xref: /openbmc/qemu/hw/vfio/pci-quirks.c (revision 8f3cd250)
1 /*
2  * device quirks for PCI devices
3  *
4  * Copyright Red Hat, Inc. 2012-2015
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu/units.h"
15 #include "qemu/error-report.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/range.h"
18 #include "qapi/error.h"
19 #include "qapi/visitor.h"
20 #include <sys/ioctl.h>
21 #include "hw/nvram/fw_cfg.h"
22 #include "pci.h"
23 #include "trace.h"
24 
25 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
26 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
27 {
28     return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
29            (device == PCI_ANY_ID || device == vdev->device_id);
30 }
31 
32 static bool vfio_is_vga(VFIOPCIDevice *vdev)
33 {
34     PCIDevice *pdev = &vdev->pdev;
35     uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
36 
37     return class == PCI_CLASS_DISPLAY_VGA;
38 }
39 
40 /*
41  * List of device ids/vendor ids for which to disable
42  * option rom loading. This avoids the guest hangs during rom
43  * execution as noticed with the BCM 57810 card for lack of a
44  * more better way to handle such issues.
45  * The  user can still override by specifying a romfile or
46  * rombar=1.
47  * Please see https://bugs.launchpad.net/qemu/+bug/1284874
48  * for an analysis of the 57810 card hang. When adding
49  * a new vendor id/device id combination below, please also add
50  * your card/environment details and information that could
51  * help in debugging to the bug tracking this issue
52  */
53 static const struct {
54     uint32_t vendor;
55     uint32_t device;
56 } romblacklist[] = {
57     { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
58 };
59 
60 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
61 {
62     int i;
63 
64     for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
65         if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
66             trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
67                                              romblacklist[i].vendor,
68                                              romblacklist[i].device);
69             return true;
70         }
71     }
72     return false;
73 }
74 
75 /*
76  * Device specific region quirks (mostly backdoors to PCI config space)
77  */
78 
79 /*
80  * The generic window quirks operate on an address and data register,
81  * vfio_generic_window_address_quirk handles the address register and
82  * vfio_generic_window_data_quirk handles the data register.  These ops
83  * pass reads and writes through to hardware until a value matching the
84  * stored address match/mask is written.  When this occurs, the data
85  * register access emulated PCI config space for the device rather than
86  * passing through accesses.  This enables devices where PCI config space
87  * is accessible behind a window register to maintain the virtualization
88  * provided through vfio.
89  */
90 typedef struct VFIOConfigWindowMatch {
91     uint32_t match;
92     uint32_t mask;
93 } VFIOConfigWindowMatch;
94 
95 typedef struct VFIOConfigWindowQuirk {
96     struct VFIOPCIDevice *vdev;
97 
98     uint32_t address_val;
99 
100     uint32_t address_offset;
101     uint32_t data_offset;
102 
103     bool window_enabled;
104     uint8_t bar;
105 
106     MemoryRegion *addr_mem;
107     MemoryRegion *data_mem;
108 
109     uint32_t nr_matches;
110     VFIOConfigWindowMatch matches[];
111 } VFIOConfigWindowQuirk;
112 
113 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
114                                                        hwaddr addr,
115                                                        unsigned size)
116 {
117     VFIOConfigWindowQuirk *window = opaque;
118     VFIOPCIDevice *vdev = window->vdev;
119 
120     return vfio_region_read(&vdev->bars[window->bar].region,
121                             addr + window->address_offset, size);
122 }
123 
124 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
125                                                     uint64_t data,
126                                                     unsigned size)
127 {
128     VFIOConfigWindowQuirk *window = opaque;
129     VFIOPCIDevice *vdev = window->vdev;
130     int i;
131 
132     window->window_enabled = false;
133 
134     vfio_region_write(&vdev->bars[window->bar].region,
135                       addr + window->address_offset, data, size);
136 
137     for (i = 0; i < window->nr_matches; i++) {
138         if ((data & ~window->matches[i].mask) == window->matches[i].match) {
139             window->window_enabled = true;
140             window->address_val = data & window->matches[i].mask;
141             trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
142                                     memory_region_name(window->addr_mem), data);
143             break;
144         }
145     }
146 }
147 
148 static const MemoryRegionOps vfio_generic_window_address_quirk = {
149     .read = vfio_generic_window_quirk_address_read,
150     .write = vfio_generic_window_quirk_address_write,
151     .endianness = DEVICE_LITTLE_ENDIAN,
152 };
153 
154 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
155                                                     hwaddr addr, unsigned size)
156 {
157     VFIOConfigWindowQuirk *window = opaque;
158     VFIOPCIDevice *vdev = window->vdev;
159     uint64_t data;
160 
161     /* Always read data reg, discard if window enabled */
162     data = vfio_region_read(&vdev->bars[window->bar].region,
163                             addr + window->data_offset, size);
164 
165     if (window->window_enabled) {
166         data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
167         trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
168                                     memory_region_name(window->data_mem), data);
169     }
170 
171     return data;
172 }
173 
174 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
175                                                  uint64_t data, unsigned size)
176 {
177     VFIOConfigWindowQuirk *window = opaque;
178     VFIOPCIDevice *vdev = window->vdev;
179 
180     if (window->window_enabled) {
181         vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
182         trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
183                                     memory_region_name(window->data_mem), data);
184         return;
185     }
186 
187     vfio_region_write(&vdev->bars[window->bar].region,
188                       addr + window->data_offset, data, size);
189 }
190 
191 static const MemoryRegionOps vfio_generic_window_data_quirk = {
192     .read = vfio_generic_window_quirk_data_read,
193     .write = vfio_generic_window_quirk_data_write,
194     .endianness = DEVICE_LITTLE_ENDIAN,
195 };
196 
197 /*
198  * The generic mirror quirk handles devices which expose PCI config space
199  * through a region within a BAR.  When enabled, reads and writes are
200  * redirected through to emulated PCI config space.  XXX if PCI config space
201  * used memory regions, this could just be an alias.
202  */
203 typedef struct VFIOConfigMirrorQuirk {
204     struct VFIOPCIDevice *vdev;
205     uint32_t offset;
206     uint8_t bar;
207     MemoryRegion *mem;
208     uint8_t data[];
209 } VFIOConfigMirrorQuirk;
210 
211 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
212                                                hwaddr addr, unsigned size)
213 {
214     VFIOConfigMirrorQuirk *mirror = opaque;
215     VFIOPCIDevice *vdev = mirror->vdev;
216     uint64_t data;
217 
218     /* Read and discard in case the hardware cares */
219     (void)vfio_region_read(&vdev->bars[mirror->bar].region,
220                            addr + mirror->offset, size);
221 
222     data = vfio_pci_read_config(&vdev->pdev, addr, size);
223     trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
224                                          memory_region_name(mirror->mem),
225                                          addr, data);
226     return data;
227 }
228 
229 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
230                                             uint64_t data, unsigned size)
231 {
232     VFIOConfigMirrorQuirk *mirror = opaque;
233     VFIOPCIDevice *vdev = mirror->vdev;
234 
235     vfio_pci_write_config(&vdev->pdev, addr, data, size);
236     trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
237                                           memory_region_name(mirror->mem),
238                                           addr, data);
239 }
240 
241 static const MemoryRegionOps vfio_generic_mirror_quirk = {
242     .read = vfio_generic_quirk_mirror_read,
243     .write = vfio_generic_quirk_mirror_write,
244     .endianness = DEVICE_LITTLE_ENDIAN,
245 };
246 
247 /* Is range1 fully contained within range2?  */
248 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
249                                  uint64_t first2, uint64_t len2) {
250     return (first1 >= first2 && first1 + len1 <= first2 + len2);
251 }
252 
253 #define PCI_VENDOR_ID_ATI               0x1002
254 
255 /*
256  * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
257  * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
258  * BAR4 (older cards like the X550 used BAR1, but we don't care to support
259  * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
260  * I/O port BAR address.  Originally this was coded to return the virtual BAR
261  * address only if the physical register read returns the actual BAR address,
262  * but users have reported greater success if we return the virtual address
263  * unconditionally.
