xref: /openbmc/qemu/hw/vfio/pci-quirks.c (revision ab9056ff)
1 /*
2  * device quirks for PCI devices
3  *
4  * Copyright Red Hat, Inc. 2012-2015
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "exec/memop.h"
15 #include "qemu/units.h"
16 #include "qemu/error-report.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/module.h"
19 #include "qemu/range.h"
20 #include "qapi/error.h"
21 #include "qapi/visitor.h"
22 #include <sys/ioctl.h>
23 #include "hw/hw.h"
24 #include "hw/nvram/fw_cfg.h"
25 #include "hw/qdev-properties.h"
26 #include "pci.h"
27 #include "trace.h"
28 
29 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
30 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
31 {
32     return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
33            (device == PCI_ANY_ID || device == vdev->device_id);
34 }
35 
36 static bool vfio_is_vga(VFIOPCIDevice *vdev)
37 {
38     PCIDevice *pdev = &vdev->pdev;
39     uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
40 
41     return class == PCI_CLASS_DISPLAY_VGA;
42 }
43 
44 /*
45  * List of device ids/vendor ids for which to disable
46  * option rom loading. This avoids the guest hangs during rom
47  * execution as noticed with the BCM 57810 card for lack of a
48  * more better way to handle such issues.
49  * The  user can still override by specifying a romfile or
50  * rombar=1.
51  * Please see https://bugs.launchpad.net/qemu/+bug/1284874
52  * for an analysis of the 57810 card hang. When adding
53  * a new vendor id/device id combination below, please also add
54  * your card/environment details and information that could
55  * help in debugging to the bug tracking this issue
56  */
57 static const struct {
58     uint32_t vendor;
59     uint32_t device;
60 } romblacklist[] = {
61     { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
62 };
63 
64 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
65 {
66     int i;
67 
68     for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
69         if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
70             trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
71                                              romblacklist[i].vendor,
72                                              romblacklist[i].device);
73             return true;
74         }
75     }
76     return false;
77 }
78 
79 /*
80  * Device specific region quirks (mostly backdoors to PCI config space)
81  */
82 
83 /*
84  * The generic window quirks operate on an address and data register,
85  * vfio_generic_window_address_quirk handles the address register and
86  * vfio_generic_window_data_quirk handles the data register.  These ops
87  * pass reads and writes through to hardware until a value matching the
88  * stored address match/mask is written.  When this occurs, the data
89  * register access emulated PCI config space for the device rather than
90  * passing through accesses.  This enables devices where PCI config space
91  * is accessible behind a window register to maintain the virtualization
92  * provided through vfio.
93  */
94 typedef struct VFIOConfigWindowMatch {
95     uint32_t match;
96     uint32_t mask;
97 } VFIOConfigWindowMatch;
98 
99 typedef struct VFIOConfigWindowQuirk {
100     struct VFIOPCIDevice *vdev;
101 
102     uint32_t address_val;
103 
104     uint32_t address_offset;
105     uint32_t data_offset;
106 
107     bool window_enabled;
108     uint8_t bar;
109 
110     MemoryRegion *addr_mem;
111     MemoryRegion *data_mem;
112 
113     uint32_t nr_matches;
114     VFIOConfigWindowMatch matches[];
115 } VFIOConfigWindowQuirk;
116 
117 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
118                                                        hwaddr addr,
119                                                        unsigned size)
120 {
121     VFIOConfigWindowQuirk *window = opaque;
122     VFIOPCIDevice *vdev = window->vdev;
123 
124     return vfio_region_read(&vdev->bars[window->bar].region,
125                             addr + window->address_offset, size);
126 }
127 
128 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
129                                                     uint64_t data,
130                                                     unsigned size)
131 {
132     VFIOConfigWindowQuirk *window = opaque;
133     VFIOPCIDevice *vdev = window->vdev;
134     int i;
135 
136     window->window_enabled = false;
137 
138     vfio_region_write(&vdev->bars[window->bar].region,
139                       addr + window->address_offset, data, size);
140 
141     for (i = 0; i < window->nr_matches; i++) {
142         if ((data & ~window->matches[i].mask) == window->matches[i].match) {
143             window->window_enabled = true;
144             window->address_val = data & window->matches[i].mask;
145             trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
146                                     memory_region_name(window->addr_mem), data);
147             break;
148         }
149     }
150 }
151 
152 static const MemoryRegionOps vfio_generic_window_address_quirk = {
153     .read = vfio_generic_window_quirk_address_read,
154     .write = vfio_generic_window_quirk_address_write,
155     .endianness = DEVICE_LITTLE_ENDIAN,
156 };
157 
158 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
159                                                     hwaddr addr, unsigned size)
160 {
161     VFIOConfigWindowQuirk *window = opaque;
162     VFIOPCIDevice *vdev = window->vdev;
163     uint64_t data;
164 
165     /* Always read data reg, discard if window enabled */
166     data = vfio_region_read(&vdev->bars[window->bar].region,
167                             addr + window->data_offset, size);
168 
169     if (window->window_enabled) {
170         data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
171         trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
172                                     memory_region_name(window->data_mem), data);
173     }
174 
175     return data;
176 }
177 
178 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
179                                                  uint64_t data, unsigned size)
180 {
181     VFIOConfigWindowQuirk *window = opaque;
182     VFIOPCIDevice *vdev = window->vdev;
183 
184     if (window->window_enabled) {
185         vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
186         trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
187                                     memory_region_name(window->data_mem), data);
188         return;
189     }
190 
191     vfio_region_write(&vdev->bars[window->bar].region,
192                       addr + window->data_offset, data, size);
193 }
194 
195 static const MemoryRegionOps vfio_generic_window_data_quirk = {
196     .read = vfio_generic_window_quirk_data_read,
197     .write = vfio_generic_window_quirk_data_write,
198     .endianness = DEVICE_LITTLE_ENDIAN,
199 };
200 
201 /*
202  * The generic mirror quirk handles devices which expose PCI config space
203  * through a region within a BAR.  When enabled, reads and writes are
204  * redirected through to emulated PCI config space.  XXX if PCI config space
205  * used memory regions, this could just be an alias.
206  */
207 typedef struct VFIOConfigMirrorQuirk {
208     struct VFIOPCIDevice *vdev;
209     uint32_t offset;
210     uint8_t bar;
211     MemoryRegion *mem;
212     uint8_t data[];
213 } VFIOConfigMirrorQuirk;
214 
215 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
216                                                hwaddr addr, unsigned size)
217 {
218     VFIOConfigMirrorQuirk *mirror = opaque;
219     VFIOPCIDevice *vdev = mirror->vdev;
220     uint64_t data;
221 
222     /* Read and discard in case the hardware cares */
223     (void)vfio_region_read(&vdev->bars[mirror->bar].region,
224                            addr + mirror->offset, size);
225 
226     data = vfio_pci_read_config(&vdev->pdev, addr, size);
227     trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
228                                          memory_region_name(mirror->mem),
229                                          addr, data);
230     return data;
231 }
232 
233 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
234                                             uint64_t data, unsigned size)
235 {
236     VFIOConfigMirrorQuirk *mirror = opaque;
237     VFIOPCIDevice *vdev = mirror->vdev;
238 
239     vfio_pci_write_config(&vdev->pdev, addr, data, size);
240     trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
241                                           memory_region_name(mirror->mem),
242                                           addr, data);
243 }
244 
245 static const MemoryRegionOps vfio_generic_mirror_quirk = {
246     .read = vfio_generic_quirk_mirror_read,
247     .write = vfio_generic_quirk_mirror_write,
248     .endianness = DEVICE_LITTLE_ENDIAN,
249 };
250 
251 /* Is range1 fully contained within range2?  */
252 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
253                                  uint64_t first2, uint64_t len2) {
254     return (first1 >= first2 && first1 + len1 <= first2 + len2);
255 }
256 
257 #define PCI_VENDOR_ID_ATI               0x1002
258 
259 /*
260  * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
261  * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
262  * BAR4 (older cards like the X550 used BAR1, but we don't care to support
263  * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
264  * I/O port BAR address.  Originally this was coded to return the virtual BAR
265  * address only if the physical register read returns the actual BAR address,
266  * but users have reported greater success if we return the virtual address
267  * unconditionally.
