessible behind a window register to maintain the virtualization 78 * provided through vfio. 79 */ 80 typedef struct VFIOConfigWindowMatch { 81 uint32_t match; 82 uint32_t mask; 83 } VFIOConfigWindowMatch; 84 85 typedef struct VFIOConfigWindowQuirk { 86 struct VFIOPCIDevice *vdev; 87 88 uint32_t address_val; 89 90 uint32_t address_offset; 91 uint32_t data_offset; 92 93 bool window_enabled; 94 uint8_t bar; 95 96 MemoryRegion *addr_mem; 97 MemoryRegion *data_mem; 98 99 uint32_t nr_matches; 100 VFIOConfigWindowMatch matches[]; 101 } VFIOConfigWindowQuirk; 102 103 static uint64_t vfio_generic_window_quirk_address_read(void *opaque, 104 hwaddr addr, 105 unsigned size) 106 { 107 VFIOConfigWindowQuirk *window = opaque; 108 VFIOPCIDevice *vdev = window->vdev; 109 110 return vfio_region_read(&vdev->bars[window->bar].region, 111 addr + window->address_offset, size); 112 } 113 114 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, 115 uint64_t data, 116 unsigned size) 117 { 118 VFIOConfigWindowQuirk *window = opaque; 119 VFIOPCIDevice *vdev = window->vdev; 120 int i; 121 122 window->window_enabled = false; 123 124 vfio_region_write(&vdev->bars[window->bar].region, 125 addr + window->address_offset, data, size); 126 127 for (i = 0; i < window->nr_matches; i++) { 128 if ((data & ~window->matches[i].mask) == window->matches[i].match) { 129 window->window_enabled = true; 130 window->address_val = data & window->matches[i].mask; 131 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, 132 memory_region_name(window->addr_mem), data); 133 break; 134 } 135 } 136 } 137 138 static const MemoryRegionOps vfio_generic_window_address_quirk = { 139 .read = vfio_generic_window_quirk_address_read, 140 .write = vfio_generic_window_quirk_address_write, 141 .endianness = DEVICE_LITTLE_ENDIAN, 142 }; 143 144 static uint64_t vfio_generic_window_quirk_data_read(void *opaque, 145 hwaddr addr, unsigned size) 146 { 147 VFIOConfigWindowQuirk *window = opaque; 148 VFIOPCIDevice *vdev = window->vdev; 149 uint64_t data; 150 151 /* Always read data reg, discard if window enabled */ 152 data = vfio_region_read(&vdev->bars[window->bar].region, 153 addr + window->data_offset, size); 154 155 if (window->window_enabled) { 156 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); 157 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, 158 memory_region_name(window->data_mem), data); 159 } 160 161 return data; 162 } 163 164 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, 165 uint64_t data, unsigned size) 166 { 167 VFIOConfigWindowQuirk *window = opaque; 168 VFIOPCIDevice *vdev = window->vdev; 169 170 if (window->window_enabled) { 171 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); 172 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, 173 memory_region_name(window->data_mem), data); 174 return; 175 } 176 177 vfio_region_write(&vdev->bars[window->bar].region, 178 addr + window->data_offset, data, size); 179 } 180 181 static const MemoryRegionOps vfio_generic_window_data_quirk = { 182 .read = vfio_generic_window_quirk_data_read, 183 .write = vfio_generic_window_quirk_data_write, 184 .endianness = DEVICE_LITTLE_ENDIAN, 185 }; 186 187 /* 188 * The generic mirror quirk handles devices which expose PCI config space 189 * through a region within a BAR. When enabled, reads and writes are 190 * redirected through to emulated PCI config space. XXX if PCI config space 191 * used memory regions, this could just be an alias. 192 */ 193 typedef struct VFIOConfigMirrorQuirk { 194 struct VFIOPCIDevice *vdev; 195 uint32_t offset; 196 uint8_t bar; 197 MemoryRegion *mem; 198 uint8_t data[]; 199 } VFIOConfigMirrorQuirk; 200 201 static uint64_t vfio_generic_quirk_mirror_read(void *opaque, 202 hwaddr addr, unsigned size) 203 { 204 VFIOConfigMirrorQuirk *mirror = opaque; 205 VFIOPCIDevice *vdev = mirror->vdev; 206 uint64_t data; 207 208 /* Read and discard in case the hardware cares */ 209 (void)vfio_region_read(&vdev->bars[mirror->bar].region, 210 addr + mirror->offset, size); 211 212 data = vfio_pci_read_config(&vdev->pdev, addr, size); 213 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, 214 memory_region_name(mirror->mem), 215 addr, data); 216 return data; 217 } 218 219 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, 220 uint64_t data, unsigned size) 221 { 222 VFIOConfigMirrorQuirk *mirror = opaque; 223 VFIOPCIDevice *vdev = mirror->vdev; 224 225 vfio_pci_write_config(&vdev->pdev, addr, data, size); 226 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, 227 memory_region_name(mirror->mem), 228 addr, data); 229 } 230 231 static const MemoryRegionOps vfio_generic_mirror_quirk = { 232 .read = vfio_generic_quirk_mirror_read, 233 .write = vfio_generic_quirk_mirror_write, 234 .endianness = DEVICE_LITTLE_ENDIAN, 235 }; 236 237 /* Is range1 fully contained within range2? */ 238 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 239 uint64_t first2, uint64_t len2) { 240 return (first1 >= first2 && first1 + len1 <= first2 + len2); 241 } 242 243 #define PCI_VENDOR_ID_ATI 0x1002 244 245 /* 246 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 247 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 248 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 249 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 250 * I/O port BAR address. Originally this was coded to return the virtual BAR 251 * address only if the physical register read returns the actual BAR address, 252 * but users have reported greater success if we return the virtual address 253 * unconditionally. 