264  */
265 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
266                                         hwaddr addr, unsigned size)
267 {
268     VFIOPCIDevice *vdev = opaque;
269     uint64_t data = vfio_pci_read_config(&vdev->pdev,
270                                          PCI_BASE_ADDRESS_4 + 1, size);
271 
272     trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
273 
274     return data;
275 }
276 
277 static const MemoryRegionOps vfio_ati_3c3_quirk = {
278     .read = vfio_ati_3c3_quirk_read,
279     .endianness = DEVICE_LITTLE_ENDIAN,
280 };
281 
282 static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
283 {
284     VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
285     QLIST_INIT(&quirk->ioeventfds);
286     quirk->mem = g_new0(MemoryRegion, nr_mem);
287     quirk->nr_mem = nr_mem;
288 
289     return quirk;
290 }
291 
292 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
293 {
294     QLIST_REMOVE(ioeventfd, next);
295     memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
296                               true, ioeventfd->data, &ioeventfd->e);
297 
298     if (ioeventfd->vfio) {
299         struct vfio_device_ioeventfd vfio_ioeventfd;
300 
301         vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
302         vfio_ioeventfd.flags = ioeventfd->size;
303         vfio_ioeventfd.data = ioeventfd->data;
304         vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
305                                 ioeventfd->region_addr;
306         vfio_ioeventfd.fd = -1;
307 
308         if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
309             error_report("Failed to remove vfio ioeventfd for %s+0x%"
310                          HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
311                          memory_region_name(ioeventfd->mr), ioeventfd->addr,
312                          ioeventfd->size, ioeventfd->data);
313         }
314     } else {
315         qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
316                             NULL, NULL, NULL);
317     }
318 
319     event_notifier_cleanup(&ioeventfd->e);
320     trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
321                               (uint64_t)ioeventfd->addr, ioeventfd->size,
322                               ioeventfd->data);
323     g_free(ioeventfd);
324 }
325 
326 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
327 {
328     VFIOIOEventFD *ioeventfd, *tmp;
329 
330     QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
331         if (ioeventfd->dynamic) {
332             vfio_ioeventfd_exit(vdev, ioeventfd);
333         }
334     }
335 }
336 
337 static void vfio_ioeventfd_handler(void *opaque)
338 {
339     VFIOIOEventFD *ioeventfd = opaque;
340 
341     if (event_notifier_test_and_clear(&ioeventfd->e)) {
342         vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
343                           ioeventfd->data, ioeventfd->size);
344         trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
345                                      (uint64_t)ioeventfd->addr, ioeventfd->size,
346                                      ioeventfd->data);
347     }
348 }
349 
350 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
351                                           MemoryRegion *mr, hwaddr addr,
352                                           unsigned size, uint64_t data,
353                                           VFIORegion *region,
354                                           hwaddr region_addr, bool dynamic)
355 {
356     VFIOIOEventFD *ioeventfd;
357 
358     if (vdev->no_kvm_ioeventfd) {
359         return NULL;
360     }
361 
362     ioeventfd = g_malloc0(sizeof(*ioeventfd));
363 
364     if (event_notifier_init(&ioeventfd->e, 0)) {
365         g_free(ioeventfd);
366         return NULL;
367     }
368 
369     /*
370      * MemoryRegion and relative offset, plus additional ioeventfd setup
371      * parameters for configuring and later tearing down KVM ioeventfd.
372      */
373     ioeventfd->mr = mr;
374     ioeventfd->addr = addr;
375     ioeventfd->size = size;
376     ioeventfd->data = data;
377     ioeventfd->dynamic = dynamic;
378     /*
379      * VFIORegion and relative offset for implementing the userspace
380      * handler.  data & size fields shared for both uses.
381      */
382     ioeventfd->region = region;
383     ioeventfd->region_addr = region_addr;
384 
385     if (!vdev->no_vfio_ioeventfd) {
386         struct vfio_device_ioeventfd vfio_ioeventfd;
387 
388         vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
389         vfio_ioeventfd.flags = ioeventfd->size;
390         vfio_ioeventfd.data = ioeventfd->data;
391         vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
392                                 ioeventfd->region_addr;
393         vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
394 
395         ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
396                                  VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
397     }
398 
399     if (!ioeventfd->vfio) {
400         qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
401                             vfio_ioeventfd_handler, NULL, ioeventfd);
402     }
403 
404     memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
405                               true, ioeventfd->data, &ioeventfd->e);
406     trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
407                               size, data, ioeventfd->vfio);
408 
409     return ioeventfd;
410 }
411 
412 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
413 {
414     VFIOQuirk *quirk;
415 
416     /*
417      * As long as the BAR is >= 256 bytes it will be aligned such that the
418      * lower byte is always zero.  Filter out anything else, if it exists.
419      */
420     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
421         !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
422         return;
423     }
424 
425     quirk = vfio_quirk_alloc(1);
426 
427     memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
428                           "vfio-ati-3c3-quirk", 1);
429     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
430                                 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
431 
432     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
433                       quirk, next);
434 
435     trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
436 }
437 
438 /*
439  * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
440  * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
441  * the MMIO space directly, but a window to this space is provided through
442  * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
443  * data register.  When the address is programmed to a range of 0x4000-0x4fff
444  * PCI configuration space is available.  Experimentation seems to indicate
445  * that read-only may be provided by hardware.
446  */
447 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
448 {
449     VFIOQuirk *quirk;
450     VFIOConfigWindowQuirk *window;
451 
452     /* This windows doesn't seem to be used except by legacy VGA code */
453     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
454         !vdev->vga || nr != 4) {
455         return;
456     }
457 
458     quirk = vfio_quirk_alloc(2);
459     window = quirk->data = g_malloc0(sizeof(*window) +
460                                      sizeof(VFIOConfigWindowMatch));
461     window->vdev = vdev;
462     window->address_offset = 0;
463     window->data_offset = 4;
464     window->nr_matches = 1;
465     window->matches[0].match = 0x4000;
466     window->matches[0].mask = vdev->config_size - 1;
467     window->bar = nr;
468     window->addr_mem = &quirk->mem[0];
469     window->data_mem = &quirk->mem[1];
470 
471     memory_region_init_io(window->addr_mem, OBJECT(vdev),
472                           &vfio_generic_window_address_quirk, window,
473                           "vfio-ati-bar4-window-address-quirk", 4);
474     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
475                                         window->address_offset,
476                                         window->addr_mem, 1);
477 
478     memory_region_init_io(window->data_mem, OBJECT(vdev),
479                           &vfio_generic_window_data_quirk, window,
480                           "vfio-ati-bar4-window-data-quirk", 4);
481     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
482                                         window->data_offset,
483                                         window->data_mem, 1);
484 
485     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
486 
487     trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
488 }
489 
490 /*
491  * Trap the BAR2 MMIO mirror to config space as well.
492  */
493 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
494 {
495     VFIOQuirk *quirk;
496     VFIOConfigMirrorQuirk *mirror;
497 
498     /* Only enable on newer devices where BAR2 is 64bit */
499     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
500         !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
501         return;
502     }
503 
504     quirk = vfio_quirk_alloc(1);
505     mirror = quirk->data = g_malloc0(sizeof(*mirror));
506     mirror->mem = quirk->mem;
507     mirror->vdev = vdev;
508     mirror->offset = 0x4000;
509     mirror->bar = nr;
510 
511     memory_region_init_io(mirror->mem, OBJECT(vdev),
512                           &vfio_generic_mirror_quirk, mirror,
513                           "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
514     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
515                                         mirror->offset, mirror->mem, 1);
516 
517     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
518 
519     trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
520 }
521 
522 /*
523  * Older ATI/AMD cards like the X550 have a similar window to that above.
524  * I/O port BAR1 provides a window to a mirror of PCI config space located
525  * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
526  * note it for future reference.
527  */
528 
529 #define PCI_VENDOR_ID_NVIDIA                    0x10de
530 
531 /*
532  * Nvidia has several different methods to get to config space, the
533  * nouveu project has several of these documented here:
534  * https://github.com/pathscale/envytools/tree/master/hwdocs
535  *
536  * The first quirk is actually not documented in envytools and is found
537  * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
538  * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
539  * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
540  * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
541  * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
542  * is written for a write to 0x3d4.  The BAR0 offset is then accessible
543  * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
544  * that use the I/O port BAR5 window but it doesn't hurt to leave it.