268  */
269 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
270                                         hwaddr addr, unsigned size)
271 {
272     VFIOPCIDevice *vdev = opaque;
273     uint64_t data = vfio_pci_read_config(&vdev->pdev,
274                                          PCI_BASE_ADDRESS_4 + 1, size);
275 
276     trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
277 
278     return data;
279 }
280 
281 static const MemoryRegionOps vfio_ati_3c3_quirk = {
282     .read = vfio_ati_3c3_quirk_read,
283     .endianness = DEVICE_LITTLE_ENDIAN,
284 };
285 
286 static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
287 {
288     VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
289     QLIST_INIT(&quirk->ioeventfds);
290     quirk->mem = g_new0(MemoryRegion, nr_mem);
291     quirk->nr_mem = nr_mem;
292 
293     return quirk;
294 }
295 
296 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
297 {
298     QLIST_REMOVE(ioeventfd, next);
299     memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
300                               true, ioeventfd->data, &ioeventfd->e);
301 
302     if (ioeventfd->vfio) {
303         struct vfio_device_ioeventfd vfio_ioeventfd;
304 
305         vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
306         vfio_ioeventfd.flags = ioeventfd->size;
307         vfio_ioeventfd.data = ioeventfd->data;
308         vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
309                                 ioeventfd->region_addr;
310         vfio_ioeventfd.fd = -1;
311 
312         if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
313             error_report("Failed to remove vfio ioeventfd for %s+0x%"
314                          HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
315                          memory_region_name(ioeventfd->mr), ioeventfd->addr,
316                          ioeventfd->size, ioeventfd->data);
317         }
318     } else {
319         qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
320                             NULL, NULL, NULL);
321     }
322 
323     event_notifier_cleanup(&ioeventfd->e);
324     trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
325                               (uint64_t)ioeventfd->addr, ioeventfd->size,
326                               ioeventfd->data);
327     g_free(ioeventfd);
328 }
329 
330 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
331 {
332     VFIOIOEventFD *ioeventfd, *tmp;
333 
334     QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
335         if (ioeventfd->dynamic) {
336             vfio_ioeventfd_exit(vdev, ioeventfd);
337         }
338     }
339 }
340 
341 static void vfio_ioeventfd_handler(void *opaque)
342 {
343     VFIOIOEventFD *ioeventfd = opaque;
344 
345     if (event_notifier_test_and_clear(&ioeventfd->e)) {
346         vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
347                           ioeventfd->data, ioeventfd->size);
348         trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
349                                      (uint64_t)ioeventfd->addr, ioeventfd->size,
350                                      ioeventfd->data);
351     }
352 }
353 
354 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
355                                           MemoryRegion *mr, hwaddr addr,
356                                           unsigned size, uint64_t data,
357                                           VFIORegion *region,
358                                           hwaddr region_addr, bool dynamic)
359 {
360     VFIOIOEventFD *ioeventfd;
361 
362     if (vdev->no_kvm_ioeventfd) {
363         return NULL;
364     }
365 
366     ioeventfd = g_malloc0(sizeof(*ioeventfd));
367 
368     if (event_notifier_init(&ioeventfd->e, 0)) {
369         g_free(ioeventfd);
370         return NULL;
371     }
372 
373     /*
374      * MemoryRegion and relative offset, plus additional ioeventfd setup
375      * parameters for configuring and later tearing down KVM ioeventfd.
376      */
377     ioeventfd->mr = mr;
378     ioeventfd->addr = addr;
379     ioeventfd->size = size;
380     ioeventfd->data = data;
381     ioeventfd->dynamic = dynamic;
382     /*
383      * VFIORegion and relative offset for implementing the userspace
384      * handler.  data & size fields shared for both uses.
385      */
386     ioeventfd->region = region;
387     ioeventfd->region_addr = region_addr;
388 
389     if (!vdev->no_vfio_ioeventfd) {
390         struct vfio_device_ioeventfd vfio_ioeventfd;
391 
392         vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
393         vfio_ioeventfd.flags = ioeventfd->size;
394         vfio_ioeventfd.data = ioeventfd->data;
395         vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
396                                 ioeventfd->region_addr;
397         vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
398 
399         ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
400                                  VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
401     }
402 
403     if (!ioeventfd->vfio) {
404         qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
405                             vfio_ioeventfd_handler, NULL, ioeventfd);
406     }
407 
408     memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
409                               true, ioeventfd->data, &ioeventfd->e);
410     trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
411                               size, data, ioeventfd->vfio);
412 
413     return ioeventfd;
414 }
415 
416 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
417 {
418     VFIOQuirk *quirk;
419 
420     /*
421      * As long as the BAR is >= 256 bytes it will be aligned such that the
422      * lower byte is always zero.  Filter out anything else, if it exists.
423      */
424     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
425         !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
426         return;
427     }
428 
429     quirk = vfio_quirk_alloc(1);
430 
431     memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
432                           "vfio-ati-3c3-quirk", 1);
433     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
434                                 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
435 
436     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
437                       quirk, next);
438 
439     trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
440 }
441 
442 /*
443  * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
444  * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
445  * the MMIO space directly, but a window to this space is provided through
446  * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
447  * data register.  When the address is programmed to a range of 0x4000-0x4fff
448  * PCI configuration space is available.  Experimentation seems to indicate
449  * that read-only may be provided by hardware.
450  */
451 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
452 {
453     VFIOQuirk *quirk;
454     VFIOConfigWindowQuirk *window;
455 
456     /* This windows doesn't seem to be used except by legacy VGA code */
457     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
458         !vdev->vga || nr != 4) {
459         return;
460     }
461 
462     quirk = vfio_quirk_alloc(2);
463     window = quirk->data = g_malloc0(sizeof(*window) +
464                                      sizeof(VFIOConfigWindowMatch));
465     window->vdev = vdev;
466     window->address_offset = 0;
467     window->data_offset = 4;
468     window->nr_matches = 1;
469     window->matches[0].match = 0x4000;
470     window->matches[0].mask = vdev->config_size - 1;
471     window->bar = nr;
472     window->addr_mem = &quirk->mem[0];
473     window->data_mem = &quirk->mem[1];
474 
475     memory_region_init_io(window->addr_mem, OBJECT(vdev),
476                           &vfio_generic_window_address_quirk, window,
477                           "vfio-ati-bar4-window-address-quirk", 4);
478     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
479                                         window->address_offset,
480                                         window->addr_mem, 1);
481 
482     memory_region_init_io(window->data_mem, OBJECT(vdev),
483                           &vfio_generic_window_data_quirk, window,
484                           "vfio-ati-bar4-window-data-quirk", 4);
485     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
486                                         window->data_offset,
487                                         window->data_mem, 1);
488 
489     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
490 
491     trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
492 }
493 
494 /*
495  * Trap the BAR2 MMIO mirror to config space as well.
496  */
497 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
498 {
499     VFIOQuirk *quirk;
500     VFIOConfigMirrorQuirk *mirror;
501 
502     /* Only enable on newer devices where BAR2 is 64bit */
503     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
504         !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
505         return;
506     }
507 
508     quirk = vfio_quirk_alloc(1);
509     mirror = quirk->data = g_malloc0(sizeof(*mirror));
510     mirror->mem = quirk->mem;
511     mirror->vdev = vdev;
512     mirror->offset = 0x4000;
513     mirror->bar = nr;
514 
515     memory_region_init_io(mirror->mem, OBJECT(vdev),
516                           &vfio_generic_mirror_quirk, mirror,
517                           "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
518     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
519                                         mirror->offset, mirror->mem, 1);
520 
521     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
522 
523     trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
524 }
525 
526 /*
527  * Older ATI/AMD cards like the X550 have a similar window to that above.
528  * I/O port BAR1 provides a window to a mirror of PCI config space located
529  * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
530  * note it for future reference.
531  */
532 
533 /*
534  * Nvidia has several different methods to get to config space, the
535  * nouveu project has several of these documented here:
536  * https://github.com/pathscale/envytools/tree/master/hwdocs
537  *
538  * The first quirk is actually not documented in envytools and is found
539  * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
540  * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
541  * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
542  * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
543  * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
544  * is written for a write to 0x3d4.  The BAR0 offset is then accessible
545  * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
546  * that use the I/O port BAR5 window but it doesn't hurt to leave it.