254 */ 255 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 256 hwaddr addr, unsigned size) 257 { 258 VFIOPCIDevice *vdev = opaque; 259 uint64_t data = vfio_pci_read_config(&vdev->pdev, 260 PCI_BASE_ADDRESS_4 + 1, size); 261 262 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); 263 264 return data; 265 } 266 267 static void vfio_ati_3c3_quirk_write(void *opaque, hwaddr addr, 268 uint64_t data, unsigned size) 269 { 270 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__); 271 } 272 273 static const MemoryRegionOps vfio_ati_3c3_quirk = { 274 .read = vfio_ati_3c3_quirk_read, 275 .write = vfio_ati_3c3_quirk_write, 276 .endianness = DEVICE_LITTLE_ENDIAN, 277 }; 278 279 VFIOQuirk *vfio_quirk_alloc(int nr_mem) 280 { 281 VFIOQuirk *quirk = g_new0(VFIOQuirk, 1); 282 QLIST_INIT(&quirk->ioeventfds); 283 quirk->mem = g_new0(MemoryRegion, nr_mem); 284 quirk->nr_mem = nr_mem; 285 286 return quirk; 287 } 288 289 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd) 290 { 291 QLIST_REMOVE(ioeventfd, next); 292 memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, 293 true, ioeventfd->data, &ioeventfd->e); 294 295 if (ioeventfd->vfio) { 296 struct vfio_device_ioeventfd vfio_ioeventfd; 297 298 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); 299 vfio_ioeventfd.flags = ioeventfd->size; 300 vfio_ioeventfd.data = ioeventfd->data; 301 vfio_ioeventfd.offset = ioeventfd->region->fd_offset + 302 ioeventfd->region_addr; 303 vfio_ioeventfd.fd = -1; 304 305 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) { 306 error_report("Failed to remove vfio ioeventfd for %s+0x%" 307 HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)", 308 memory_region_name(ioeventfd->mr), ioeventfd->addr, 309 ioeventfd->size, ioeventfd->data); 310 } 311 } else { 312 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), 313 NULL, NULL, NULL); 314 } 315 316 event_notifier_cleanup(&ioeventfd->e); 317 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr), 318 (uint64_t)ioeventfd->addr, ioeventfd->size, 319 ioeventfd->data); 320 g_free(ioeventfd); 321 } 322 323 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk) 324 { 325 VFIOIOEventFD *ioeventfd, *tmp; 326 327 QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) { 328 if (ioeventfd->dynamic) { 329 vfio_ioeventfd_exit(vdev, ioeventfd); 330 } 331 } 332 } 333 334 static void vfio_ioeventfd_handler(void *opaque) 335 { 336 VFIOIOEventFD *ioeventfd = opaque; 337 338 if (event_notifier_test_and_clear(&ioeventfd->e)) { 339 vfio_region_write(ioeventfd->region, ioeventfd->region_addr, 340 ioeventfd->data, ioeventfd->size); 341 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr), 342 (uint64_t)ioeventfd->addr, ioeventfd->size, 343 ioeventfd->data); 344 } 345 } 346 347 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev, 348 MemoryRegion *mr, hwaddr addr, 349 unsigned size, uint64_t data, 350 VFIORegion *region, 351 hwaddr region_addr, bool dynamic) 352 { 353 VFIOIOEventFD *ioeventfd; 354 355 if (vdev->no_kvm_ioeventfd) { 356 return NULL; 357 } 358 359 ioeventfd = g_malloc0(sizeof(*ioeventfd)); 360 361 if (event_notifier_init(&ioeventfd->e, 0)) { 362 g_free(ioeventfd); 363 return NULL; 364 } 365 366 /* 367 * MemoryRegion and relative offset, plus additional ioeventfd setup 368 * parameters for configuring and later tearing down KVM ioeventfd. 369 */ 370 ioeventfd->mr = mr; 371 ioeventfd->addr = addr; 372 ioeventfd->size = size; 373 ioeventfd->data = data; 374 ioeventfd->dynamic = dynamic; 375 /* 376 * VFIORegion and relative offset for implementing the userspace 377 * handler. data & size fields shared for both uses. 378 */ 379 ioeventfd->region = region; 380 ioeventfd->region_addr = region_addr; 381 382 if (!vdev->no_vfio_ioeventfd) { 383 struct vfio_device_ioeventfd vfio_ioeventfd; 384 385 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); 386 vfio_ioeventfd.flags = ioeventfd->size; 387 vfio_ioeventfd.data = ioeventfd->data; 388 vfio_ioeventfd.offset = ioeventfd->region->fd_offset + 389 ioeventfd->region_addr; 390 vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e); 391 392 ioeventfd->vfio = !ioctl(vdev->vbasedev.fd, 393 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd); 394 } 395 396 if (!ioeventfd->vfio) { 397 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), 398 vfio_ioeventfd_handler, NULL, ioeventfd); 399 } 400 401 memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, 402 true, ioeventfd->data, &ioeventfd->e); 403 trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr, 404 size, data, ioeventfd->vfio); 405 406 return ioeventfd; 407 } 408 409 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 410 { 411 VFIOQuirk *quirk; 412 413 /* 414 * As long as the BAR is >= 256 bytes it will be aligned such that the 415 * lower byte is always zero. Filter out anything else, if it exists. 416 */ 417 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 418 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 419 return; 420 } 421 422 quirk = vfio_quirk_alloc(1); 423 424 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, 425 "vfio-ati-3c3-quirk", 1); 426 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 427 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); 428 429 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 430 quirk, next); 431 432 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); 433 } 434 435 /* 436 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI 437 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 438 * the MMIO space directly, but a window to this space is provided through 439 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 440 * data register. When the address is programmed to a range of 0x4000-0x4fff 441 * PCI configuration space is available. Experimentation seems to indicate 442 * that read-only may be provided by hardware. 443 */ 444 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) 445 { 446 VFIOQuirk *quirk; 447 VFIOConfigWindowQuirk *window; 448 449 /* This windows doesn't seem to be used except by legacy VGA code */ 450 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 451 !vdev->vga || nr != 4) { 452 return; 453 } 454 455 quirk = vfio_quirk_alloc(2); 456 window = quirk->data = g_malloc0(sizeof(*window) + 457 sizeof(VFIOConfigWindowMatch)); 458 window->vdev = vdev; 459 window->address_offset = 0; 460 window->data_offset = 4; 461 window->nr_matches = 1; 462 window->matches[0].match = 0x4000; 463 window->matches[0].mask = vdev->config_size - 1; 464 window->bar = nr; 465 window->addr_mem = &quirk->mem[0]; 466 window->data_mem = &quirk->mem[1]; 467 468 memory_region_init_io(window->addr_mem, OBJECT(vdev), 469 &vfio_generic_window_address_quirk, window, 470 "vfio-ati-bar4-window-address-quirk", 4); 471 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 472 window->address_offset, 473 window->addr_mem, 1); 474 475 memory_region_init_io(window->data_mem, OBJECT(vdev), 476 &vfio_generic_window_data_quirk, window, 477 "vfio-ati-bar4-window-data-quirk", 4); 478 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 479 window->data_offset, 480 window->data_mem, 1); 481 482 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 483 484 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); 485 } 486 487 /* 488 * Trap the BAR2 MMIO mirror to config space as well. 489 */ 490 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) 491 { 492 VFIOQuirk *quirk; 493 VFIOConfigMirrorQuirk *mirror; 494 495 /* Only enable on newer devices where BAR2 is 64bit */ 496 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 497 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { 498 return; 499 } 500 501 quirk = vfio_quirk_alloc(1); 502 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 503 mirror->mem = quirk->mem; 504 mirror->vdev = vdev; 505 mirror->offset = 0x4000; 506 mirror->bar = nr; 507 508 memory_region_init_io(mirror->mem, OBJECT(vdev), 509 &vfio_generic_mirror_quirk, mirror, 510 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); 511 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 512 mirror->offset, mirror->mem, 1); 513 514 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 515 516 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); 517 } 518 519 /* 520 * Older ATI/AMD cards like the X550 have a similar window to that above. 