545  */
546 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
547 static const char *nv3d0_states[] = { "NONE", "SELECT",
548                                       "WINDOW", "READ", "WRITE" };
549 
550 typedef struct VFIONvidia3d0Quirk {
551     VFIOPCIDevice *vdev;
552     VFIONvidia3d0State state;
553     uint32_t offset;
554 } VFIONvidia3d0Quirk;
555 
556 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
557                                            hwaddr addr, unsigned size)
558 {
559     VFIONvidia3d0Quirk *quirk = opaque;
560     VFIOPCIDevice *vdev = quirk->vdev;
561 
562     quirk->state = NONE;
563 
564     return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
565                          addr + 0x14, size);
566 }
567 
568 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
569                                         uint64_t data, unsigned size)
570 {
571     VFIONvidia3d0Quirk *quirk = opaque;
572     VFIOPCIDevice *vdev = quirk->vdev;
573     VFIONvidia3d0State old_state = quirk->state;
574 
575     quirk->state = NONE;
576 
577     switch (data) {
578     case 0x338:
579         if (old_state == NONE) {
580             quirk->state = SELECT;
581             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
582                                               nv3d0_states[quirk->state]);
583         }
584         break;
585     case 0x538:
586         if (old_state == WINDOW) {
587             quirk->state = READ;
588             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
589                                               nv3d0_states[quirk->state]);
590         }
591         break;
592     case 0x738:
593         if (old_state == WINDOW) {
594             quirk->state = WRITE;
595             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
596                                               nv3d0_states[quirk->state]);
597         }
598         break;
599     }
600 
601     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
602                    addr + 0x14, data, size);
603 }
604 
605 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
606     .read = vfio_nvidia_3d4_quirk_read,
607     .write = vfio_nvidia_3d4_quirk_write,
608     .endianness = DEVICE_LITTLE_ENDIAN,
609 };
610 
611 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
612                                            hwaddr addr, unsigned size)
613 {
614     VFIONvidia3d0Quirk *quirk = opaque;
615     VFIOPCIDevice *vdev = quirk->vdev;
616     VFIONvidia3d0State old_state = quirk->state;
617     uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
618                                   addr + 0x10, size);
619 
620     quirk->state = NONE;
621 
622     if (old_state == READ &&
623         (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
624         uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
625 
626         data = vfio_pci_read_config(&vdev->pdev, offset, size);
627         trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
628                                          offset, size, data);
629     }
630 
631     return data;
632 }
633 
634 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
635                                         uint64_t data, unsigned size)
636 {
637     VFIONvidia3d0Quirk *quirk = opaque;
638     VFIOPCIDevice *vdev = quirk->vdev;
639     VFIONvidia3d0State old_state = quirk->state;
640 
641     quirk->state = NONE;
642 
643     if (old_state == SELECT) {
644         quirk->offset = (uint32_t)data;
645         quirk->state = WINDOW;
646         trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
647                                           nv3d0_states[quirk->state]);
648     } else if (old_state == WRITE) {
649         if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
650             uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
651 
652             vfio_pci_write_config(&vdev->pdev, offset, data, size);
653             trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
654                                               offset, data, size);
655             return;
656         }
657     }
658 
659     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
660                    addr + 0x10, data, size);
661 }
662 
663 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
664     .read = vfio_nvidia_3d0_quirk_read,
665     .write = vfio_nvidia_3d0_quirk_write,
666     .endianness = DEVICE_LITTLE_ENDIAN,
667 };
668 
669 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
670 {
671     VFIOQuirk *quirk;
672     VFIONvidia3d0Quirk *data;
673 
674     if (vdev->no_geforce_quirks ||
675         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
676         !vdev->bars[1].region.size) {
677         return;
678     }
679 
680     quirk = vfio_quirk_alloc(2);
681     quirk->data = data = g_malloc0(sizeof(*data));
682     data->vdev = vdev;
683 
684     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
685                           data, "vfio-nvidia-3d4-quirk", 2);
686     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
687                                 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
688 
689     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
690                           data, "vfio-nvidia-3d0-quirk", 2);
691     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
692                                 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
693 
694     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
695                       quirk, next);
696 
697     trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
698 }
699 
700 /*
701  * The second quirk is documented in envytools.  The I/O port BAR5 is just
702  * a set of address/data ports to the MMIO BARs.  The BAR we care about is
703  * again BAR0.  This backdoor is apparently a bit newer than the one above
704  * so we need to not only trap 256 bytes @0x1800, but all of PCI config
705  * space, including extended space is available at the 4k @0x88000.
706  */
707 typedef struct VFIONvidiaBAR5Quirk {
708     uint32_t master;
709     uint32_t enable;
710     MemoryRegion *addr_mem;
711     MemoryRegion *data_mem;
712     bool enabled;
713     VFIOConfigWindowQuirk window; /* last for match data */
714 } VFIONvidiaBAR5Quirk;
715 
716 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
717 {
718     VFIOPCIDevice *vdev = bar5->window.vdev;
719 
720     if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
721         return;
722     }
723 
724     bar5->enabled = !bar5->enabled;
725     trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
726                                        bar5->enabled ?  "Enable" : "Disable");
727     memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
728     memory_region_set_enabled(bar5->data_mem, bar5->enabled);
729 }
730 
731 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
732                                                    hwaddr addr, unsigned size)
733 {
734     VFIONvidiaBAR5Quirk *bar5 = opaque;
735     VFIOPCIDevice *vdev = bar5->window.vdev;
736 
737     return vfio_region_read(&vdev->bars[5].region, addr, size);
738 }
739 
740 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
741                                                 uint64_t data, unsigned size)
742 {
743     VFIONvidiaBAR5Quirk *bar5 = opaque;
744     VFIOPCIDevice *vdev = bar5->window.vdev;
745 
746     vfio_region_write(&vdev->bars[5].region, addr, data, size);
747 
748     bar5->master = data;
749     vfio_nvidia_bar5_enable(bar5);
750 }
751 
752 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
753     .read = vfio_nvidia_bar5_quirk_master_read,
754     .write = vfio_nvidia_bar5_quirk_master_write,
755     .endianness = DEVICE_LITTLE_ENDIAN,
756 };
757 
758 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
759                                                    hwaddr addr, unsigned size)
760 {
761     VFIONvidiaBAR5Quirk *bar5 = opaque;
762     VFIOPCIDevice *vdev = bar5->window.vdev;
763 
764     return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
765 }
766 
767 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
768                                                 uint64_t data, unsigned size)
769 {
770     VFIONvidiaBAR5Quirk *bar5 = opaque;
771     VFIOPCIDevice *vdev = bar5->window.vdev;
772 
773     vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
774 
775     bar5->enable = data;
776     vfio_nvidia_bar5_enable(bar5);
777 }
778 
779 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
780     .read = vfio_nvidia_bar5_quirk_enable_read,
781     .write = vfio_nvidia_bar5_quirk_enable_write,
782     .endianness = DEVICE_LITTLE_ENDIAN,
783 };
784 
785 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
786 {
787     VFIOQuirk *quirk;
788     VFIONvidiaBAR5Quirk *bar5;
789     VFIOConfigWindowQuirk *window;
790 
791     if (vdev->no_geforce_quirks ||
792         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
793         !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
794         return;
795     }
796 
797     quirk = vfio_quirk_alloc(4);
798     bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
799                                    (sizeof(VFIOConfigWindowMatch) * 2));
800     window = &bar5->window;
801 
802     window->vdev = vdev;
803     window->address_offset = 0x8;
804     window->data_offset = 0xc;
805     window->nr_matches = 2;
806     window->matches[0].match = 0x1800;
807     window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
808     window->matches[1].match = 0x88000;
809     window->matches[1].mask = vdev->config_size - 1;
810     window->bar = nr;
811     window->addr_mem = bar5->addr_mem = &quirk->mem[0];
812     window->data_mem = bar5->data_mem = &quirk->mem[1];
813 
814     memory_region_init_io(window->addr_mem, OBJECT(vdev),
815                           &vfio_generic_window_address_quirk, window,
816                           "vfio-nvidia-bar5-window-address-quirk", 4);
817     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
818                                         window->address_offset,
819                                         window->addr_mem, 1);
820     memory_region_set_enabled(window->addr_mem, false);
821 
822     memory_region_init_io(window->data_mem, OBJECT(vdev),
823                           &vfio_generic_window_data_quirk, window,
824                           "vfio-nvidia-bar5-window-data-quirk", 4);
825     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
826                                         window->data_offset,
827                                         window->data_mem, 1);
828     memory_region_set_enabled(window->data_mem, false);
829 
830     memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
831                           &vfio_nvidia_bar5_quirk_master, bar5,
832                           "vfio-nvidia-bar5-master-quirk", 4);
833     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
834                                         0, &quirk->mem[2], 1);
835 
836     memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
837                           &vfio_nvidia_bar5_quirk_enable, bar5,
838                           "vfio-nvidia-bar5-enable-quirk", 4);
839     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
840                                         4, &quirk->mem[3], 1);
841 
842     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
843 
844     trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
845 }
846 
847 typedef struct LastDataSet {
848     VFIOQuirk *quirk;
849     hwaddr addr;
850     uint64_t data;
851     unsigned size;
852     int hits;
853     int added;
854 } LastDataSet;
855 
856 #define MAX_DYN_IOEVENTFD 10
857 #define HITS_FOR_IOEVENTFD 10
858 
859 /*
860  * Finally, BAR0 itself.  We want to redirect any accesses to either
861  * 0x1800 or 0x88000 through the PCI config space access functions.