547  */
548 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
549 static const char *nv3d0_states[] = { "NONE", "SELECT",
550                                       "WINDOW", "READ", "WRITE" };
551 
552 typedef struct VFIONvidia3d0Quirk {
553     VFIOPCIDevice *vdev;
554     VFIONvidia3d0State state;
555     uint32_t offset;
556 } VFIONvidia3d0Quirk;
557 
558 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
559                                            hwaddr addr, unsigned size)
560 {
561     VFIONvidia3d0Quirk *quirk = opaque;
562     VFIOPCIDevice *vdev = quirk->vdev;
563 
564     quirk->state = NONE;
565 
566     return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
567                          addr + 0x14, size);
568 }
569 
570 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
571                                         uint64_t data, unsigned size)
572 {
573     VFIONvidia3d0Quirk *quirk = opaque;
574     VFIOPCIDevice *vdev = quirk->vdev;
575     VFIONvidia3d0State old_state = quirk->state;
576 
577     quirk->state = NONE;
578 
579     switch (data) {
580     case 0x338:
581         if (old_state == NONE) {
582             quirk->state = SELECT;
583             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
584                                               nv3d0_states[quirk->state]);
585         }
586         break;
587     case 0x538:
588         if (old_state == WINDOW) {
589             quirk->state = READ;
590             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
591                                               nv3d0_states[quirk->state]);
592         }
593         break;
594     case 0x738:
595         if (old_state == WINDOW) {
596             quirk->state = WRITE;
597             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
598                                               nv3d0_states[quirk->state]);
599         }
600         break;
601     }
602 
603     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
604                    addr + 0x14, data, size);
605 }
606 
607 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
608     .read = vfio_nvidia_3d4_quirk_read,
609     .write = vfio_nvidia_3d4_quirk_write,
610     .endianness = DEVICE_LITTLE_ENDIAN,
611 };
612 
613 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
614                                            hwaddr addr, unsigned size)
615 {
616     VFIONvidia3d0Quirk *quirk = opaque;
617     VFIOPCIDevice *vdev = quirk->vdev;
618     VFIONvidia3d0State old_state = quirk->state;
619     uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
620                                   addr + 0x10, size);
621 
622     quirk->state = NONE;
623 
624     if (old_state == READ &&
625         (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
626         uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
627 
628         data = vfio_pci_read_config(&vdev->pdev, offset, size);
629         trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
630                                          offset, size, data);
631     }
632 
633     return data;
634 }
635 
636 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
637                                         uint64_t data, unsigned size)
638 {
639     VFIONvidia3d0Quirk *quirk = opaque;
640     VFIOPCIDevice *vdev = quirk->vdev;
641     VFIONvidia3d0State old_state = quirk->state;
642 
643     quirk->state = NONE;
644 
645     if (old_state == SELECT) {
646         quirk->offset = (uint32_t)data;
647         quirk->state = WINDOW;
648         trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
649                                           nv3d0_states[quirk->state]);
650     } else if (old_state == WRITE) {
651         if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
652             uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
653 
654             vfio_pci_write_config(&vdev->pdev, offset, data, size);
655             trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
656                                               offset, data, size);
657             return;
658         }
659     }
660 
661     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
662                    addr + 0x10, data, size);
663 }
664 
665 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
666     .read = vfio_nvidia_3d0_quirk_read,
667     .write = vfio_nvidia_3d0_quirk_write,
668     .endianness = DEVICE_LITTLE_ENDIAN,
669 };
670 
671 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
672 {
673     VFIOQuirk *quirk;
674     VFIONvidia3d0Quirk *data;
675 
676     if (vdev->no_geforce_quirks ||
677         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
678         !vdev->bars[1].region.size) {
679         return;
680     }
681 
682     quirk = vfio_quirk_alloc(2);
683     quirk->data = data = g_malloc0(sizeof(*data));
684     data->vdev = vdev;
685 
686     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
687                           data, "vfio-nvidia-3d4-quirk", 2);
688     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
689                                 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
690 
691     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
692                           data, "vfio-nvidia-3d0-quirk", 2);
693     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
694                                 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
695 
696     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
697                       quirk, next);
698 
699     trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
700 }
701 
702 /*
703  * The second quirk is documented in envytools.  The I/O port BAR5 is just
704  * a set of address/data ports to the MMIO BARs.  The BAR we care about is
705  * again BAR0.  This backdoor is apparently a bit newer than the one above
706  * so we need to not only trap 256 bytes @0x1800, but all of PCI config
707  * space, including extended space is available at the 4k @0x88000.
708  */
709 typedef struct VFIONvidiaBAR5Quirk {
710     uint32_t master;
711     uint32_t enable;
712     MemoryRegion *addr_mem;
713     MemoryRegion *data_mem;
714     bool enabled;
715     VFIOConfigWindowQuirk window; /* last for match data */
716 } VFIONvidiaBAR5Quirk;
717 
718 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
719 {
720     VFIOPCIDevice *vdev = bar5->window.vdev;
721 
722     if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
723         return;
724     }
725 
726     bar5->enabled = !bar5->enabled;
727     trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
728                                        bar5->enabled ?  "Enable" : "Disable");
729     memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
730     memory_region_set_enabled(bar5->data_mem, bar5->enabled);
731 }
732 
733 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
734                                                    hwaddr addr, unsigned size)
735 {
736     VFIONvidiaBAR5Quirk *bar5 = opaque;
737     VFIOPCIDevice *vdev = bar5->window.vdev;
738 
739     return vfio_region_read(&vdev->bars[5].region, addr, size);
740 }
741 
742 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
743                                                 uint64_t data, unsigned size)
744 {
745     VFIONvidiaBAR5Quirk *bar5 = opaque;
746     VFIOPCIDevice *vdev = bar5->window.vdev;
747 
748     vfio_region_write(&vdev->bars[5].region, addr, data, size);
749 
750     bar5->master = data;
751     vfio_nvidia_bar5_enable(bar5);
752 }
753 
754 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
755     .read = vfio_nvidia_bar5_quirk_master_read,
756     .write = vfio_nvidia_bar5_quirk_master_write,
757     .endianness = DEVICE_LITTLE_ENDIAN,
758 };
759 
760 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
761                                                    hwaddr addr, unsigned size)
762 {
763     VFIONvidiaBAR5Quirk *bar5 = opaque;
764     VFIOPCIDevice *vdev = bar5->window.vdev;
765 
766     return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
767 }
768 
769 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
770                                                 uint64_t data, unsigned size)
771 {
772     VFIONvidiaBAR5Quirk *bar5 = opaque;
773     VFIOPCIDevice *vdev = bar5->window.vdev;
774 
775     vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
776 
777     bar5->enable = data;
778     vfio_nvidia_bar5_enable(bar5);
779 }
780 
781 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
782     .read = vfio_nvidia_bar5_quirk_enable_read,
783     .write = vfio_nvidia_bar5_quirk_enable_write,
784     .endianness = DEVICE_LITTLE_ENDIAN,
785 };
786 
787 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
788 {
789     VFIOQuirk *quirk;
790     VFIONvidiaBAR5Quirk *bar5;
791     VFIOConfigWindowQuirk *window;
792 
793     if (vdev->no_geforce_quirks ||
794         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
795         !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
796         return;
797     }
798 
799     quirk = vfio_quirk_alloc(4);
800     bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
801                                    (sizeof(VFIOConfigWindowMatch) * 2));
802     window = &bar5->window;
803 
804     window->vdev = vdev;
805     window->address_offset = 0x8;
806     window->data_offset = 0xc;
807     window->nr_matches = 2;
808     window->matches[0].match = 0x1800;
809     window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
810     window->matches[1].match = 0x88000;
811     window->matches[1].mask = vdev->config_size - 1;
812     window->bar = nr;
813     window->addr_mem = bar5->addr_mem = &quirk->mem[0];
814     window->data_mem = bar5->data_mem = &quirk->mem[1];
815 
816     memory_region_init_io(window->addr_mem, OBJECT(vdev),
817                           &vfio_generic_window_address_quirk, window,
818                           "vfio-nvidia-bar5-window-address-quirk", 4);
819     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
820                                         window->address_offset,
821                                         window->addr_mem, 1);
822     memory_region_set_enabled(window->addr_mem, false);
823 
824     memory_region_init_io(window->data_mem, OBJECT(vdev),
825                           &vfio_generic_window_data_quirk, window,
826                           "vfio-nvidia-bar5-window-data-quirk", 4);
827     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
828                                         window->data_offset,
829                                         window->data_mem, 1);
830     memory_region_set_enabled(window->data_mem, false);
831 
832     memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
833                           &vfio_nvidia_bar5_quirk_master, bar5,
834                           "vfio-nvidia-bar5-master-quirk", 4);
835     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
836                                         0, &quirk->mem[2], 1);
837 
838     memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
839                           &vfio_nvidia_bar5_quirk_enable, bar5,
840                           "vfio-nvidia-bar5-enable-quirk", 4);
841     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
842                                         4, &quirk->mem[3], 1);
843 
844     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
845 
846     trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
847 }
848 
849 typedef struct LastDataSet {
850     VFIOQuirk *quirk;
851     hwaddr addr;
852     uint64_t data;
853     unsigned size;
854     int hits;
855     int added;
856 } LastDataSet;
857 
858 #define MAX_DYN_IOEVENTFD 10
859 #define HITS_FOR_IOEVENTFD 10
860 
861 /*
862  * Finally, BAR0 itself.  We want to redirect any accesses to either
863  * 0x1800 or 0x88000 through the PCI config space access functions.
864  */
865 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
866                                            uint64_t data, unsigned size)
867 {
868     VFIOConfigMirrorQuirk *mirror = opaque;
869     VFIOPCIDevice *vdev = mirror->vdev;
870     PCIDevice *pdev = &vdev->pdev;
871     LastDataSet *last = (LastDataSet *)&mirror->data;
872 
873     vfio_generic_quirk_mirror_write(opaque, addr, data, size);
874 
875     /*
876      * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
877      * MSI capability ID register.  Both the ID and next register are
878      * read-only, so we allow writes covering either of those to real hw.