521 * I/O port BAR1 provides a window to a mirror of PCI config space located 522 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 523 * note it for future reference. 524 */ 525 526 /* 527 * Nvidia has several different methods to get to config space, the 528 * nouveu project has several of these documented here: 529 * https://github.com/pathscale/envytools/tree/master/hwdocs 530 * 531 * The first quirk is actually not documented in envytools and is found 532 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 533 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 534 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 535 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 536 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 537 * is written for a write to 0x3d4. The BAR0 offset is then accessible 538 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 539 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 540 */ 541 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; 542 static const char *nv3d0_states[] = { "NONE", "SELECT", 543 "WINDOW", "READ", "WRITE" }; 544 545 typedef struct VFIONvidia3d0Quirk { 546 VFIOPCIDevice *vdev; 547 VFIONvidia3d0State state; 548 uint32_t offset; 549 } VFIONvidia3d0Quirk; 550 551 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, 552 hwaddr addr, unsigned size) 553 { 554 VFIONvidia3d0Quirk *quirk = opaque; 555 VFIOPCIDevice *vdev = quirk->vdev; 556 557 quirk->state = NONE; 558 559 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 560 addr + 0x14, size); 561 } 562 563 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, 564 uint64_t data, unsigned size) 565 { 566 VFIONvidia3d0Quirk *quirk = opaque; 567 VFIOPCIDevice *vdev = quirk->vdev; 568 VFIONvidia3d0State old_state = quirk->state; 569 570 quirk->state = NONE; 571 572 switch (data) { 573 case 0x338: 574 if (old_state == NONE) { 575 quirk->state = SELECT; 576 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 577 nv3d0_states[quirk->state]); 578 } 579 break; 580 case 0x538: 581 if (old_state == WINDOW) { 582 quirk->state = READ; 583 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 584 nv3d0_states[quirk->state]); 585 } 586 break; 587 case 0x738: 588 if (old_state == WINDOW) { 589 quirk->state = WRITE; 590 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 591 nv3d0_states[quirk->state]); 592 } 593 break; 594 } 595 596 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 597 addr + 0x14, data, size); 598 } 599 600 static const MemoryRegionOps vfio_nvidia_3d4_quirk = { 601 .read = vfio_nvidia_3d4_quirk_read, 602 .write = vfio_nvidia_3d4_quirk_write, 603 .endianness = DEVICE_LITTLE_ENDIAN, 604 }; 605 606 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 607 hwaddr addr, unsigned size) 608 { 609 VFIONvidia3d0Quirk *quirk = opaque; 610 VFIOPCIDevice *vdev = quirk->vdev; 611 VFIONvidia3d0State old_state = quirk->state; 612 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 613 addr + 0x10, size); 614 615 quirk->state = NONE; 616 617 if (old_state == READ && 618 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 619 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 620 621 data = vfio_pci_read_config(&vdev->pdev, offset, size); 622 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, 623 offset, size, data); 624 } 625 626 return data; 627 } 628 629 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 630 uint64_t data, unsigned size) 631 { 632 VFIONvidia3d0Quirk *quirk = opaque; 633 VFIOPCIDevice *vdev = quirk->vdev; 634 VFIONvidia3d0State old_state = quirk->state; 635 636 quirk->state = NONE; 637 638 if (old_state == SELECT) { 639 quirk->offset = (uint32_t)data; 640 quirk->state = WINDOW; 641 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 642 nv3d0_states[quirk->state]); 643 } else if (old_state == WRITE) { 644 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 645 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 646 647 vfio_pci_write_config(&vdev->pdev, offset, data, size); 648 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, 649 offset, data, size); 650 return; 651 } 652 } 653 654 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 655 addr + 0x10, data, size); 656 } 657 658 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 659 .read = vfio_nvidia_3d0_quirk_read, 660 .write = vfio_nvidia_3d0_quirk_write, 661 .endianness = DEVICE_LITTLE_ENDIAN, 662 }; 663 664 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 665 { 666 VFIOQuirk *quirk; 667 VFIONvidia3d0Quirk *data; 668 669 if (vdev->no_geforce_quirks || 670 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 671 !vdev->bars[1].region.size) { 672 return; 673 } 674 675 quirk = vfio_quirk_alloc(2); 676 quirk->data = data = g_malloc0(sizeof(*data)); 677 data->vdev = vdev; 678 679 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, 680 data, "vfio-nvidia-3d4-quirk", 2); 681 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 682 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); 683 684 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, 685 data, "vfio-nvidia-3d0-quirk", 2); 686 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 687 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); 688 689 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 690 quirk, next); 691 692 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); 693 } 694 695 /* 696 * The second quirk is documented in envytools. The I/O port BAR5 is just 697 * a set of address/data ports to the MMIO BARs. The BAR we care about is 698 * again BAR0. This backdoor is apparently a bit newer than the one above 699 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 700 * space, including extended space is available at the 4k @0x88000. 