862  */
863 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
864                                            uint64_t data, unsigned size)
865 {
866     VFIOConfigMirrorQuirk *mirror = opaque;
867     VFIOPCIDevice *vdev = mirror->vdev;
868     PCIDevice *pdev = &vdev->pdev;
869     LastDataSet *last = (LastDataSet *)&mirror->data;
870 
871     vfio_generic_quirk_mirror_write(opaque, addr, data, size);
872 
873     /*
874      * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
875      * MSI capability ID register.  Both the ID and next register are
876      * read-only, so we allow writes covering either of those to real hw.
877      */
878     if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
879         vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
880         vfio_region_write(&vdev->bars[mirror->bar].region,
881                           addr + mirror->offset, data, size);
882         trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
883     }
884 
885     /*
886      * Automatically add an ioeventfd to handle any repeated write with the
887      * same data and size above the standard PCI config space header.  This is
888      * primarily expected to accelerate the MSI-ACK behavior, such as noted
889      * above.  Current hardware/drivers should trigger an ioeventfd at config
890      * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
891      *
892      * The criteria of 10 successive hits is arbitrary but reliably adds the
893      * MSI-ACK region.  Note that as some writes are bypassed via the ioeventfd,
894      * the remaining ones have a greater chance of being seen successively.
895      * To avoid the pathological case of burning up all of QEMU's open file
896      * handles, arbitrarily limit this algorithm from adding no more than 10
897      * ioeventfds, print an error if we would have added an 11th, and then
898      * stop counting.
899      */
900     if (!vdev->no_kvm_ioeventfd &&
901         addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
902         if (addr != last->addr || data != last->data || size != last->size) {
903             last->addr = addr;
904             last->data = data;
905             last->size = size;
906             last->hits = 1;
907         } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
908             if (last->added < MAX_DYN_IOEVENTFD) {
909                 VFIOIOEventFD *ioeventfd;
910                 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
911                                         data, &vdev->bars[mirror->bar].region,
912                                         mirror->offset + addr, true);
913                 if (ioeventfd) {
914                     VFIOQuirk *quirk = last->quirk;
915 
916                     QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
917                     last->added++;
918                 }
919             } else {
920                 last->added++;
921                 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
922                             "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
923                             "size %u", vdev->vbasedev.name, addr, data, size);
924             }
925         }
926     }
927 }
928 
929 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
930     .read = vfio_generic_quirk_mirror_read,
931     .write = vfio_nvidia_quirk_mirror_write,
932     .endianness = DEVICE_LITTLE_ENDIAN,
933 };
934 
935 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
936 {
937     VFIOConfigMirrorQuirk *mirror = quirk->data;
938     LastDataSet *last = (LastDataSet *)&mirror->data;
939 
940     last->addr = last->data = last->size = last->hits = last->added = 0;
941 
942     vfio_drop_dynamic_eventfds(vdev, quirk);
943 }
944 
945 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
946 {
947     VFIOQuirk *quirk;
948     VFIOConfigMirrorQuirk *mirror;
949     LastDataSet *last;
950 
951     if (vdev->no_geforce_quirks ||
952         !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
953         !vfio_is_vga(vdev) || nr != 0) {
954         return;
955     }
956 
957     quirk = vfio_quirk_alloc(1);
958     quirk->reset = vfio_nvidia_bar0_quirk_reset;
959     mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
960     mirror->mem = quirk->mem;
961     mirror->vdev = vdev;
962     mirror->offset = 0x88000;
963     mirror->bar = nr;
964     last = (LastDataSet *)&mirror->data;
965     last->quirk = quirk;
966 
967     memory_region_init_io(mirror->mem, OBJECT(vdev),
968                           &vfio_nvidia_mirror_quirk, mirror,
969                           "vfio-nvidia-bar0-88000-mirror-quirk",
970                           vdev->config_size);
971     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
972                                         mirror->offset, mirror->mem, 1);
973 
974     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
975 
976     /* The 0x1800 offset mirror only seems to get used by legacy VGA */
977     if (vdev->vga) {
978         quirk = vfio_quirk_alloc(1);
979         quirk->reset = vfio_nvidia_bar0_quirk_reset;
980         mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
981         mirror->mem = quirk->mem;
982         mirror->vdev = vdev;
983         mirror->offset = 0x1800;
984         mirror->bar = nr;
985         last = (LastDataSet *)&mirror->data;
986         last->quirk = quirk;
987 
988         memory_region_init_io(mirror->mem, OBJECT(vdev),
989                               &vfio_nvidia_mirror_quirk, mirror,
990                               "vfio-nvidia-bar0-1800-mirror-quirk",
991                               PCI_CONFIG_SPACE_SIZE);
992         memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
993                                             mirror->offset, mirror->mem, 1);
994 
995         QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
996     }
997 
998     trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
999 }
1000 
1001 /*
1002  * TODO - Some Nvidia devices provide config access to their companion HDA
1003  * device and even to their parent bridge via these config space mirrors.
1004  * Add quirks for those regions.
1005  */
1006 
1007 #define PCI_VENDOR_ID_REALTEK 0x10ec
1008 
1009 /*
1010  * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
1011  * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1012  * register.  According to the Linux r8169 driver, the MSI-X table is addressed
1013  * when the "type" portion of the address register is set to 0x1.  This appears
1014  * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
1015  * "address latched" indicator.  Bits 12:15 are a mask field, which we can
1016  * ignore because the MSI-X table should always be accessed as a dword (full
1017  * mask).  Bits 0:11 is offset within the type.