879      */
880     if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
881         vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
882         vfio_region_write(&vdev->bars[mirror->bar].region,
883                           addr + mirror->offset, data, size);
884         trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
885     }
886 
887     /*
888      * Automatically add an ioeventfd to handle any repeated write with the
889      * same data and size above the standard PCI config space header.  This is
890      * primarily expected to accelerate the MSI-ACK behavior, such as noted
891      * above.  Current hardware/drivers should trigger an ioeventfd at config
892      * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
893      *
894      * The criteria of 10 successive hits is arbitrary but reliably adds the
895      * MSI-ACK region.  Note that as some writes are bypassed via the ioeventfd,
896      * the remaining ones have a greater chance of being seen successively.
897      * To avoid the pathological case of burning up all of QEMU's open file
898      * handles, arbitrarily limit this algorithm from adding no more than 10
899      * ioeventfds, print an error if we would have added an 11th, and then
900      * stop counting.
901      */
902     if (!vdev->no_kvm_ioeventfd &&
903         addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
904         if (addr != last->addr || data != last->data || size != last->size) {
905             last->addr = addr;
906             last->data = data;
907             last->size = size;
908             last->hits = 1;
909         } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
910             if (last->added < MAX_DYN_IOEVENTFD) {
911                 VFIOIOEventFD *ioeventfd;
912                 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
913                                         data, &vdev->bars[mirror->bar].region,
914                                         mirror->offset + addr, true);
915                 if (ioeventfd) {
916                     VFIOQuirk *quirk = last->quirk;
917 
918                     QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
919                     last->added++;
920                 }
921             } else {
922                 last->added++;
923                 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
924                             "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
925                             "size %u", vdev->vbasedev.name, addr, data, size);
926             }
927         }
928     }
929 }
930 
931 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
932     .read = vfio_generic_quirk_mirror_read,
933     .write = vfio_nvidia_quirk_mirror_write,
934     .endianness = DEVICE_LITTLE_ENDIAN,
935 };
936 
937 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
938 {
939     VFIOConfigMirrorQuirk *mirror = quirk->data;
940     LastDataSet *last = (LastDataSet *)&mirror->data;
941 
942     last->addr = last->data = last->size = last->hits = last->added = 0;
943 
944     vfio_drop_dynamic_eventfds(vdev, quirk);
945 }
946 
947 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
948 {
949     VFIOQuirk *quirk;
950     VFIOConfigMirrorQuirk *mirror;
951     LastDataSet *last;
952 
953     if (vdev->no_geforce_quirks ||
954         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
955         !vfio_is_vga(vdev) || nr != 0) {
956         return;
957     }
958 
959     quirk = vfio_quirk_alloc(1);
960     quirk->reset = vfio_nvidia_bar0_quirk_reset;
961     mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
962     mirror->mem = quirk->mem;
963     mirror->vdev = vdev;
964     mirror->offset = 0x88000;
965     mirror->bar = nr;
966     last = (LastDataSet *)&mirror->data;
967     last->quirk = quirk;
968 
969     memory_region_init_io(mirror->mem, OBJECT(vdev),
970                           &vfio_nvidia_mirror_quirk, mirror,
971                           "vfio-nvidia-bar0-88000-mirror-quirk",
972                           vdev->config_size);
973     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
974                                         mirror->offset, mirror->mem, 1);
975 
976     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
977 
978     /* The 0x1800 offset mirror only seems to get used by legacy VGA */
979     if (vdev->vga) {
980         quirk = vfio_quirk_alloc(1);
981         quirk->reset = vfio_nvidia_bar0_quirk_reset;
982         mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
983         mirror->mem = quirk->mem;
984         mirror->vdev = vdev;
985         mirror->offset = 0x1800;
986         mirror->bar = nr;
987         last = (LastDataSet *)&mirror->data;
988         last->quirk = quirk;
989 
990         memory_region_init_io(mirror->mem, OBJECT(vdev),
991                               &vfio_nvidia_mirror_quirk, mirror,
992                               "vfio-nvidia-bar0-1800-mirror-quirk",
993                               PCI_CONFIG_SPACE_SIZE);
994         memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
995                                             mirror->offset, mirror->mem, 1);
996 
997         QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
998     }
999 
1000     trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
1001 }
1002 
1003 /*
1004  * TODO - Some Nvidia devices provide config access to their companion HDA
1005  * device and even to their parent bridge via these config space mirrors.
1006  * Add quirks for those regions.
1007  */
1008 
1009 #define PCI_VENDOR_ID_REALTEK 0x10ec
1010 
1011 /*
1012  * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
1013  * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1014  * register.  According to the Linux r8169 driver, the MSI-X table is addressed
1015  * when the "type" portion of the address register is set to 0x1.  This appears
1016  * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
1017  * "address latched" indicator.  Bits 12:15 are a mask field, which we can
1018  * ignore because the MSI-X table should always be accessed as a dword (full
1019  * mask).  Bits 0:11 is offset within the type.
1020  *
1021  * Example trace:
1022  *
1023  * Read from MSI-X table offset 0
1024  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1025  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1026  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1027  *
1028  * Write 0xfee00000 to MSI-X table offset 0
1029  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1030  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1031  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1032  */
1033 typedef struct VFIOrtl8168Quirk {
1034     VFIOPCIDevice *vdev;
1035     uint32_t addr;
1036     uint32_t data;
1037     bool enabled;
1038 } VFIOrtl8168Quirk;
1039 
1040 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1041                                                 hwaddr addr, unsigned size)
1042 {
1043     VFIOrtl8168Quirk *rtl = opaque;
1044     VFIOPCIDevice *vdev = rtl->vdev;
1045     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1046 
1047     if (rtl->enabled) {
1048         data = rtl->addr ^ 0x80000000U; /* latch/complete */
1049         trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1050     }
1051 
1052     return data;
1053 }
1054 
1055 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1056                                              uint64_t data, unsigned size)
1057 {
1058     VFIOrtl8168Quirk *rtl = opaque;
1059     VFIOPCIDevice *vdev = rtl->vdev;
1060 
1061     rtl->enabled = false;
1062 
1063     if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1064         rtl->enabled = true;
1065         rtl->addr = (uint32_t)data;
1066 
1067         if (data & 0x80000000U) { /* Do write */
1068             if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1069                 hwaddr offset = data & 0xfff;
1070                 uint64_t val = rtl->data;
1071 
1072                 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1073                                                     (uint16_t)offset, val);
1074 
1075                 /* Write to the proper guest MSI-X table instead */
1076                 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1077                                              offset, val,
1078                                              size_memop(size) | MO_LE,
1079                                              MEMTXATTRS_UNSPECIFIED);
1080             }
1081             return; /* Do not write guest MSI-X data to hardware */
1082         }
1083     }
1084 
1085     vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1086 }
1087 
1088 static const MemoryRegionOps vfio_rtl_address_quirk = {
1089     .read = vfio_rtl8168_quirk_address_read,
1090     .write = vfio_rtl8168_quirk_address_write,
1091     .valid = {
1092         .min_access_size = 4,
1093         .max_access_size = 4,
1094         .unaligned = false,
1095     },
1096     .endianness = DEVICE_LITTLE_ENDIAN,
1097 };
1098 
1099 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1100                                              hwaddr addr, unsigned size)
1101 {
1102     VFIOrtl8168Quirk *rtl = opaque;
1103     VFIOPCIDevice *vdev = rtl->vdev;
1104     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1105 
1106     if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1107         hwaddr offset = rtl->addr & 0xfff;
1108         memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1109                                     &data, size_memop(size) | MO_LE,
1110                                     MEMTXATTRS_UNSPECIFIED);
1111         trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1112     }
1113 
1114     return data;
1115 }
1116 
1117 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1118                                           uint64_t data, unsigned size)
1119 {
1120     VFIOrtl8168Quirk *rtl = opaque;
1121     VFIOPCIDevice *vdev = rtl->vdev;
1122 
1123     rtl->data = (uint32_t)data;
1124 
1125     vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1126 }
1127 
1128 static const MemoryRegionOps vfio_rtl_data_quirk = {
1129     .read = vfio_rtl8168_quirk_data_read,
1130     .write = vfio_rtl8168_quirk_data_write,
1131     .valid = {
1132         .min_access_size = 4,
1133         .max_access_size = 4,
1134         .unaligned = false,
1135     },
1136     .endianness = DEVICE_LITTLE_ENDIAN,
1137 };
1138 
1139 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1140 {
1141     VFIOQuirk *quirk;
1142     VFIOrtl8168Quirk *rtl;
1143 
1144     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1145         return;
1146     }
1147 
1148     quirk = vfio_quirk_alloc(2);
1149     quirk->data = rtl = g_malloc0(sizeof(*rtl));
1150     rtl->vdev = vdev;
1151 
1152     memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1153                           &vfio_rtl_address_quirk, rtl,
1154                           "vfio-rtl8168-window-address-quirk", 4);
1155     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1156                                         0x74, &quirk->mem[0], 1);
1157 
1158     memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1159                           &vfio_rtl_data_quirk, rtl,
1160                           "vfio-rtl8168-window-data-quirk", 4);
1161     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1162                                         0x70, &quirk->mem[1], 1);
1163 
1164     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1165 
1166     trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1167 }
1168 
1169 /*
1170  * Intel IGD support
1171  *
1172  * Obviously IGD is not a discrete device, this is evidenced not only by it
1173  * being integrated into the CPU, but by the various chipset and BIOS
1174  * dependencies that it brings along with it.  Intel is trying to move away
1175  * from this and Broadwell and newer devices can run in what Intel calls
1176  * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
1177  * more is required beyond assigning the IGD device to a VM.  There are
1178  * however support limitations to this mode.  It only supports IGD as a
1179  * secondary graphics device in the VM and it doesn't officially support any
1180  * physical outputs.