701 */ 702 typedef struct VFIONvidiaBAR5Quirk { 703 uint32_t master; 704 uint32_t enable; 705 MemoryRegion *addr_mem; 706 MemoryRegion *data_mem; 707 bool enabled; 708 VFIOConfigWindowQuirk window; /* last for match data */ 709 } VFIONvidiaBAR5Quirk; 710 711 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) 712 { 713 VFIOPCIDevice *vdev = bar5->window.vdev; 714 715 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { 716 return; 717 } 718 719 bar5->enabled = !bar5->enabled; 720 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, 721 bar5->enabled ? "Enable" : "Disable"); 722 memory_region_set_enabled(bar5->addr_mem, bar5->enabled); 723 memory_region_set_enabled(bar5->data_mem, bar5->enabled); 724 } 725 726 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, 727 hwaddr addr, unsigned size) 728 { 729 VFIONvidiaBAR5Quirk *bar5 = opaque; 730 VFIOPCIDevice *vdev = bar5->window.vdev; 731 732 return vfio_region_read(&vdev->bars[5].region, addr, size); 733 } 734 735 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, 736 uint64_t data, unsigned size) 737 { 738 VFIONvidiaBAR5Quirk *bar5 = opaque; 739 VFIOPCIDevice *vdev = bar5->window.vdev; 740 741 vfio_region_write(&vdev->bars[5].region, addr, data, size); 742 743 bar5->master = data; 744 vfio_nvidia_bar5_enable(bar5); 745 } 746 747 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { 748 .read = vfio_nvidia_bar5_quirk_master_read, 749 .write = vfio_nvidia_bar5_quirk_master_write, 750 .endianness = DEVICE_LITTLE_ENDIAN, 751 }; 752 753 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, 754 hwaddr addr, unsigned size) 755 { 756 VFIONvidiaBAR5Quirk *bar5 = opaque; 757 VFIOPCIDevice *vdev = bar5->window.vdev; 758 759 return vfio_region_read(&vdev->bars[5].region, addr + 4, size); 760 } 761 762 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, 763 uint64_t data, unsigned size) 764 { 765 VFIONvidiaBAR5Quirk *bar5 = opaque; 766 VFIOPCIDevice *vdev = bar5->window.vdev; 767 768 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); 769 770 bar5->enable = data; 771 vfio_nvidia_bar5_enable(bar5); 772 } 773 774 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { 775 .read = vfio_nvidia_bar5_quirk_enable_read, 776 .write = vfio_nvidia_bar5_quirk_enable_write, 777 .endianness = DEVICE_LITTLE_ENDIAN, 778 }; 779 780 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) 781 { 782 VFIOQuirk *quirk; 783 VFIONvidiaBAR5Quirk *bar5; 784 VFIOConfigWindowQuirk *window; 785 786 if (vdev->no_geforce_quirks || 787 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 788 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) { 789 return; 790 } 791 792 quirk = vfio_quirk_alloc(4); 793 bar5 = quirk->data = g_malloc0(sizeof(*bar5) + 794 (sizeof(VFIOConfigWindowMatch) * 2)); 795 window = &bar5->window; 796 797 window->vdev = vdev; 798 window->address_offset = 0x8; 799 window->data_offset = 0xc; 800 window->nr_matches = 2; 801 window->matches[0].match = 0x1800; 802 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; 803 window->matches[1].match = 0x88000; 804 window->matches[1].mask = vdev->config_size - 1; 805 window->bar = nr; 806 window->addr_mem = bar5->addr_mem = &quirk->mem[0]; 807 window->data_mem = bar5->data_mem = &quirk->mem[1]; 808 809 memory_region_init_io(window->addr_mem, OBJECT(vdev), 810 &vfio_generic_window_address_quirk, window, 811 "vfio-nvidia-bar5-window-address-quirk", 4); 812 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 813 window->address_offset, 814 window->addr_mem, 1); 815 memory_region_set_enabled(window->addr_mem, false); 816 817 memory_region_init_io(window->data_mem, OBJECT(vdev), 818 &vfio_generic_window_data_quirk, window, 819 "vfio-nvidia-bar5-window-data-quirk", 4); 820 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 821 window->data_offset, 822 window->data_mem, 1); 823 memory_region_set_enabled(window->data_mem, false); 824 825 memory_region_init_io(&quirk->mem[2], OBJECT(vdev), 826 &vfio_nvidia_bar5_quirk_master, bar5, 827 "vfio-nvidia-bar5-master-quirk", 4); 828 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 829 0, &quirk->mem[2], 1); 830 831 memory_region_init_io(&quirk->mem[3], OBJECT(vdev), 832 &vfio_nvidia_bar5_quirk_enable, bar5, 833 "vfio-nvidia-bar5-enable-quirk", 4); 834 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 835 4, &quirk->mem[3], 1); 836 837 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 838 839 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); 840 } 841 842 typedef struct LastDataSet { 843 VFIOQuirk *quirk; 844 hwaddr addr; 845 uint64_t data; 846 unsigned size; 847 int hits; 848 int added; 849 } LastDataSet; 850 851 #define MAX_DYN_IOEVENTFD 10 852 #define HITS_FOR_IOEVENTFD 10 853 854 /* 855 * Finally, BAR0 itself. We want to redirect any accesses to either 856 * 0x1800 or 0x88000 through the PCI config space access functions. 857 */ 858 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, 859 uint64_t data, unsigned size) 860 { 861 VFIOConfigMirrorQuirk *mirror = opaque; 862 VFIOPCIDevice *vdev = mirror->vdev; 863 PCIDevice *pdev = &vdev->pdev; 864 LastDataSet *last = (LastDataSet *)&mirror->data; 865 866 vfio_generic_quirk_mirror_write(opaque, addr, data, size); 867 868 /* 869 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 870 * MSI capability ID register. Both the ID and next register are 871 * read-only, so we allow writes covering either of those to real hw. 872 */ 873 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 874 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 875 vfio_region_write(&vdev->bars[mirror->bar].region, 876 addr + mirror->offset, data, size); 877 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); 878 } 879 880 /* 881 * Automatically add an ioeventfd to handle any repeated write with the 882 * same data and size above the standard PCI config space header. This is 883 * primarily expected to accelerate the MSI-ACK behavior, such as noted 884 * above. Current hardware/drivers should trigger an ioeventfd at config 885 * offset 0x704 (region offset 0x88704), with data 0x0, size 4. 886 * 887 * The criteria of 10 successive hits is arbitrary but reliably adds the 888 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd, 889 * the remaining ones have a greater chance of being seen successively. 890 * To avoid the pathological case of burning up all of QEMU's open file 891 * handles, arbitrarily limit this algorithm from adding no more than 10 892 * ioeventfds, print an error if we would have added an 11th, and then 893 * stop counting. 