1018  *
1019  * Example trace:
1020  *
1021  * Read from MSI-X table offset 0
1022  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1023  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1024  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1025  *
1026  * Write 0xfee00000 to MSI-X table offset 0
1027  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1028  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1029  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1030  */
1031 typedef struct VFIOrtl8168Quirk {
1032     VFIOPCIDevice *vdev;
1033     uint32_t addr;
1034     uint32_t data;
1035     bool enabled;
1036 } VFIOrtl8168Quirk;
1037 
1038 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1039                                                 hwaddr addr, unsigned size)
1040 {
1041     VFIOrtl8168Quirk *rtl = opaque;
1042     VFIOPCIDevice *vdev = rtl->vdev;
1043     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1044 
1045     if (rtl->enabled) {
1046         data = rtl->addr ^ 0x80000000U; /* latch/complete */
1047         trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1048     }
1049 
1050     return data;
1051 }
1052 
1053 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1054                                              uint64_t data, unsigned size)
1055 {
1056     VFIOrtl8168Quirk *rtl = opaque;
1057     VFIOPCIDevice *vdev = rtl->vdev;
1058 
1059     rtl->enabled = false;
1060 
1061     if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1062         rtl->enabled = true;
1063         rtl->addr = (uint32_t)data;
1064 
1065         if (data & 0x80000000U) { /* Do write */
1066             if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1067                 hwaddr offset = data & 0xfff;
1068                 uint64_t val = rtl->data;
1069 
1070                 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1071                                                     (uint16_t)offset, val);
1072 
1073                 /* Write to the proper guest MSI-X table instead */
1074                 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1075                                              offset, val, size,
1076                                              MEMTXATTRS_UNSPECIFIED);
1077             }
1078             return; /* Do not write guest MSI-X data to hardware */
1079         }
1080     }
1081 
1082     vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1083 }
1084 
1085 static const MemoryRegionOps vfio_rtl_address_quirk = {
1086     .read = vfio_rtl8168_quirk_address_read,
1087     .write = vfio_rtl8168_quirk_address_write,
1088     .valid = {
1089         .min_access_size = 4,
1090         .max_access_size = 4,
1091         .unaligned = false,
1092     },
1093     .endianness = DEVICE_LITTLE_ENDIAN,
1094 };
1095 
1096 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1097                                              hwaddr addr, unsigned size)
1098 {
1099     VFIOrtl8168Quirk *rtl = opaque;
1100     VFIOPCIDevice *vdev = rtl->vdev;
1101     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1102 
1103     if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1104         hwaddr offset = rtl->addr & 0xfff;
1105         memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1106                                     &data, size, MEMTXATTRS_UNSPECIFIED);
1107         trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1108     }
1109 
1110     return data;
1111 }
1112 
1113 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1114                                           uint64_t data, unsigned size)
1115 {
1116     VFIOrtl8168Quirk *rtl = opaque;
1117     VFIOPCIDevice *vdev = rtl->vdev;
1118 
1119     rtl->data = (uint32_t)data;
1120 
1121     vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1122 }
1123 
1124 static const MemoryRegionOps vfio_rtl_data_quirk = {
1125     .read = vfio_rtl8168_quirk_data_read,
1126     .write = vfio_rtl8168_quirk_data_write,
1127     .valid = {
1128         .min_access_size = 4,
1129         .max_access_size = 4,
1130         .unaligned = false,
1131     },
1132     .endianness = DEVICE_LITTLE_ENDIAN,
1133 };
1134 
1135 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1136 {
1137     VFIOQuirk *quirk;
1138     VFIOrtl8168Quirk *rtl;
1139 
1140     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1141         return;
1142     }
1143 
1144     quirk = vfio_quirk_alloc(2);
1145     quirk->data = rtl = g_malloc0(sizeof(*rtl));
1146     rtl->vdev = vdev;
1147 
1148     memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1149                           &vfio_rtl_address_quirk, rtl,
1150                           "vfio-rtl8168-window-address-quirk", 4);
1151     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1152                                         0x74, &quirk->mem[0], 1);
1153 
1154     memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1155                           &vfio_rtl_data_quirk, rtl,
1156                           "vfio-rtl8168-window-data-quirk", 4);
1157     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1158                                         0x70, &quirk->mem[1], 1);
1159 
1160     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1161 
1162     trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1163 }
1164 
1165 /*
1166  * Intel IGD support
1167  *
1168  * Obviously IGD is not a discrete device, this is evidenced not only by it
1169  * being integrated into the CPU, but by the various chipset and BIOS
1170  * dependencies that it brings along with it.  Intel is trying to move away
1171  * from this and Broadwell and newer devices can run in what Intel calls
1172  * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
1173  * more is required beyond assigning the IGD device to a VM.  There are
1174  * however support limitations to this mode.  It only supports IGD as a
1175  * secondary graphics device in the VM and it doesn't officially support any
1176  * physical outputs.
1177  *
1178  * The code here attempts to enable what we'll call legacy mode assignment,
1179  * IGD retains most of the capabilities we expect for it to have on bare
1180  * metal.  To enable this mode, the IGD device must be assigned to the VM
1181  * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1182  * support, we must have VM BIOS support for reserving and populating some
1183  * of the required tables, and we need to tweak the chipset with revisions
1184  * and IDs and an LPC/ISA bridge device.  The intention is to make all of
1185  * this happen automatically by installing the device at the correct VM PCI
1186  * bus address.  If any of the conditions are not met, we cross our fingers
1187  * and hope the user knows better.
1188  *
1189  * NB - It is possible to enable physical outputs in UPT mode by supplying
1190  * an OpRegion table.  We don't do this by default because the guest driver
1191  * behaves differently if an OpRegion is provided and no monitor is attached
1192  * vs no OpRegion and a monitor being attached or not.  Effectively, if a
1193  * headless setup is desired, the OpRegion gets in the way of that.
1194  */
1195 
1196 /*
1197  * This presumes the device is already known to be an Intel VGA device, so we
1198  * take liberties in which device ID bits match which generation.  This should
1199  * not be taken as an indication that all the devices are supported, or even
1200  * supportable, some of them don't even support VT-d.
1201  * See linux:include/drm/i915_pciids.h for IDs.
1202  */
1203 static int igd_gen(VFIOPCIDevice *vdev)
1204 {
1205     if ((vdev->device_id & 0xfff) == 0xa84) {
1206         return 8; /* Broxton */
1207     }
1208 
1209     switch (vdev->device_id & 0xff00) {
1210     /* Old, untested, unavailable, unknown */
1211     case 0x0000:
1212     case 0x2500:
1213     case 0x2700:
1214     case 0x2900:
1215     case 0x2a00:
1216     case 0x2e00:
1217     case 0x3500:
1218     case 0xa000:
1219         return -1;
1220     /* SandyBridge, IvyBridge, ValleyView, Haswell */
1221     case 0x0100:
1222     case 0x0400:
1223     case 0x0a00:
1224     case 0x0c00:
1225     case 0x0d00:
1226     case 0x0f00:
1227         return 6;
1228     /* BroadWell, CherryView, SkyLake, KabyLake */
1229     case 0x1600:
1230     case 0x1900:
1231     case 0x2200:
1232     case 0x5900:
1233         return 8;
1234     }
1235 
1236     return 8; /* Assume newer is compatible */
1237 }
1238 
1239 typedef struct VFIOIGDQuirk {
1240     struct VFIOPCIDevice *vdev;
1241     uint32_t index;
1242     uint32_t bdsm;
1243 } VFIOIGDQuirk;
1244 
1245 #define IGD_GMCH 0x50 /* Graphics Control Register */
1246 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1247 #define IGD_ASLS 0xfc /* ASL Storage Register */
1248 
1249 /*
1250  * The OpRegion includes the Video BIOS Table, which seems important for
1251  * telling the driver what sort of outputs it has.  Without this, the device
1252  * may work in the guest, but we may not get output.  This also requires BIOS
1253  * support to reserve and populate a section of guest memory sufficient for
1254  * the table and to write the base address of that memory to the ASLS register
1255  * of the IGD device.
1256  */
1257 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1258                                struct vfio_region_info *info, Error **errp)
1259 {
1260     int ret;
1261 
1262     vdev->igd_opregion = g_malloc0(info->size);
1263     ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1264                 info->size, info->offset);
1265     if (ret != info->size) {
1266         error_setg(errp, "failed to read IGD OpRegion");
1267         g_free(vdev->igd_opregion);
1268         vdev->igd_opregion = NULL;
1269         return -EINVAL;
1270     }
1271 
1272     /*
1273      * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1274      * allocate 32bit reserved memory for, copy these contents into, and write
1275      * the reserved memory base address to the device ASLS register at 0xFC.
1276      * Alignment of this reserved region seems flexible, but using a 4k page
1277      * alignment seems to work well.  This interface assumes a single IGD
1278      * device, which may be at VM address 00:02.0 in legacy mode or another
1279      * address in UPT mode.
1280      *
1281      * NB, there may be future use cases discovered where the VM should have
1282      * direct interaction with the host OpRegion, in which case the write to
1283      * the ASLS register would trigger MemoryRegion setup to enable that.
1284      */
1285     fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1286                     vdev->igd_opregion, info->size);
1287 
1288     trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1289 
1290     pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1291     pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1292     pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1293 
1294     return 0;
1295 }
1296 
1297 /*
1298  * The rather short list of registers that we copy from the host devices.
1299  * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1300  * host bridge values may or may not be needed depending on the guest OS.
1301  * Since we're only munging revision and subsystem values on the host bridge,
1302  * we don't require our own device.  The LPC/ISA bridge needs to be our very
1303  * own though.