1181  *
1182  * The code here attempts to enable what we'll call legacy mode assignment,
1183  * IGD retains most of the capabilities we expect for it to have on bare
1184  * metal.  To enable this mode, the IGD device must be assigned to the VM
1185  * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1186  * support, we must have VM BIOS support for reserving and populating some
1187  * of the required tables, and we need to tweak the chipset with revisions
1188  * and IDs and an LPC/ISA bridge device.  The intention is to make all of
1189  * this happen automatically by installing the device at the correct VM PCI
1190  * bus address.  If any of the conditions are not met, we cross our fingers
1191  * and hope the user knows better.
1192  *
1193  * NB - It is possible to enable physical outputs in UPT mode by supplying
1194  * an OpRegion table.  We don't do this by default because the guest driver
1195  * behaves differently if an OpRegion is provided and no monitor is attached
1196  * vs no OpRegion and a monitor being attached or not.  Effectively, if a
1197  * headless setup is desired, the OpRegion gets in the way of that.
1198  */
1199 
1200 /*
1201  * This presumes the device is already known to be an Intel VGA device, so we
1202  * take liberties in which device ID bits match which generation.  This should
1203  * not be taken as an indication that all the devices are supported, or even
1204  * supportable, some of them don't even support VT-d.
1205  * See linux:include/drm/i915_pciids.h for IDs.
1206  */
1207 static int igd_gen(VFIOPCIDevice *vdev)
1208 {
1209     if ((vdev->device_id & 0xfff) == 0xa84) {
1210         return 8; /* Broxton */
1211     }
1212 
1213     switch (vdev->device_id & 0xff00) {
1214     /* Old, untested, unavailable, unknown */
1215     case 0x0000:
1216     case 0x2500:
1217     case 0x2700:
1218     case 0x2900:
1219     case 0x2a00:
1220     case 0x2e00:
1221     case 0x3500:
1222     case 0xa000:
1223         return -1;
1224     /* SandyBridge, IvyBridge, ValleyView, Haswell */
1225     case 0x0100:
1226     case 0x0400:
1227     case 0x0a00:
1228     case 0x0c00:
1229     case 0x0d00:
1230     case 0x0f00:
1231         return 6;
1232     /* BroadWell, CherryView, SkyLake, KabyLake */
1233     case 0x1600:
1234     case 0x1900:
1235     case 0x2200:
1236     case 0x5900:
1237         return 8;
1238     }
1239 
1240     return 8; /* Assume newer is compatible */
1241 }
1242 
1243 typedef struct VFIOIGDQuirk {
1244     struct VFIOPCIDevice *vdev;
1245     uint32_t index;
1246     uint32_t bdsm;
1247 } VFIOIGDQuirk;
1248 
1249 #define IGD_GMCH 0x50 /* Graphics Control Register */
1250 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1251 #define IGD_ASLS 0xfc /* ASL Storage Register */
1252 
1253 /*
1254  * The OpRegion includes the Video BIOS Table, which seems important for
1255  * telling the driver what sort of outputs it has.  Without this, the device
1256  * may work in the guest, but we may not get output.  This also requires BIOS
1257  * support to reserve and populate a section of guest memory sufficient for
1258  * the table and to write the base address of that memory to the ASLS register
1259  * of the IGD device.
1260  */
1261 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1262                                struct vfio_region_info *info, Error **errp)
1263 {
1264     int ret;
1265 
1266     vdev->igd_opregion = g_malloc0(info->size);
1267     ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1268                 info->size, info->offset);
1269     if (ret != info->size) {
1270         error_setg(errp, "failed to read IGD OpRegion");
1271         g_free(vdev->igd_opregion);
1272         vdev->igd_opregion = NULL;
1273         return -EINVAL;
1274     }
1275 
1276     /*
1277      * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1278      * allocate 32bit reserved memory for, copy these contents into, and write
1279      * the reserved memory base address to the device ASLS register at 0xFC.
1280      * Alignment of this reserved region seems flexible, but using a 4k page
1281      * alignment seems to work well.  This interface assumes a single IGD
1282      * device, which may be at VM address 00:02.0 in legacy mode or another
1283      * address in UPT mode.
1284      *
1285      * NB, there may be future use cases discovered where the VM should have
1286      * direct interaction with the host OpRegion, in which case the write to
1287      * the ASLS register would trigger MemoryRegion setup to enable that.
1288      */
1289     fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1290                     vdev->igd_opregion, info->size);
1291 
1292     trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1293 
1294     pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1295     pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1296     pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1297 
1298     return 0;
1299 }
1300 
1301 /*
1302  * The rather short list of registers that we copy from the host devices.
1303  * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1304  * host bridge values may or may not be needed depending on the guest OS.
1305  * Since we're only munging revision and subsystem values on the host bridge,
1306  * we don't require our own device.  The LPC/ISA bridge needs to be our very
1307  * own though.
1308  */
1309 typedef struct {
1310     uint8_t offset;
1311     uint8_t len;
1312 } IGDHostInfo;
1313 
1314 static const IGDHostInfo igd_host_bridge_infos[] = {
1315     {PCI_REVISION_ID,         2},
1316     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1317     {PCI_SUBSYSTEM_ID,        2},
1318 };
1319 
1320 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1321     {PCI_VENDOR_ID,           2},
1322     {PCI_DEVICE_ID,           2},
1323     {PCI_REVISION_ID,         2},
1324     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1325     {PCI_SUBSYSTEM_ID,        2},
1326 };
1327 
1328 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1329                              struct vfio_region_info *info,
1330                              const IGDHostInfo *list, int len)
1331 {
1332     int i, ret;
1333 
1334     for (i = 0; i < len; i++) {
1335         ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1336                     list[i].len, info->offset + list[i].offset);
1337         if (ret != list[i].len) {
1338             error_report("IGD copy failed: %m");
1339             return -errno;
1340         }
1341     }
1342 
1343     return 0;
1344 }
1345 
1346 /*
1347  * Stuff a few values into the host bridge.
1348  */
1349 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1350                                   struct vfio_region_info *info)
1351 {
1352     PCIBus *bus;
1353     PCIDevice *host_bridge;
1354     int ret;
1355 
1356     bus = pci_device_root_bus(&vdev->pdev);
1357     host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1358 
1359     if (!host_bridge) {
1360         error_report("Can't find host bridge");
1361         return -ENODEV;
1362     }
1363 
1364     ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1365                             ARRAY_SIZE(igd_host_bridge_infos));
1366     if (!ret) {
1367         trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1368     }
1369 
1370     return ret;
1371 }
1372 
1373 /*
1374  * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1375  * arbitrary values into just any bridge, so we must create our own.  We try
1376  * to handle if the user has created it for us, which they might want to do
1377  * to enable multifunction so we don't occupy the whole PCI slot.
1378  */
1379 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1380 {
1381     if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1382         error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1383     }
1384 }
1385 
1386 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1387 {
1388     DeviceClass *dc = DEVICE_CLASS(klass);
1389     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1390 
1391     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1392     dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1393     dc->hotpluggable = false;
1394     k->realize = vfio_pci_igd_lpc_bridge_realize;
1395     k->class_id = PCI_CLASS_BRIDGE_ISA;
1396 }
1397 
1398 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1399     .name = "vfio-pci-igd-lpc-bridge",
1400     .parent = TYPE_PCI_DEVICE,
1401     .class_init = vfio_pci_igd_lpc_bridge_class_init,
1402     .interfaces = (InterfaceInfo[]) {
1403         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1404         { },
1405     },
1406 };
1407 
1408 static void vfio_pci_igd_register_types(void)
1409 {
1410     type_register_static(&vfio_pci_igd_lpc_bridge_info);
1411 }
1412 
1413 type_init(vfio_pci_igd_register_types)
1414 
1415 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1416                                  struct vfio_region_info *info)
1417 {
1418     PCIDevice *lpc_bridge;
1419     int ret;
1420 
1421     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1422                                  0, PCI_DEVFN(0x1f, 0));
1423     if (!lpc_bridge) {
1424         lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1425                                  PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1426     }
1427 
1428     ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1429                             ARRAY_SIZE(igd_lpc_bridge_infos));
1430     if (!ret) {
1431         trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1432     }
1433 
1434     return ret;
1435 }
1436 
1437 /*
1438  * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1439  * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1440  * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1441  * for programming the GTT.
1442  *
1443  * See linux:include/drm/i915_drm.h for shift and mask values.