894 */ 895 if (!vdev->no_kvm_ioeventfd && 896 addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) { 897 if (addr != last->addr || data != last->data || size != last->size) { 898 last->addr = addr; 899 last->data = data; 900 last->size = size; 901 last->hits = 1; 902 } else if (++last->hits >= HITS_FOR_IOEVENTFD) { 903 if (last->added < MAX_DYN_IOEVENTFD) { 904 VFIOIOEventFD *ioeventfd; 905 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size, 906 data, &vdev->bars[mirror->bar].region, 907 mirror->offset + addr, true); 908 if (ioeventfd) { 909 VFIOQuirk *quirk = last->quirk; 910 911 QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next); 912 last->added++; 913 } 914 } else { 915 last->added++; 916 warn_report("NVIDIA ioeventfd queue full for %s, unable to " 917 "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", " 918 "size %u", vdev->vbasedev.name, addr, data, size); 919 } 920 } 921 } 922 } 923 924 static const MemoryRegionOps vfio_nvidia_mirror_quirk = { 925 .read = vfio_generic_quirk_mirror_read, 926 .write = vfio_nvidia_quirk_mirror_write, 927 .endianness = DEVICE_LITTLE_ENDIAN, 928 }; 929 930 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk) 931 { 932 VFIOConfigMirrorQuirk *mirror = quirk->data; 933 LastDataSet *last = (LastDataSet *)&mirror->data; 934 935 last->addr = last->data = last->size = last->hits = last->added = 0; 936 937 vfio_drop_dynamic_eventfds(vdev, quirk); 938 } 939 940 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) 941 { 942 VFIOQuirk *quirk; 943 VFIOConfigMirrorQuirk *mirror; 944 LastDataSet *last; 945 946 if (vdev->no_geforce_quirks || 947 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 948 !vfio_is_vga(vdev) || nr != 0) { 949 return; 950 } 951 952 quirk = vfio_quirk_alloc(1); 953 quirk->reset = vfio_nvidia_bar0_quirk_reset; 954 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); 955 mirror->mem = quirk->mem; 956 mirror->vdev = vdev; 957 mirror->offset = 0x88000; 958 mirror->bar = nr; 959 last = (LastDataSet *)&mirror->data; 960 last->quirk = quirk; 961 962 memory_region_init_io(mirror->mem, OBJECT(vdev), 963 &vfio_nvidia_mirror_quirk, mirror, 964 "vfio-nvidia-bar0-88000-mirror-quirk", 965 vdev->config_size); 966 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 967 mirror->offset, mirror->mem, 1); 968 969 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 970 971 /* The 0x1800 offset mirror only seems to get used by legacy VGA */ 972 if (vdev->vga) { 973 quirk = vfio_quirk_alloc(1); 974 quirk->reset = vfio_nvidia_bar0_quirk_reset; 975 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); 976 mirror->mem = quirk->mem; 977 mirror->vdev = vdev; 978 mirror->offset = 0x1800; 979 mirror->bar = nr; 980 last = (LastDataSet *)&mirror->data; 981 last->quirk = quirk; 982 983 memory_region_init_io(mirror->mem, OBJECT(vdev), 984 &vfio_nvidia_mirror_quirk, mirror, 985 "vfio-nvidia-bar0-1800-mirror-quirk", 986 PCI_CONFIG_SPACE_SIZE); 987 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 988 mirror->offset, mirror->mem, 1); 989 990 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 991 } 992 993 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); 994 } 995 996 /* 997 * TODO - Some Nvidia devices provide config access to their companion HDA 998 * device and even to their parent bridge via these config space mirrors. 999 * Add quirks for those regions. 1000 */ 1001 1002 #define PCI_VENDOR_ID_REALTEK 0x10ec 1003 1004 /* 1005 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 1006 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 1007 * register. According to the Linux r8169 driver, the MSI-X table is addressed 1008 * when the "type" portion of the address register is set to 0x1. This appears 1009 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 1010 * "address latched" indicator. Bits 12:15 are a mask field, which we can 1011 * ignore because the MSI-X table should always be accessed as a dword (full 1012 * mask). Bits 0:11 is offset within the type. 1013 * 1014 * Example trace: 1015 * 1016 * Read from MSI-X table offset 0 1017 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 1018 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 1019 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 1020 * 1021 * Write 0xfee00000 to MSI-X table offset 0 1022 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 1023 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 1024 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 1025 */ 1026 typedef struct VFIOrtl8168Quirk { 1027 VFIOPCIDevice *vdev; 1028 uint32_t addr; 1029 uint32_t data; 1030 bool enabled; 1031 } VFIOrtl8168Quirk; 1032 1033 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, 1034 hwaddr addr, unsigned size) 1035 { 1036 VFIOrtl8168Quirk *rtl = opaque; 1037 VFIOPCIDevice *vdev = rtl->vdev; 1038 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); 1039 1040 if (rtl->enabled) { 1041 data = rtl->addr ^ 0x80000000U; /* latch/complete */ 1042 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); 1043 } 1044 1045 return data; 1046 } 1047 1048 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, 1049 uint64_t data, unsigned size) 1050 { 1051 VFIOrtl8168Quirk *rtl = opaque; 1052 VFIOPCIDevice *vdev = rtl->vdev; 1053 1054 rtl->enabled = false; 1055 1056 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ 1057 rtl->enabled = true; 1058 rtl->addr = (uint32_t)data; 1059 1060 if (data & 0x80000000U) { /* Do write */ 1061 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 1062 hwaddr offset = data & 0xfff; 1063 uint64_t val = rtl->data; 1064 1065 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, 1066 (uint16_t)offset, val); 1067 1068 /* Write to the proper guest MSI-X table instead */ 1069 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 1070 offset, val, 1071 size_memop(size) | MO_LE, 1072 MEMTXATTRS_UNSPECIFIED); 1073 } 1074 return; /* Do not write guest MSI-X data to hardware */ 1075 } 1076 } 1077 1078 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); 1079 } 1080 1081 static const MemoryRegionOps vfio_rtl_address_quirk = { 1082 .read = vfio_rtl8168_quirk_address_read, 1083 .write = vfio_rtl8168_quirk_address_write, 1084 .valid = { 1085 .min_access_size = 4, 1086 .max_access_size = 4, 1087 .unaligned = false, 1088 }, 1089 .endianness = DEVICE_LITTLE_ENDIAN, 1090 }; 1091 1092 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, 1093 hwaddr addr, unsigned size) 1094 { 1095 VFIOrtl8168Quirk *rtl = opaque; 1096 VFIOPCIDevice *vdev = rtl->vdev; 1097 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); 1098 1099 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 1100 hwaddr offset = rtl->addr & 0xfff; 1101 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, 1102 &data, size_memop(size) | MO_LE, 1103 MEMTXATTRS_UNSPECIFIED); 1104 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); 1105 } 1106 1107 return data; 1108 } 1109 1110 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, 1111 uint64_t data, unsigned size) 1112 { 1113 VFIOrtl8168Quirk *rtl = opaque; 1114 VFIOPCIDevice *vdev = rtl->vdev; 1115 1116 rtl->data = (uint32_t)data; 1117 1118 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); 1119 } 1120 1121 static const MemoryRegionOps vfio_rtl_data_quirk = { 1122 .read = vfio_rtl8168_quirk_data_read, 1123 .write = vfio_rtl8168_quirk_data_write, 1124 .valid = { 1125 .min_access_size = 4, 1126 .max_access_size = 4, 1127 .unaligned = false, 1128 }, 1129 .endianness = DEVICE_LITTLE_ENDIAN, 1130 }; 1131 1132 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) 1133 { 1134 VFIOQuirk *quirk; 1135 VFIOrtl8168Quirk *rtl; 1136 1137 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { 1138 return; 1139 } 1140 1141 quirk = vfio_quirk_alloc(2); 1142 quirk->data = rtl = g_malloc0(sizeof(*rtl)); 1143 rtl->vdev = vdev; 1144 1145 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), 1146 &vfio_rtl_address_quirk, rtl, 1147 "vfio-rtl8168-window-address-quirk", 4); 1148 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1149 0x74, &quirk->mem[0], 1); 1150 1151 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), 1152 &vfio_rtl_data_quirk, rtl, 1153 "vfio-rtl8168-window-data-quirk", 4); 1154 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1155 0x70, &quirk->mem[1], 1); 1156 1157 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1158 1159 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); 1160 } 1161 1162 #define IGD_ASLS 0xfc /* ASL Storage Register */ 1163 1164 /* 1165 * The OpRegion includes the Video BIOS Table, which seems important for 1166 * telling the driver what sort of outputs it has. Without this, the device 1167 * may work in the guest, but we may not get output. This also requires BIOS 1168 * support to reserve and populate a section of guest memory sufficient for 1169 * the table and to write the base address of that memory to the ASLS register 1170 * of the IGD device. 1171 */ 1172 bool vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, 1173 struct vfio_region_info *info, Error **errp) 1174 { 1175 int ret; 1176 1177 vdev->igd_opregion = g_malloc0(info->size); 1178 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, 1179 info->size, info->offset); 1180 if (ret != info->size) { 1181 error_setg(errp, "failed to read IGD OpRegion"); 1182 g_free(vdev->igd_opregion); 1183 vdev->igd_opregion = NULL; 1184 return false; 1185 } 1186 1187 /* 1188 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to 1189 * allocate 32bit reserved memory for, copy these contents into, and write 1190 * the reserved memory base address to the device ASLS register at 0xFC. 1191 * Alignment of this reserved region seems flexible, but using a 4k page 1192 * alignment seems to work well. This interface assumes a single IGD 1193 * device, which may be at VM address 00:02.0 in legacy mode or another 1194 * address in UPT mode. 1195 * 1196 * NB, there may be future use cases discovered where the VM should have 1197 * direct interaction with the host OpRegion, in which case the write to 1198 * the ASLS register would trigger MemoryRegion setup to enable that. 1199 */ 1200 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", 1201 vdev->igd_opregion, info->size); 1202 1203 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); 1204 1205 pci_set_long(vdev->pdev.config + IGD_ASLS, 0); 1206 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); 1207 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); 1208 1209 return true; 1210 } 1211 1212 /* 1213 * Common quirk probe entry points. 1214 */ 1215 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 1216 { 1217 vfio_vga_probe_ati_3c3_quirk(vdev); 1218 vfio_vga_probe_nvidia_3d0_quirk(vdev); 1219 } 1220 1221 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) 1222 { 1223 VFIOQuirk *quirk; 1224 int i, j; 1225 1226 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1227 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { 1228 for (j = 0; j < quirk->nr_mem; j++) { 1229 memory_region_del_subregion(&vdev->vga->region[i].mem, 1230 &quirk->mem[j]); 1231 } 1232 } 1233 } 1234 } 1235 1236 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) 1237 { 1238 int i, j; 1239 1240 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1241 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { 1242 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); 1243 QLIST_REMOVE(quirk, next); 1244 for (j = 0; j < quirk->nr_mem; j++) { 1245 object_unparent(OBJECT(&quirk->mem[j])); 1246 } 1247 g_free(quirk->mem); 1248 g_free(quirk->data); 1249 g_free(quirk); 1250 } 1251 } 1252 } 1253 1254 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 1255 { 1256 vfio_probe_ati_bar4_quirk(vdev, nr); 1257 vfio_probe_ati_bar2_quirk(vdev, nr); 1258 vfio_probe_nvidia_bar5_quirk(vdev, nr); 1259 vfio_probe_nvidia_bar0_quirk(vdev, nr); 1260 vfio_probe_rtl8168_bar2_quirk(vdev, nr); 1261 #ifdef CONFIG_VFIO_IGD 1262 vfio_probe_igd_bar4_quirk(vdev, nr); 1263 #endif 1264 } 1265 1266 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) 1267 { 1268 VFIOBAR *bar = &vdev->bars[nr]; 1269 VFIOQuirk *quirk; 1270 int i; 1271 1272 QLIST_FOREACH(quirk, &bar->quirks, next) { 1273 while (!QLIST_EMPTY(&quirk->ioeventfds)) { 1274 vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds)); 1275 } 1276 1277 for (i = 0; i < quirk->nr_mem; i++) { 1278 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); 1279 } 1280 } 1281 } 1282 1283 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) 1284 { 1285 VFIOBAR *bar = &vdev->bars[nr]; 1286 int i; 1287 1288 while (!QLIST_EMPTY(&bar->quirks)) { 1289 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 1290 QLIST_REMOVE(quirk, next); 1291 for (i = 0; i < quirk->nr_mem; i++) { 1292 object_unparent(OBJECT(&quirk->mem[i])); 1293 } 1294 g_free(quirk->mem); 1295 g_free(quirk->data); 1296 g_free(quirk); 1297 } 1298 } 1299 1300 /* 1301 * Reset quirks 1302 */ 1303 void vfio_quirk_reset(VFIOPCIDevice *vdev) 1304 { 1305 int i; 1306 1307 for (i = 0; i < PCI_ROM_SLOT; i++) { 1308 VFIOQuirk *quirk; 1309 VFIOBAR *bar = &vdev->bars[i]; 1310 1311 QLIST_FOREACH(quirk, &bar->quirks, next) { 1312 if (quirk->reset) { 1313 quirk->reset(vdev, quirk); 1314 } 1315 } 1316 } 1317 } 1318 1319 /* 1320 * AMD Radeon PCI config reset, based on Linux: 1321 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() 1322 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset 1323 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() 1324 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() 1325 * IDs: include/drm/drm_pciids.h 1326 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 1327 * 1328 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the 1329 * hardware that should be fixed on future ASICs. The symptom of this is that 1330 * once the accerlated driver loads, Windows guests will bsod on subsequent 1331 * attmpts to load the driver, such as after VM reset or shutdown/restart. To 1332 * work around this, we do an AMD specific PCI config reset, followed by an SMC 1333 * reset. The PCI config reset only works if SMC firmware is running, so we 1334 * have a dependency on the state of the device as to whether this reset will 1335 * be effective. There are still cases where we won't be able to kick the 1336 * device into working, but this greatly improves the usability overall. The 1337 * config reset magic is relatively common on AMD GPUs, but the setup and SMC 1338 * poking is largely ASIC specific. 1339 */ 1340 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) 1341 { 1342 uint32_t clk, pc_c; 1343 1344 /* 1345 * Registers 200h and 204h are index and data registers for accessing 1346 * indirect configuration registers within the device. 1347 */ 1348 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1349 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1350 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); 1351 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1352 1353 return (!(clk & 1) && (0x20100 <= pc_c)); 1354 } 1355 1356 /* 1357 * The scope of a config reset is controlled by a mode bit in the misc register 1358 * and a fuse, exposed as a bit in another register. The fuse is the default 1359 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the formula 1360 * scope = !(misc ^ fuse), where the resulting scope is defined the same as 1361 * the fuse. A truth table therefore tells us that if misc == fuse, we need 1362 * to flip the value of the bit in the misc register. 1363 */ 1364 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) 1365 { 1366 uint32_t misc, fuse; 1367 bool a, b; 1368 1369 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); 1370 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1371 b = fuse & 64; 1372 1373 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); 1374 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1375 a = misc & 2; 1376 1377 if (a == b) { 1378 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); 1379 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ 1380 } 1381 } 1382 1383 static int vfio_radeon_reset(VFIOPCIDevice *vdev) 1384 { 1385 PCIDevice *pdev = &vdev->pdev; 1386 int i, ret = 0; 1387 uint32_t data; 1388 1389 /* Defer to a kernel implemented reset */ 1390 if (vdev->vbasedev.reset_works) { 1391 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); 1392 return -ENODEV; 1393 } 1394 1395 /* Enable only memory BAR access */ 1396 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); 1397 1398 /* Reset only works if SMC firmware is loaded and running */ 1399 if (!vfio_radeon_smc_is_running(vdev)) { 1400 ret = -EINVAL; 1401 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); 1402 goto out; 1403 } 1404 1405 /* Make sure only the GFX function is reset */ 1406 vfio_radeon_set_gfx_only_reset(vdev); 1407 1408 /* AMD PCI config reset */ 1409 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); 1410 usleep(100); 1411 1412 /* Read back the memory size to make sure we're out of reset */ 1413 for (i = 0; i < 100000; i++) { 1414 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { 1415 goto reset_smc; 1416 } 1417 usleep(1); 1418 } 1419 1420 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); 1421 1422 reset_smc: 1423 /* Reset SMC */ 1424 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); 1425 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1426 data |= 1; 1427 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 1428 1429 /* Disable SMC clock */ 1430 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1431 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1432 data |= 1; 1433 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 1434 1435 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); 1436 1437 out: 1438 /* Restore PCI command register */ 1439 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); 1440 1441 return ret; 1442 } 1443 1444 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) 1445 { 1446 switch (vdev->vendor_id) { 1447 case 0x1002: 1448 switch (vdev->device_id) { 1449 /* Bonaire */ 1450 case 0x6649: /* Bonaire [FirePro W5100] */ 1451 case 0x6650: 1452 case 0x6651: 1453 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ 1454 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ 1455 case 0x665d: /* Bonaire [Radeon R7 200 Series] */ 1456 /* Hawaii */ 1457 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ 1458 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ 1459 case 0x67A2: 1460 case 0x67A8: 1461 case 0x67A9: 1462 case 0x67AA: 1463 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ 1464 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ 1465 case 0x67B8: 1466 case 0x67B9: 1467 case 0x67BA: 1468 case 0x67BE: 1469 vdev->resetfn = vfio_radeon_reset; 1470 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); 1471 break; 1472 } 1473 break; 1474 } 1475 } 1476 1477 /* 1478 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify 1479 * devices as a member of a clique. Devices within the same clique ID 1480 * are capable of direct P2P. It's the user's responsibility that this 1481 * is correct. The spec says that this may reside at any unused config 1482 * offset, but reserves and recommends hypervisors place this at C8h. 1483 * The spec also states that the hypervisor should place this capability 1484 * at the end of the capability list, thus next is defined as 0h. 1485 * 1486 * +----------------+----------------+----------------+----------------+ 1487 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) | 1488 * +----------------+----------------+----------------+----------------+ 1489 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') | 1490 * +---------------------------------+---------------------------------+ 1491 * 1492 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf 1493 * 1494 * Specification for Turning and later GPU architectures: 1495 * https://lists.gnu.org/archive/html/qemu-devel/2023-06/pdf142OR4O4c2.pdf 1496 */ 1497 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v, 1498 const char *name, void *opaque, 1499 Error **errp) 1500 { 1501 Property *prop = opaque; 1502 uint8_t *ptr = object_field_prop_ptr(obj, prop); 1503 1504 visit_type_uint8(v, name, ptr, errp); 1505 } 1506 1507 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v, 1508 const char *name, void *opaque, 1509 Error **errp) 1510 { 1511 Property *prop = opaque; 1512 uint8_t value, *ptr = object_field_prop_ptr(obj, prop); 1513 1514 if (!visit_type_uint8(v, name, &value, errp)) { 1515 return; 1516 } 1517 1518 if (value & ~0xF) { 1519 error_setg(errp, "Property %s: valid range 0-15", name); 1520 return; 1521 } 1522 1523 *ptr = value; 1524 } 1525 1526 const PropertyInfo qdev_prop_nv_gpudirect_clique = { 1527 .name = "uint4", 1528 .description = "NVIDIA GPUDirect Clique ID (0 - 15)", 1529 .get = get_nv_gpudirect_clique_id, 1530 .set = set_nv_gpudirect_clique_id, 1531 }; 1532 1533 static bool is_valid_std_cap_offset(uint8_t pos) 1534 { 1535 return (pos >= PCI_STD_HEADER_SIZEOF && 1536 pos <= (PCI_CFG_SPACE_SIZE - PCI_CAP_SIZEOF)); 1537 } 1538 1539 static bool vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp) 1540 { 1541 ERRP_GUARD(); 1542 PCIDevice *pdev = &vdev->pdev; 1543 int ret, pos; 1544 bool c8_conflict = false, d4_conflict = false; 1545 uint8_t tmp; 1546 1547 if (vdev->nv_gpudirect_clique == 0xFF) { 1548 return true; 1549 } 1550 1551 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { 1552 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor"); 1553 return false; 1554 } 1555 1556 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) != 1557 PCI_BASE_CLASS_DISPLAY) { 1558 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class"); 1559 return false; 1560 } 1561 1562 /* 1563 * Per the updated specification above, it's recommended to use offset 1564 * D4h for Turing and later GPU architectures due to a conflict of the 1565 * MSI-X capability at C8h. We don't know how to determine the GPU 1566 * architecture, instead we walk the capability chain to mark conflicts 1567 * and choose one or error based on the result. 1568 * 1569 * NB. Cap list head in pdev->config is already cleared, read from device. 1570 */ 1571 ret = pread(vdev->vbasedev.fd, &tmp, 1, 1572 vdev->config_offset + PCI_CAPABILITY_LIST); 1573 if (ret != 1 || !is_valid_std_cap_offset(tmp)) { 1574 error_setg(errp, "NVIDIA GPUDirect Clique ID: error getting cap list"); 1575 return false; 1576 } 1577 1578 do { 1579 if (tmp == 0xC8) { 1580 c8_conflict = true; 1581 } else if (tmp == 0xD4) { 1582 d4_conflict = true; 1583 } 1584 tmp = pdev->config[tmp + PCI_CAP_LIST_NEXT]; 1585 } while (is_valid_std_cap_offset(tmp)); 1586 1587 if (!c8_conflict) { 1588 pos = 0xC8; 1589 } else if (!d4_conflict) { 1590 pos = 0xD4; 1591 } else { 1592 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid config space"); 1593 return false; 1594 } 1595 1596 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp); 1597 if (ret < 0) { 1598 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: "); 1599 return false; 1600 } 1601 1602 memset(vdev->emulated_config_bits + pos, 0xFF, 8); 1603 pos += PCI_CAP_FLAGS; 1604 pci_set_byte(pdev->config + pos++, 8); 1605 pci_set_byte(pdev->config + pos++, 'P'); 1606 pci_set_byte(pdev->config + pos++, '2'); 1607 pci_set_byte(pdev->config + pos++, 'P'); 1608 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3); 1609 pci_set_byte(pdev->config + pos, 0); 1610 1611 return true; 1612 } 1613 1614 /* 1615 * The VMD endpoint provides a real PCIe domain to the guest and the guest 1616 * kernel performs enumeration of the VMD sub-device domain. Guest transactions 1617 * to VMD sub-devices go through MMU translation from guest addresses to 1618 * physical addresses. When MMIO goes to an endpoint after being translated to 1619 * physical addresses, the bridge rejects the transaction because the window 1620 * has been programmed with guest addresses. 1621 * 1622 * VMD can use the Host Physical Address in order to correctly program the 1623 * bridge windows in its PCIe domain. VMD device 28C0 has HPA shadow registers 1624 * located at offset 0x2000 in MEMBAR2 (BAR 4). This quirk provides the HPA 1625 * shadow registers in a vendor-specific capability register for devices 1626 * without native support. The position of 0xE8-0xFF is in the reserved range 1627 * of the VMD device capability space following the Power Management 1628 * Capability. 1629 */ 1630 #define VMD_SHADOW_CAP_VER 1 1631 #define VMD_SHADOW_CAP_LEN 24 1632 static bool vfio_add_vmd_shadow_cap(VFIOPCIDevice *vdev, Error **errp) 1633 { 1634 ERRP_GUARD(); 1635 uint8_t membar_phys[16]; 1636 int ret, pos = 0xE8; 1637 1638 if (!(vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x201D) || 1639 vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x467F) || 1640 vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x4C3D) || 1641 vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x9A0B))) { 1642 return true; 1643 } 1644 1645 ret = pread(vdev->vbasedev.fd, membar_phys, 16, 1646 vdev->config_offset + PCI_BASE_ADDRESS_2); 1647 if (ret != 16) { 1648 error_report("VMD %s cannot read MEMBARs (%d)", 1649 vdev->vbasedev.name, ret); 1650 return false; 1651 } 1652 1653 ret = pci_add_capability(&vdev->pdev, PCI_CAP_ID_VNDR, pos, 1654 VMD_SHADOW_CAP_LEN, errp); 1655 if (ret < 0) { 1656 error_prepend(errp, "Failed to add VMD MEMBAR Shadow cap: "); 1657 return false; 1658 } 1659 1660 memset(vdev->emulated_config_bits + pos, 0xFF, VMD_SHADOW_CAP_LEN); 1661 pos += PCI_CAP_FLAGS; 1662 pci_set_byte(vdev->pdev.config + pos++, VMD_SHADOW_CAP_LEN); 1663 pci_set_byte(vdev->pdev.config + pos++, VMD_SHADOW_CAP_VER); 1664 pci_set_long(vdev->pdev.config + pos, 0x53484457); /* SHDW */ 1665 memcpy(vdev->pdev.config + pos + 4, membar_phys, 16); 1666 1667 return true; 1668 } 1669 1670 bool vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp) 1671 { 1672 if (!vfio_add_nv_gpudirect_cap(vdev, errp)) { 1673 return false; 1674 } 1675 1676 if (!vfio_add_vmd_shadow_cap(vdev, errp)) { 1677 return false; 1678 } 1679 1680 return true; 1681 } 1682