1304  */
1305 typedef struct {
1306     uint8_t offset;
1307     uint8_t len;
1308 } IGDHostInfo;
1309 
1310 static const IGDHostInfo igd_host_bridge_infos[] = {
1311     {PCI_REVISION_ID,         2},
1312     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1313     {PCI_SUBSYSTEM_ID,        2},
1314 };
1315 
1316 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1317     {PCI_VENDOR_ID,           2},
1318     {PCI_DEVICE_ID,           2},
1319     {PCI_REVISION_ID,         2},
1320     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1321     {PCI_SUBSYSTEM_ID,        2},
1322 };
1323 
1324 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1325                              struct vfio_region_info *info,
1326                              const IGDHostInfo *list, int len)
1327 {
1328     int i, ret;
1329 
1330     for (i = 0; i < len; i++) {
1331         ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1332                     list[i].len, info->offset + list[i].offset);
1333         if (ret != list[i].len) {
1334             error_report("IGD copy failed: %m");
1335             return -errno;
1336         }
1337     }
1338 
1339     return 0;
1340 }
1341 
1342 /*
1343  * Stuff a few values into the host bridge.
1344  */
1345 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1346                                   struct vfio_region_info *info)
1347 {
1348     PCIBus *bus;
1349     PCIDevice *host_bridge;
1350     int ret;
1351 
1352     bus = pci_device_root_bus(&vdev->pdev);
1353     host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1354 
1355     if (!host_bridge) {
1356         error_report("Can't find host bridge");
1357         return -ENODEV;
1358     }
1359 
1360     ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1361                             ARRAY_SIZE(igd_host_bridge_infos));
1362     if (!ret) {
1363         trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1364     }
1365 
1366     return ret;
1367 }
1368 
1369 /*
1370  * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1371  * arbitrary values into just any bridge, so we must create our own.  We try
1372  * to handle if the user has created it for us, which they might want to do
1373  * to enable multifunction so we don't occupy the whole PCI slot.
1374  */
1375 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1376 {
1377     if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1378         error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1379     }
1380 }
1381 
1382 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1383 {
1384     DeviceClass *dc = DEVICE_CLASS(klass);
1385     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1386 
1387     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1388     dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1389     dc->hotpluggable = false;
1390     k->realize = vfio_pci_igd_lpc_bridge_realize;
1391     k->class_id = PCI_CLASS_BRIDGE_ISA;
1392 }
1393 
1394 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1395     .name = "vfio-pci-igd-lpc-bridge",
1396     .parent = TYPE_PCI_DEVICE,
1397     .class_init = vfio_pci_igd_lpc_bridge_class_init,
1398     .interfaces = (InterfaceInfo[]) {
1399         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1400         { },
1401     },
1402 };
1403 
1404 static void vfio_pci_igd_register_types(void)
1405 {
1406     type_register_static(&vfio_pci_igd_lpc_bridge_info);
1407 }
1408 
1409 type_init(vfio_pci_igd_register_types)
1410 
1411 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1412                                  struct vfio_region_info *info)
1413 {
1414     PCIDevice *lpc_bridge;
1415     int ret;
1416 
1417     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1418                                  0, PCI_DEVFN(0x1f, 0));
1419     if (!lpc_bridge) {
1420         lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1421                                  PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1422     }
1423 
1424     ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1425                             ARRAY_SIZE(igd_lpc_bridge_infos));
1426     if (!ret) {
1427         trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1428     }
1429 
1430     return ret;
1431 }
1432 
1433 /*
1434  * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1435  * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1436  * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1437  * for programming the GTT.
1438  *
1439  * See linux:include/drm/i915_drm.h for shift and mask values.
1440  */
1441 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1442 {
1443     uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1444     int ggms, gen = igd_gen(vdev);
1445 
1446     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1447     ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1448     if (gen > 6) {
1449         ggms = 1 << ggms;
1450     }
1451 
1452     ggms *= MiB;
1453 
1454     return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8);
1455 }
1456 
1457 /*
1458  * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1459  * Somehow the host stolen memory range is used for this, but how the ROM gets
1460  * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1461  * reprograms the GTT through the IOBAR where we can trap it and transpose the
1462  * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1463  * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1464  * IOBAR address and data registers to detect a write sequence targeting the
1465  * GTTADR.  This code is developed by observed behavior and doesn't have a
1466  * direct spec reference, unfortunately.
1467  */
1468 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1469                                          hwaddr addr, unsigned size)
1470 {
1471     VFIOIGDQuirk *igd = opaque;
1472     VFIOPCIDevice *vdev = igd->vdev;
1473 
1474     igd->index = ~0;
1475 
1476     return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1477 }
1478 
1479 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1480                                       uint64_t data, unsigned size)
1481 {
1482     VFIOIGDQuirk *igd = opaque;
1483     VFIOPCIDevice *vdev = igd->vdev;
1484     uint64_t val = data;
1485     int gen = igd_gen(vdev);
1486 
1487     /*
1488      * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1489      * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1490      * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1491      * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1492      * to a 4k page, which we translate to a page from the VM allocated region,
1493      * pointed to by the BDSM register.  If this is not set, we fail.
1494      *
1495      * We trap writes to the full configured GTT size, but we typically only
1496      * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1497      * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1498      * write of that last entry does work, but is hopefully unnecessary since
1499      * we clear the previous GTT on initialization.
1500      */
1501     if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1502         if (gen < 8 || (igd->index % 8 == 1)) {
1503             uint32_t base;
1504 
1505             base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1506             if (!base) {
1507                 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1508                          "BIOS reserved stolen memory.  Unsupported BIOS?");
1509             }
1510 
1511             val = data - igd->bdsm + base;
1512         } else {
1513             val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1514         }
1515 
1516         trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1517                                       igd->index, data, val);
1518     }
1519 
1520     vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1521 
1522     igd->index = ~0;
1523 }
1524 
1525 static const MemoryRegionOps vfio_igd_data_quirk = {
1526     .read = vfio_igd_quirk_data_read,
1527     .write = vfio_igd_quirk_data_write,
1528     .endianness = DEVICE_LITTLE_ENDIAN,
1529 };
1530 
1531 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1532                                           hwaddr addr, unsigned size)
1533 {
1534     VFIOIGDQuirk *igd = opaque;
1535     VFIOPCIDevice *vdev = igd->vdev;
1536 
1537     igd->index = ~0;
1538 
1539     return vfio_region_read(&vdev->bars[4].region, addr, size);
1540 }
1541 
1542 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1543                                        uint64_t data, unsigned size)
1544 {
1545     VFIOIGDQuirk *igd = opaque;
1546     VFIOPCIDevice *vdev = igd->vdev;
1547 
1548     igd->index = data;
1549 
1550     vfio_region_write(&vdev->bars[4].region, addr, data, size);
1551 }
1552 
1553 static const MemoryRegionOps vfio_igd_index_quirk = {
1554     .read = vfio_igd_quirk_index_read,
1555     .write = vfio_igd_quirk_index_write,
1556     .endianness = DEVICE_LITTLE_ENDIAN,
1557 };
1558 
1559 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1560 {
1561     struct vfio_region_info *rom = NULL, *opregion = NULL,
1562                             *host = NULL, *lpc = NULL;
1563     VFIOQuirk *quirk;
1564     VFIOIGDQuirk *igd;
1565     PCIDevice *lpc_bridge;
1566     int i, ret, ggms_mb, gms_mb = 0, gen;
1567     uint64_t *bdsm_size;
1568     uint32_t gmch;
1569     uint16_t cmd_orig, cmd;
1570     Error *err = NULL;
1571 
1572     /*
1573      * This must be an Intel VGA device at address 00:02.0 for us to even
1574      * consider enabling legacy mode.  The vBIOS has dependencies on the
1575      * PCI bus address.
1576      */
1577     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1578         !vfio_is_vga(vdev) || nr != 4 ||
1579         &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1580                                        0, PCI_DEVFN(0x2, 0))) {
1581         return;
1582     }
1583 
1584     /*
1585      * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1586      * can stuff host values into, so if there's already one there and it's not
1587      * one we can hack on, legacy mode is no-go.  Sorry Q35.