1444  */
1445 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1446 {
1447     uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1448     int ggms, gen = igd_gen(vdev);
1449 
1450     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1451     ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1452     if (gen > 6) {
1453         ggms = 1 << ggms;
1454     }
1455 
1456     ggms *= MiB;
1457 
1458     return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8);
1459 }
1460 
1461 /*
1462  * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1463  * Somehow the host stolen memory range is used for this, but how the ROM gets
1464  * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1465  * reprograms the GTT through the IOBAR where we can trap it and transpose the
1466  * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1467  * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1468  * IOBAR address and data registers to detect a write sequence targeting the
1469  * GTTADR.  This code is developed by observed behavior and doesn't have a
1470  * direct spec reference, unfortunately.
1471  */
1472 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1473                                          hwaddr addr, unsigned size)
1474 {
1475     VFIOIGDQuirk *igd = opaque;
1476     VFIOPCIDevice *vdev = igd->vdev;
1477 
1478     igd->index = ~0;
1479 
1480     return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1481 }
1482 
1483 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1484                                       uint64_t data, unsigned size)
1485 {
1486     VFIOIGDQuirk *igd = opaque;
1487     VFIOPCIDevice *vdev = igd->vdev;
1488     uint64_t val = data;
1489     int gen = igd_gen(vdev);
1490 
1491     /*
1492      * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1493      * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1494      * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1495      * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1496      * to a 4k page, which we translate to a page from the VM allocated region,
1497      * pointed to by the BDSM register.  If this is not set, we fail.
1498      *
1499      * We trap writes to the full configured GTT size, but we typically only
1500      * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1501      * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1502      * write of that last entry does work, but is hopefully unnecessary since
1503      * we clear the previous GTT on initialization.
1504      */
1505     if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1506         if (gen < 8 || (igd->index % 8 == 1)) {
1507             uint32_t base;
1508 
1509             base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1510             if (!base) {
1511                 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1512                          "BIOS reserved stolen memory.  Unsupported BIOS?");
1513             }
1514 
1515             val = data - igd->bdsm + base;
1516         } else {
1517             val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1518         }
1519 
1520         trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1521                                       igd->index, data, val);
1522     }
1523 
1524     vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1525 
1526     igd->index = ~0;
1527 }
1528 
1529 static const MemoryRegionOps vfio_igd_data_quirk = {
1530     .read = vfio_igd_quirk_data_read,
1531     .write = vfio_igd_quirk_data_write,
1532     .endianness = DEVICE_LITTLE_ENDIAN,
1533 };
1534 
1535 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1536                                           hwaddr addr, unsigned size)
1537 {
1538     VFIOIGDQuirk *igd = opaque;
1539     VFIOPCIDevice *vdev = igd->vdev;
1540 
1541     igd->index = ~0;
1542 
1543     return vfio_region_read(&vdev->bars[4].region, addr, size);
1544 }
1545 
1546 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1547                                        uint64_t data, unsigned size)
1548 {
1549     VFIOIGDQuirk *igd = opaque;
1550     VFIOPCIDevice *vdev = igd->vdev;
1551 
1552     igd->index = data;
1553 
1554     vfio_region_write(&vdev->bars[4].region, addr, data, size);
1555 }
1556 
1557 static const MemoryRegionOps vfio_igd_index_quirk = {
1558     .read = vfio_igd_quirk_index_read,
1559     .write = vfio_igd_quirk_index_write,
1560     .endianness = DEVICE_LITTLE_ENDIAN,
1561 };
1562 
1563 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1564 {
1565     struct vfio_region_info *rom = NULL, *opregion = NULL,
1566                             *host = NULL, *lpc = NULL;
1567     VFIOQuirk *quirk;
1568     VFIOIGDQuirk *igd;
1569     PCIDevice *lpc_bridge;
1570     int i, ret, ggms_mb, gms_mb = 0, gen;
1571     uint64_t *bdsm_size;
1572     uint32_t gmch;
1573     uint16_t cmd_orig, cmd;
1574     Error *err = NULL;
1575 
1576     /*
1577      * This must be an Intel VGA device at address 00:02.0 for us to even
1578      * consider enabling legacy mode.  The vBIOS has dependencies on the
1579      * PCI bus address.
1580      */
1581     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1582         !vfio_is_vga(vdev) || nr != 4 ||
1583         &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1584                                        0, PCI_DEVFN(0x2, 0))) {
1585         return;
1586     }
1587 
1588     /*
1589      * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1590      * can stuff host values into, so if there's already one there and it's not
1591      * one we can hack on, legacy mode is no-go.  Sorry Q35.
1592      */
1593     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1594                                  0, PCI_DEVFN(0x1f, 0));
1595     if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1596                                            "vfio-pci-igd-lpc-bridge")) {
1597         error_report("IGD device %s cannot support legacy mode due to existing "
1598                      "devices at address 1f.0", vdev->vbasedev.name);
1599         return;
1600     }
1601 
1602     /*
1603      * IGD is not a standard, they like to change their specs often.  We
1604      * only attempt to support back to SandBridge and we hope that newer
1605      * devices maintain compatibility with generation 8.
1606      */
1607     gen = igd_gen(vdev);
1608     if (gen != 6 && gen != 8) {
1609         error_report("IGD device %s is unsupported in legacy mode, "
1610                      "try SandyBridge or newer", vdev->vbasedev.name);
1611         return;
1612     }
1613 
1614     /*
1615      * Most of what we're doing here is to enable the ROM to run, so if
1616      * there's no ROM, there's no point in setting up this quirk.
1617      * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1618      */
1619     ret = vfio_get_region_info(&vdev->vbasedev,
1620                                VFIO_PCI_ROM_REGION_INDEX, &rom);
1621     if ((ret || !rom->size) && !vdev->pdev.romfile) {
1622         error_report("IGD device %s has no ROM, legacy mode disabled",
1623                      vdev->vbasedev.name);
1624         goto out;
1625     }
1626 
1627     /*
1628      * Ignore the hotplug corner case, mark the ROM failed, we can't
1629      * create the devices we need for legacy mode in the hotplug scenario.
1630      */
1631     if (vdev->pdev.qdev.hotplugged) {
1632         error_report("IGD device %s hotplugged, ROM disabled, "
1633                      "legacy mode disabled", vdev->vbasedev.name);
1634         vdev->rom_read_failed = true;
1635         goto out;
1636     }
1637 
1638     /*
1639      * Check whether we have all the vfio device specific regions to
1640      * support legacy mode (added in Linux v4.6).  If not, bail.
1641      */
1642     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1643                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1644                         VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1645     if (ret) {
1646         error_report("IGD device %s does not support OpRegion access,"
1647                      "legacy mode disabled", vdev->vbasedev.name);
1648         goto out;
1649     }
1650 
1651     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1652                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1653                         VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1654     if (ret) {
1655         error_report("IGD device %s does not support host bridge access,"
1656                      "legacy mode disabled", vdev->vbasedev.name);
1657         goto out;
1658     }
1659 
1660     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1661                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1662                         VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1663     if (ret) {
1664         error_report("IGD device %s does not support LPC bridge access,"
1665                      "legacy mode disabled", vdev->vbasedev.name);
1666         goto out;
1667     }
1668 
1669     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1670 
1671     /*
1672      * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1673      * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1674      * but also no point in us enabling VGA if disabled in hardware.
1675      */
1676     if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1677         error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1678         error_report("IGD device %s failed to enable VGA access, "
1679                      "legacy mode disabled", vdev->vbasedev.name);
1680         goto out;
1681     }
1682 
1683     /* Create our LPC/ISA bridge */
1684     ret = vfio_pci_igd_lpc_init(vdev, lpc);
1685     if (ret) {
1686         error_report("IGD device %s failed to create LPC bridge, "
1687                      "legacy mode disabled", vdev->vbasedev.name);
1688         goto out;
1689     }
1690 
1691     /* Stuff some host values into the VM PCI host bridge */
1692     ret = vfio_pci_igd_host_init(vdev, host);
1693     if (ret) {
1694         error_report("IGD device %s failed to modify host bridge, "
1695                      "legacy mode disabled", vdev->vbasedev.name);
1696         goto out;
1697     }
1698 
1699     /* Setup OpRegion access */
1700     ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1701     if (ret) {
1702         error_append_hint(&err, "IGD legacy mode disabled\n");
1703         error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1704         goto out;
1705     }
1706 
1707     /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1708     quirk = vfio_quirk_alloc(2);
1709     igd = quirk->data = g_malloc0(sizeof(*igd));
1710     igd->vdev = vdev;
1711     igd->index = ~0;
1712     igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1713     igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */
1714 
1715     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1716                           igd, "vfio-igd-index-quirk", 4);
1717     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1718                                         0, &quirk->mem[0], 1);
1719 
1720     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1721                           igd, "vfio-igd-data-quirk", 4);
1722     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1723                                         4, &quirk->mem[1], 1);
1724 
1725     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1726 
1727     /* Determine the size of stolen memory needed for GTT */
1728     ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1729     if (gen > 6) {
1730         ggms_mb = 1 << ggms_mb;
1731     }
1732 
1733     /*
1734      * Assume we have no GMS memory, but allow it to be overrided by device
1735      * option (experimental).  The spec doesn't actually allow zero GMS when
1736      * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1737      * so let's not waste VM memory for it.