1588      */
1589     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1590                                  0, PCI_DEVFN(0x1f, 0));
1591     if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1592                                            "vfio-pci-igd-lpc-bridge")) {
1593         error_report("IGD device %s cannot support legacy mode due to existing "
1594                      "devices at address 1f.0", vdev->vbasedev.name);
1595         return;
1596     }
1597 
1598     /*
1599      * IGD is not a standard, they like to change their specs often.  We
1600      * only attempt to support back to SandBridge and we hope that newer
1601      * devices maintain compatibility with generation 8.
1602      */
1603     gen = igd_gen(vdev);
1604     if (gen != 6 && gen != 8) {
1605         error_report("IGD device %s is unsupported in legacy mode, "
1606                      "try SandyBridge or newer", vdev->vbasedev.name);
1607         return;
1608     }
1609 
1610     /*
1611      * Most of what we're doing here is to enable the ROM to run, so if
1612      * there's no ROM, there's no point in setting up this quirk.
1613      * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1614      */
1615     ret = vfio_get_region_info(&vdev->vbasedev,
1616                                VFIO_PCI_ROM_REGION_INDEX, &rom);
1617     if ((ret || !rom->size) && !vdev->pdev.romfile) {
1618         error_report("IGD device %s has no ROM, legacy mode disabled",
1619                      vdev->vbasedev.name);
1620         goto out;
1621     }
1622 
1623     /*
1624      * Ignore the hotplug corner case, mark the ROM failed, we can't
1625      * create the devices we need for legacy mode in the hotplug scenario.
1626      */
1627     if (vdev->pdev.qdev.hotplugged) {
1628         error_report("IGD device %s hotplugged, ROM disabled, "
1629                      "legacy mode disabled", vdev->vbasedev.name);
1630         vdev->rom_read_failed = true;
1631         goto out;
1632     }
1633 
1634     /*
1635      * Check whether we have all the vfio device specific regions to
1636      * support legacy mode (added in Linux v4.6).  If not, bail.
1637      */
1638     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1639                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1640                         VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1641     if (ret) {
1642         error_report("IGD device %s does not support OpRegion access,"
1643                      "legacy mode disabled", vdev->vbasedev.name);
1644         goto out;
1645     }
1646 
1647     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1648                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1649                         VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1650     if (ret) {
1651         error_report("IGD device %s does not support host bridge access,"
1652                      "legacy mode disabled", vdev->vbasedev.name);
1653         goto out;
1654     }
1655 
1656     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1657                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1658                         VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1659     if (ret) {
1660         error_report("IGD device %s does not support LPC bridge access,"
1661                      "legacy mode disabled", vdev->vbasedev.name);
1662         goto out;
1663     }
1664 
1665     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1666 
1667     /*
1668      * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1669      * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1670      * but also no point in us enabling VGA if disabled in hardware.
1671      */
1672     if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1673         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1674         error_report("IGD device %s failed to enable VGA access, "
1675                      "legacy mode disabled", vdev->vbasedev.name);
1676         goto out;
1677     }
1678 
1679     /* Create our LPC/ISA bridge */
1680     ret = vfio_pci_igd_lpc_init(vdev, lpc);
1681     if (ret) {
1682         error_report("IGD device %s failed to create LPC bridge, "
1683                      "legacy mode disabled", vdev->vbasedev.name);
1684         goto out;
1685     }
1686 
1687     /* Stuff some host values into the VM PCI host bridge */
1688     ret = vfio_pci_igd_host_init(vdev, host);
1689     if (ret) {
1690         error_report("IGD device %s failed to modify host bridge, "
1691                      "legacy mode disabled", vdev->vbasedev.name);
1692         goto out;
1693     }
1694 
1695     /* Setup OpRegion access */
1696     ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1697     if (ret) {
1698         error_append_hint(&err, "IGD legacy mode disabled\n");
1699         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1700         goto out;
1701     }
1702 
1703     /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1704     quirk = vfio_quirk_alloc(2);
1705     igd = quirk->data = g_malloc0(sizeof(*igd));
1706     igd->vdev = vdev;
1707     igd->index = ~0;
1708     igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1709     igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */
1710 
1711     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1712                           igd, "vfio-igd-index-quirk", 4);
1713     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1714                                         0, &quirk->mem[0], 1);
1715 
1716     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1717                           igd, "vfio-igd-data-quirk", 4);
1718     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1719                                         4, &quirk->mem[1], 1);
1720 
1721     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1722 
1723     /* Determine the size of stolen memory needed for GTT */
1724     ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1725     if (gen > 6) {
1726         ggms_mb = 1 << ggms_mb;
1727     }
1728 
1729     /*
1730      * Assume we have no GMS memory, but allow it to be overrided by device
1731      * option (experimental).  The spec doesn't actually allow zero GMS when
1732      * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1733      * so let's not waste VM memory for it.
1734      */
1735     gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1736 
1737     if (vdev->igd_gms) {
1738         if (vdev->igd_gms <= 0x10) {
1739             gms_mb = vdev->igd_gms * 32;
1740             gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1741         } else {
1742             error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1743             vdev->igd_gms = 0;
1744         }
1745     }
1746 
1747     /*
1748      * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1749      * must allocate a 1MB aligned reserved memory region below 4GB with
1750      * the requested size (in bytes) for use by the Intel PCI class VGA
1751      * device at VM address 00:02.0.  The base address of this reserved
1752      * memory region must be written to the device BDSM regsiter at PCI
1753      * config offset 0x5C.
1754      */
1755     bdsm_size = g_malloc(sizeof(*bdsm_size));
1756     *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB);
1757     fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1758                     bdsm_size, sizeof(*bdsm_size));
1759 
1760     /* GMCH is read-only, emulated */
1761     pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1762     pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1763     pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1764 
1765     /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1766     pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1767     pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1768     pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1769 
1770     /*
1771      * This IOBAR gives us access to GTTADR, which allows us to write to
1772      * the GTT itself.  So let's go ahead and write zero to all the GTT
1773      * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1774      * before talking to the device.
1775      */
1776     if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1777               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1778         error_report("IGD device %s - failed to read PCI command register",
1779                      vdev->vbasedev.name);
1780     }
1781 
1782     cmd = cmd_orig | PCI_COMMAND_IO;
1783 
1784     if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1785                vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1786         error_report("IGD device %s - failed to write PCI command register",
1787                      vdev->vbasedev.name);
1788     }
1789 
1790     for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1791         vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1792         vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1793     }
1794 
1795     if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1796                vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1797         error_report("IGD device %s - failed to restore PCI command register",
1798                      vdev->vbasedev.name);
1799     }
1800 
1801     trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1802 
1803 out:
1804     g_free(rom);
1805     g_free(opregion);
1806     g_free(host);
1807     g_free(lpc);
1808 }
1809 
1810 /*
1811  * Common quirk probe entry points.