1738      */
1739     gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1740 
1741     if (vdev->igd_gms) {
1742         if (vdev->igd_gms <= 0x10) {
1743             gms_mb = vdev->igd_gms * 32;
1744             gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1745         } else {
1746             error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1747             vdev->igd_gms = 0;
1748         }
1749     }
1750 
1751     /*
1752      * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1753      * must allocate a 1MB aligned reserved memory region below 4GB with
1754      * the requested size (in bytes) for use by the Intel PCI class VGA
1755      * device at VM address 00:02.0.  The base address of this reserved
1756      * memory region must be written to the device BDSM regsiter at PCI
1757      * config offset 0x5C.
1758      */
1759     bdsm_size = g_malloc(sizeof(*bdsm_size));
1760     *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB);
1761     fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1762                     bdsm_size, sizeof(*bdsm_size));
1763 
1764     /* GMCH is read-only, emulated */
1765     pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1766     pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1767     pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1768 
1769     /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1770     pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1771     pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1772     pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1773 
1774     /*
1775      * This IOBAR gives us access to GTTADR, which allows us to write to
1776      * the GTT itself.  So let's go ahead and write zero to all the GTT
1777      * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1778      * before talking to the device.
1779      */
1780     if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1781               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1782         error_report("IGD device %s - failed to read PCI command register",
1783                      vdev->vbasedev.name);
1784     }
1785 
1786     cmd = cmd_orig | PCI_COMMAND_IO;
1787 
1788     if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1789                vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1790         error_report("IGD device %s - failed to write PCI command register",
1791                      vdev->vbasedev.name);
1792     }
1793 
1794     for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1795         vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1796         vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1797     }
1798 
1799     if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1800                vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1801         error_report("IGD device %s - failed to restore PCI command register",
1802                      vdev->vbasedev.name);
1803     }
1804 
1805     trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1806 
1807 out:
1808     g_free(rom);
1809     g_free(opregion);
1810     g_free(host);
1811     g_free(lpc);
1812 }
1813 
1814 /*
1815  * Common quirk probe entry points.
1816  */
1817 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1818 {
1819     vfio_vga_probe_ati_3c3_quirk(vdev);
1820     vfio_vga_probe_nvidia_3d0_quirk(vdev);
1821 }
1822 
1823 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1824 {
1825     VFIOQuirk *quirk;
1826     int i, j;
1827 
1828     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1829         QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1830             for (j = 0; j < quirk->nr_mem; j++) {
1831                 memory_region_del_subregion(&vdev->vga->region[i].mem,
1832                                             &quirk->mem[j]);
1833             }
1834         }
1835     }
1836 }
1837 
1838 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1839 {
1840     int i, j;
1841 
1842     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1843         while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1844             VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1845             QLIST_REMOVE(quirk, next);
1846             for (j = 0; j < quirk->nr_mem; j++) {
1847                 object_unparent(OBJECT(&quirk->mem[j]));
1848             }
1849             g_free(quirk->mem);
1850             g_free(quirk->data);
1851             g_free(quirk);
1852         }
1853     }
1854 }
1855 
1856 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1857 {
1858     vfio_probe_ati_bar4_quirk(vdev, nr);
1859     vfio_probe_ati_bar2_quirk(vdev, nr);
1860     vfio_probe_nvidia_bar5_quirk(vdev, nr);
1861     vfio_probe_nvidia_bar0_quirk(vdev, nr);
1862     vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1863     vfio_probe_igd_bar4_quirk(vdev, nr);
1864 }
1865 
1866 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1867 {
1868     VFIOBAR *bar = &vdev->bars[nr];
1869     VFIOQuirk *quirk;
1870     int i;
1871 
1872     QLIST_FOREACH(quirk, &bar->quirks, next) {
1873         while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1874             vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1875         }
1876 
1877         for (i = 0; i < quirk->nr_mem; i++) {
1878             memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1879         }
1880     }
1881 }
1882 
1883 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1884 {
1885     VFIOBAR *bar = &vdev->bars[nr];
1886     int i;
1887 
1888     while (!QLIST_EMPTY(&bar->quirks)) {
1889         VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1890         QLIST_REMOVE(quirk, next);
1891         for (i = 0; i < quirk->nr_mem; i++) {
1892             object_unparent(OBJECT(&quirk->mem[i]));
1893         }
1894         g_free(quirk->mem);
1895         g_free(quirk->data);
1896         g_free(quirk);
1897     }
1898 }
1899 
1900 /*
1901  * Reset quirks
1902  */
1903 void vfio_quirk_reset(VFIOPCIDevice *vdev)
1904 {
1905     int i;
1906 
1907     for (i = 0; i < PCI_ROM_SLOT; i++) {
1908         VFIOQuirk *quirk;
1909         VFIOBAR *bar = &vdev->bars[i];
1910 
1911         QLIST_FOREACH(quirk, &bar->quirks, next) {
1912             if (quirk->reset) {
1913                 quirk->reset(vdev, quirk);
1914             }
1915         }
1916     }
1917 }
1918 
1919 /*
1920  * AMD Radeon PCI config reset, based on Linux:
1921  *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1922  *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1923  *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1924  *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1925  * IDs: include/drm/drm_pciids.h
1926  * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1927  *
1928  * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1929  * hardware that should be fixed on future ASICs.  The symptom of this is that
1930  * once the accerlated driver loads, Windows guests will bsod on subsequent
1931  * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1932  * work around this, we do an AMD specific PCI config reset, followed by an SMC
1933  * reset.  The PCI config reset only works if SMC firmware is running, so we
1934  * have a dependency on the state of the device as to whether this reset will
1935  * be effective.  There are still cases where we won't be able to kick the
1936  * device into working, but this greatly improves the usability overall.  The
1937  * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1938  * poking is largely ASIC specific.
1939  */
1940 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1941 {
1942     uint32_t clk, pc_c;
1943 
1944     /*
1945      * Registers 200h and 204h are index and data registers for accessing
1946      * indirect configuration registers within the device.
1947      */
1948     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1949     clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1950     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1951     pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1952 
1953     return (!(clk & 1) && (0x20100 <= pc_c));
1954 }
1955 
1956 /*
1957  * The scope of a config reset is controlled by a mode bit in the misc register
1958  * and a fuse, exposed as a bit in another register.  The fuse is the default
1959  * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1960  * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1961  * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1962  * to flip the value of the bit in the misc register.
1963  */
1964 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1965 {
1966     uint32_t misc, fuse;
1967     bool a, b;
1968 
1969     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1970     fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1971     b = fuse & 64;
1972 
1973     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1974     misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1975     a = misc & 2;
1976 
1977     if (a == b) {
1978         vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1979         vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1980     }
1981 }
1982 
1983 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1984 {
1985     PCIDevice *pdev = &vdev->pdev;
1986     int i, ret = 0;
1987     uint32_t data;
1988 
1989     /* Defer to a kernel implemented reset */
1990     if (vdev->vbasedev.reset_works) {
1991         trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1992         return -ENODEV;
1993     }
1994 
1995     /* Enable only memory BAR access */
1996     vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1997 
1998     /* Reset only works if SMC firmware is loaded and running */
1999     if (!vfio_radeon_smc_is_running(vdev)) {
2000         ret = -EINVAL;
2001         trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
2002         goto out;
2003     }
2004 
2005     /* Make sure only the GFX function is reset */
2006     vfio_radeon_set_gfx_only_reset(vdev);
2007 
2008     /* AMD PCI config reset */
2009     vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
2010     usleep(100);
2011 
2012     /* Read back the memory size to make sure we're out of reset */
2013     for (i = 0; i < 100000; i++) {
2014         if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
2015             goto reset_smc;
2016         }
2017         usleep(1);
2018     }
2019 
2020     trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
2021 
2022 reset_smc:
2023     /* Reset SMC */
2024     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
2025     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2026     data |= 1;
2027     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2028 
2029     /* Disable SMC clock */
2030     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
2031     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2032     data |= 1;
2033     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2034 
2035     trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
2036 
2037 out:
2038     /* Restore PCI command register */
2039     vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
2040 
2041     return ret;
2042 }
2043 
2044 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2045 {
2046     switch (vdev->vendor_id) {
2047     case 0x1002:
2048         switch (vdev->device_id) {
2049         /* Bonaire */
2050         case 0x6649: /* Bonaire [FirePro W5100] */
2051         case 0x6650:
2052         case 0x6651:
2053         case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2054         case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2055         case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2056         /* Hawaii */
2057         case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2058         case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2059         case 0x67A2:
2060         case 0x67A8:
2061         case 0x67A9:
2062         case 0x67AA:
2063         case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2064         case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2065         case 0x67B8:
2066         case 0x67B9:
2067         case 0x67BA:
2068         case 0x67BE:
2069             vdev->resetfn = vfio_radeon_reset;
2070             trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2071             break;
2072         }
2073         break;
2074     }
2075 }
2076 
2077 /*
2078  * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2079  * devices as a member of a clique.  Devices within the same clique ID
2080  * are capable of direct P2P.  It's the user's responsibility that this
2081  * is correct.  The spec says that this may reside at any unused config
2082  * offset, but reserves and recommends hypervisors place this at C8h.
2083  * The spec also states that the hypervisor should place this capability
2084  * at the end of the capability list, thus next is defined as 0h.
2085  *
2086  * +----------------+----------------+----------------+----------------+
2087  * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  |
2088  * +----------------+----------------+----------------+----------------+
2089  * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        |
2090  * +---------------------------------+---------------------------------+
2091  *
2092  * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2093  */
2094 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2095                                        const char *name, void *opaque,
2096                                        Error **errp)
2097 {
2098     DeviceState *dev = DEVICE(obj);
2099     Property *prop = opaque;
2100     uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2101 
2102     visit_type_uint8(v, name, ptr, errp);
2103 }
2104 
2105 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2106                                        const char *name, void *opaque,
2107                                        Error **errp)
2108 {
2109     DeviceState *dev = DEVICE(obj);
2110     Property *prop = opaque;
2111     uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2112     Error *local_err = NULL;
2113 
2114     if (dev->realized) {
2115         qdev_prop_set_after_realize(dev, name, errp);
2116         return;
2117     }
2118 
2119     visit_type_uint8(v, name, &value, &local_err);
2120     if (local_err) {
2121         error_propagate(errp, local_err);
2122         return;
2123     }
2124 
2125     if (value & ~0xF) {
2126         error_setg(errp, "Property %s: valid range 0-15", name);
2127         return;
2128     }
2129 
2130     *ptr = value;
2131 }
2132 
2133 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2134     .name = "uint4",
2135     .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2136     .get = get_nv_gpudirect_clique_id,
2137     .set = set_nv_gpudirect_clique_id,
2138 };
2139 
2140 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2141 {
2142     PCIDevice *pdev = &vdev->pdev;
2143     int ret, pos = 0xC8;
2144 
2145     if (vdev->nv_gpudirect_clique == 0xFF) {
2146         return 0;
2147     }
2148 
2149     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2150         error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2151         return -EINVAL;
2152     }
2153 
2154     if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2155         PCI_BASE_CLASS_DISPLAY) {
2156         error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2157         return -EINVAL;
2158     }
2159 
2160     ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2161     if (ret < 0) {
2162         error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2163         return ret;
2164     }
2165 
2166     memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2167     pos += PCI_CAP_FLAGS;
2168     pci_set_byte(pdev->config + pos++, 8);
2169     pci_set_byte(pdev->config + pos++, 'P');
2170     pci_set_byte(pdev->config + pos++, '2');
2171     pci_set_byte(pdev->config + pos++, 'P');
2172     pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2173     pci_set_byte(pdev->config + pos, 0);
2174 
2175     return 0;
2176 }
2177 
2178 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2179 {
2180     int ret;
2181 
2182     ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2183     if (ret) {
2184         return ret;
2185     }
2186 
2187     return 0;
2188 }
2189 
2190 static void vfio_pci_nvlink2_get_tgt(Object *obj, Visitor *v,
2191                                      const char *name,
2192                                      void *opaque, Error **errp)
2193 {
2194     uint64_t tgt = (uintptr_t) opaque;
2195     visit_type_uint64(v, name, &tgt, errp);
2196 }
2197 
2198 static void vfio_pci_nvlink2_get_link_speed(Object *obj, Visitor *v,
2199                                                  const char *name,
2200                                                  void *opaque, Error **errp)
2201 {
2202     uint32_t link_speed = (uint32_t)(uintptr_t) opaque;
2203     visit_type_uint32(v, name, &link_speed, errp);
2204 }
2205 
2206 int vfio_pci_nvidia_v100_ram_init(VFIOPCIDevice *vdev, Error **errp)
2207 {
2208     int ret;
2209     void *p;
2210     struct vfio_region_info *nv2reg = NULL;
2211     struct vfio_info_cap_header *hdr;
2212     struct vfio_region_info_cap_nvlink2_ssatgt *cap;
2213     VFIOQuirk *quirk;
2214 
2215     ret = vfio_get_dev_region_info(&vdev->vbasedev,
2216                                    VFIO_REGION_TYPE_PCI_VENDOR_TYPE |
2217                                    PCI_VENDOR_ID_NVIDIA,
2218                                    VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM,
2219                                    &nv2reg);
2220     if (ret) {
2221         return ret;
2222     }
2223 
2224     hdr = vfio_get_region_info_cap(nv2reg, VFIO_REGION_INFO_CAP_NVLINK2_SSATGT);
2225     if (!hdr) {
2226         ret = -ENODEV;
2227         goto free_exit;
2228     }
2229     cap = (void *) hdr;
2230 
2231     p = mmap(NULL, nv2reg->size, PROT_READ | PROT_WRITE | PROT_EXEC,
2232              MAP_SHARED, vdev->vbasedev.fd, nv2reg->offset);
2233     if (p == MAP_FAILED) {
2234         ret = -errno;
2235         goto free_exit;
2236     }
2237 
2238     quirk = vfio_quirk_alloc(1);
2239     memory_region_init_ram_ptr(&quirk->mem[0], OBJECT(vdev), "nvlink2-mr",
2240                                nv2reg->size, p);
2241     QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next);
2242 
2243     object_property_add(OBJECT(vdev), "nvlink2-tgt", "uint64",
2244                         vfio_pci_nvlink2_get_tgt, NULL, NULL,
2245                         (void *) (uintptr_t) cap->tgt, NULL);
2246     trace_vfio_pci_nvidia_gpu_setup_quirk(vdev->vbasedev.name, cap->tgt,
2247                                           nv2reg->size);
2248 free_exit:
2249     g_free(nv2reg);
2250 
2251     return ret;
2252 }
2253 
2254 int vfio_pci_nvlink2_init(VFIOPCIDevice *vdev, Error **errp)
2255 {
2256     int ret;
2257     void *p;
2258     struct vfio_region_info *atsdreg = NULL;
2259     struct vfio_info_cap_header *hdr;
2260     struct vfio_region_info_cap_nvlink2_ssatgt *captgt;
2261     struct vfio_region_info_cap_nvlink2_lnkspd *capspeed;
2262     VFIOQuirk *quirk;
2263 
2264     ret = vfio_get_dev_region_info(&vdev->vbasedev,
2265                                    VFIO_REGION_TYPE_PCI_VENDOR_TYPE |
2266                                    PCI_VENDOR_ID_IBM,
2267                                    VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD,
2268                                    &atsdreg);
2269     if (ret) {
2270         return ret;
2271     }
2272 
2273     hdr = vfio_get_region_info_cap(atsdreg,
2274                                    VFIO_REGION_INFO_CAP_NVLINK2_SSATGT);
2275     if (!hdr) {
2276         ret = -ENODEV;
2277         goto free_exit;
2278     }
2279     captgt = (void *) hdr;
2280 
2281     hdr = vfio_get_region_info_cap(atsdreg,
2282                                    VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD);
2283     if (!hdr) {
2284         ret = -ENODEV;
2285         goto free_exit;
2286     }
2287     capspeed = (void *) hdr;
2288 
2289     /* Some NVLink bridges may not have assigned ATSD */
2290     if (atsdreg->size) {
2291         p = mmap(NULL, atsdreg->size, PROT_READ | PROT_WRITE | PROT_EXEC,
2292                  MAP_SHARED, vdev->vbasedev.fd, atsdreg->offset);
2293         if (p == MAP_FAILED) {
2294             ret = -errno;
2295             goto free_exit;
2296         }
2297 
2298         quirk = vfio_quirk_alloc(1);
2299         memory_region_init_ram_device_ptr(&quirk->mem[0], OBJECT(vdev),
2300                                           "nvlink2-atsd-mr", atsdreg->size, p);
2301         QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next);
2302     }
2303 
2304     object_property_add(OBJECT(vdev), "nvlink2-tgt", "uint64",
2305                         vfio_pci_nvlink2_get_tgt, NULL, NULL,
2306                         (void *) (uintptr_t) captgt->tgt, NULL);
2307     trace_vfio_pci_nvlink2_setup_quirk_ssatgt(vdev->vbasedev.name, captgt->tgt,
2308                                               atsdreg->size);
2309 
2310     object_property_add(OBJECT(vdev), "nvlink2-link-speed", "uint32",
2311                         vfio_pci_nvlink2_get_link_speed, NULL, NULL,
2312                         (void *) (uintptr_t) capspeed->link_speed, NULL);
2313     trace_vfio_pci_nvlink2_setup_quirk_lnkspd(vdev->vbasedev.name,
2314                                               capspeed->link_speed);
2315 free_exit:
2316     g_free(atsdreg);
2317 
2318     return ret;
2319 }
2320