1812  */
1813 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1814 {
1815     vfio_vga_probe_ati_3c3_quirk(vdev);
1816     vfio_vga_probe_nvidia_3d0_quirk(vdev);
1817 }
1818 
1819 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1820 {
1821     VFIOQuirk *quirk;
1822     int i, j;
1823 
1824     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1825         QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1826             for (j = 0; j < quirk->nr_mem; j++) {
1827                 memory_region_del_subregion(&vdev->vga->region[i].mem,
1828                                             &quirk->mem[j]);
1829             }
1830         }
1831     }
1832 }
1833 
1834 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1835 {
1836     int i, j;
1837 
1838     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1839         while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1840             VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1841             QLIST_REMOVE(quirk, next);
1842             for (j = 0; j < quirk->nr_mem; j++) {
1843                 object_unparent(OBJECT(&quirk->mem[j]));
1844             }
1845             g_free(quirk->mem);
1846             g_free(quirk->data);
1847             g_free(quirk);
1848         }
1849     }
1850 }
1851 
1852 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1853 {
1854     vfio_probe_ati_bar4_quirk(vdev, nr);
1855     vfio_probe_ati_bar2_quirk(vdev, nr);
1856     vfio_probe_nvidia_bar5_quirk(vdev, nr);
1857     vfio_probe_nvidia_bar0_quirk(vdev, nr);
1858     vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1859     vfio_probe_igd_bar4_quirk(vdev, nr);
1860 }
1861 
1862 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1863 {
1864     VFIOBAR *bar = &vdev->bars[nr];
1865     VFIOQuirk *quirk;
1866     int i;
1867 
1868     QLIST_FOREACH(quirk, &bar->quirks, next) {
1869         while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1870             vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1871         }
1872 
1873         for (i = 0; i < quirk->nr_mem; i++) {
1874             memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1875         }
1876     }
1877 }
1878 
1879 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1880 {
1881     VFIOBAR *bar = &vdev->bars[nr];
1882     int i;
1883 
1884     while (!QLIST_EMPTY(&bar->quirks)) {
1885         VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1886         QLIST_REMOVE(quirk, next);
1887         for (i = 0; i < quirk->nr_mem; i++) {
1888             object_unparent(OBJECT(&quirk->mem[i]));
1889         }
1890         g_free(quirk->mem);
1891         g_free(quirk->data);
1892         g_free(quirk);
1893     }
1894 }
1895 
1896 /*
1897  * Reset quirks
1898  */
1899 void vfio_quirk_reset(VFIOPCIDevice *vdev)
1900 {
1901     int i;
1902 
1903     for (i = 0; i < PCI_ROM_SLOT; i++) {
1904         VFIOQuirk *quirk;
1905         VFIOBAR *bar = &vdev->bars[i];
1906 
1907         QLIST_FOREACH(quirk, &bar->quirks, next) {
1908             if (quirk->reset) {
1909                 quirk->reset(vdev, quirk);
1910             }
1911         }
1912     }
1913 }
1914 
1915 /*
1916  * AMD Radeon PCI config reset, based on Linux:
1917  *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1918  *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1919  *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1920  *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1921  * IDs: include/drm/drm_pciids.h
1922  * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1923  *
1924  * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1925  * hardware that should be fixed on future ASICs.  The symptom of this is that
1926  * once the accerlated driver loads, Windows guests will bsod on subsequent
1927  * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1928  * work around this, we do an AMD specific PCI config reset, followed by an SMC
1929  * reset.  The PCI config reset only works if SMC firmware is running, so we
1930  * have a dependency on the state of the device as to whether this reset will
1931  * be effective.  There are still cases where we won't be able to kick the
1932  * device into working, but this greatly improves the usability overall.  The
1933  * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1934  * poking is largely ASIC specific.
1935  */
1936 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1937 {
1938     uint32_t clk, pc_c;
1939 
1940     /*
1941      * Registers 200h and 204h are index and data registers for accessing
1942      * indirect configuration registers within the device.
1943      */
1944     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1945     clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1946     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1947     pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1948 
1949     return (!(clk & 1) && (0x20100 <= pc_c));
1950 }
1951 
1952 /*
1953  * The scope of a config reset is controlled by a mode bit in the misc register
1954  * and a fuse, exposed as a bit in another register.  The fuse is the default
1955  * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1956  * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1957  * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1958  * to flip the value of the bit in the misc register.
1959  */
1960 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1961 {
1962     uint32_t misc, fuse;
1963     bool a, b;
1964 
1965     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1966     fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1967     b = fuse & 64;
1968 
1969     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1970     misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1971     a = misc & 2;
1972 
1973     if (a == b) {
1974         vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1975         vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1976     }
1977 }
1978 
1979 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1980 {
1981     PCIDevice *pdev = &vdev->pdev;
1982     int i, ret = 0;
1983     uint32_t data;
1984 
1985     /* Defer to a kernel implemented reset */
1986     if (vdev->vbasedev.reset_works) {
1987         trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1988         return -ENODEV;
1989     }
1990 
1991     /* Enable only memory BAR access */
1992     vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1993 
1994     /* Reset only works if SMC firmware is loaded and running */
1995     if (!vfio_radeon_smc_is_running(vdev)) {
1996         ret = -EINVAL;
1997         trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1998         goto out;
1999     }
2000 
2001     /* Make sure only the GFX function is reset */
2002     vfio_radeon_set_gfx_only_reset(vdev);
2003 
2004     /* AMD PCI config reset */
2005     vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
2006     usleep(100);
2007 
2008     /* Read back the memory size to make sure we're out of reset */
2009     for (i = 0; i < 100000; i++) {
2010         if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
2011             goto reset_smc;
2012         }
2013         usleep(1);
2014     }
2015 
2016     trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
2017 
2018 reset_smc:
2019     /* Reset SMC */
2020     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
2021     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2022     data |= 1;
2023     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2024 
2025     /* Disable SMC clock */
2026     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
2027     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2028     data |= 1;
2029     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2030 
2031     trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
2032 
2033 out:
2034     /* Restore PCI command register */
2035     vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
2036 
2037     return ret;
2038 }
2039 
2040 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2041 {
2042     switch (vdev->vendor_id) {
2043     case 0x1002:
2044         switch (vdev->device_id) {
2045         /* Bonaire */
2046         case 0x6649: /* Bonaire [FirePro W5100] */
2047         case 0x6650:
2048         case 0x6651:
2049         case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2050         case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2051         case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2052         /* Hawaii */
2053         case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2054         case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2055         case 0x67A2:
2056         case 0x67A8:
2057         case 0x67A9:
2058         case 0x67AA:
2059         case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2060         case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2061         case 0x67B8:
2062         case 0x67B9:
2063         case 0x67BA:
2064         case 0x67BE:
2065             vdev->resetfn = vfio_radeon_reset;
2066             trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2067             break;
2068         }
2069         break;
2070     }
2071 }
2072 
2073 /*
2074  * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2075  * devices as a member of a clique.  Devices within the same clique ID
2076  * are capable of direct P2P.  It's the user's responsibility that this
2077  * is correct.  The spec says that this may reside at any unused config
2078  * offset, but reserves and recommends hypervisors place this at C8h.
2079  * The spec also states that the hypervisor should place this capability
2080  * at the end of the capability list, thus next is defined as 0h.
2081  *
2082  * +----------------+----------------+----------------+----------------+
2083  * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  |
2084  * +----------------+----------------+----------------+----------------+
2085  * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        |
2086  * +---------------------------------+---------------------------------+
2087  *
2088  * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2089  */
2090 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2091                                        const char *name, void *opaque,
2092                                        Error **errp)
2093 {
2094     DeviceState *dev = DEVICE(obj);
2095     Property *prop = opaque;
2096     uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2097 
2098     visit_type_uint8(v, name, ptr, errp);
2099 }
2100 
2101 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2102                                        const char *name, void *opaque,
2103                                        Error **errp)
2104 {
2105     DeviceState *dev = DEVICE(obj);
2106     Property *prop = opaque;
2107     uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2108     Error *local_err = NULL;
2109 
2110     if (dev->realized) {
2111         qdev_prop_set_after_realize(dev, name, errp);
2112         return;
2113     }
2114 
2115     visit_type_uint8(v, name, &value, &local_err);
2116     if (local_err) {
2117         error_propagate(errp, local_err);
2118         return;
2119     }
2120 
2121     if (value & ~0xF) {
2122         error_setg(errp, "Property %s: valid range 0-15", name);
2123         return;
2124     }
2125 
2126     *ptr = value;
2127 }
2128 
2129 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2130     .name = "uint4",
2131     .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2132     .get = get_nv_gpudirect_clique_id,
2133     .set = set_nv_gpudirect_clique_id,
2134 };
2135 
2136 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2137 {
2138     PCIDevice *pdev = &vdev->pdev;
2139     int ret, pos = 0xC8;
2140 
2141     if (vdev->nv_gpudirect_clique == 0xFF) {
2142         return 0;
2143     }
2144 
2145     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2146         error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2147         return -EINVAL;
2148     }
2149 
2150     if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2151         PCI_BASE_CLASS_DISPLAY) {
2152         error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2153         return -EINVAL;
2154     }
2155 
2156     ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2157     if (ret < 0) {
2158         error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2159         return ret;
2160     }
2161 
2162     memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2163     pos += PCI_CAP_FLAGS;
2164     pci_set_byte(pdev->config + pos++, 8);
2165     pci_set_byte(pdev->config + pos++, 'P');
2166     pci_set_byte(pdev->config + pos++, '2');
2167     pci_set_byte(pdev->config + pos++, 'P');
2168     pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2169     pci_set_byte(pdev->config + pos, 0);
2170 
2171     return 0;
2172 }
2173 
2174 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2175 {
2176     int ret;
2177 
2178     ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2179     if (ret) {
2180         return ret;
2181     }
2182 
2183     return 0;
2184 }
2185