1 /* 2 * device quirks for PCI devices 3 * 4 * Copyright Red Hat, Inc. 2012-2015 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/error-report.h" 15 #include "qemu/range.h" 16 #include "qapi/error.h" 17 #include "qapi/visitor.h" 18 #include "hw/nvram/fw_cfg.h" 19 #include "pci.h" 20 #include "trace.h" 21 22 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */ 23 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device) 24 { 25 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) && 26 (device == PCI_ANY_ID || device == vdev->device_id); 27 } 28 29 static bool vfio_is_vga(VFIOPCIDevice *vdev) 30 { 31 PCIDevice *pdev = &vdev->pdev; 32 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 33 34 return class == PCI_CLASS_DISPLAY_VGA; 35 } 36 37 /* 38 * List of device ids/vendor ids for which to disable 39 * option rom loading. This avoids the guest hangs during rom 40 * execution as noticed with the BCM 57810 card for lack of a 41 * more better way to handle such issues. 42 * The user can still override by specifying a romfile or 43 * rombar=1. 44 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 45 * for an analysis of the 57810 card hang. When adding 46 * a new vendor id/device id combination below, please also add 47 * your card/environment details and information that could 48 * help in debugging to the bug tracking this issue 49 */ 50 static const struct { 51 uint32_t vendor; 52 uint32_t device; 53 } romblacklist[] = { 54 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ 55 }; 56 57 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 58 { 59 int i; 60 61 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) { 62 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) { 63 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name, 64 romblacklist[i].vendor, 65 romblacklist[i].device); 66 return true; 67 } 68 } 69 return false; 70 } 71 72 /* 73 * Device specific region quirks (mostly backdoors to PCI config space) 74 */ 75 76 /* 77 * The generic window quirks operate on an address and data register, 78 * vfio_generic_window_address_quirk handles the address register and 79 * vfio_generic_window_data_quirk handles the data register. These ops 80 * pass reads and writes through to hardware until a value matching the 81 * stored address match/mask is written. When this occurs, the data 82 * register access emulated PCI config space for the device rather than 83 * passing through accesses. This enables devices where PCI config space 84 * is accessible behind a window register to maintain the virtualization 85 * provided through vfio. 86 */ 87 typedef struct VFIOConfigWindowMatch { 88 uint32_t match; 89 uint32_t mask; 90 } VFIOConfigWindowMatch; 91 92 typedef struct VFIOConfigWindowQuirk { 93 struct VFIOPCIDevice *vdev; 94 95 uint32_t address_val; 96 97 uint32_t address_offset; 98 uint32_t data_offset; 99 100 bool window_enabled; 101 uint8_t bar; 102 103 MemoryRegion *addr_mem; 104 MemoryRegion *data_mem; 105 106 uint32_t nr_matches; 107 VFIOConfigWindowMatch matches[]; 108 } VFIOConfigWindowQuirk; 109 110 static uint64_t vfio_generic_window_quirk_address_read(void *opaque, 111 hwaddr addr, 112 unsigned size) 113 { 114 VFIOConfigWindowQuirk *window = opaque; 115 VFIOPCIDevice *vdev = window->vdev; 116 117 return vfio_region_read(&vdev->bars[window->bar].region, 118 addr + window->address_offset, size); 119 } 120 121 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, 122 uint64_t data, 123 unsigned size) 124 { 125 VFIOConfigWindowQuirk *window = opaque; 126 VFIOPCIDevice *vdev = window->vdev; 127 int i; 128 129 window->window_enabled = false; 130 131 vfio_region_write(&vdev->bars[window->bar].region, 132 addr + window->address_offset, data, size); 133 134 for (i = 0; i < window->nr_matches; i++) { 135 if ((data & ~window->matches[i].mask) == window->matches[i].match) { 136 window->window_enabled = true; 137 window->address_val = data & window->matches[i].mask; 138 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, 139 memory_region_name(window->addr_mem), data); 140 break; 141 } 142 } 143 } 144 145 static const MemoryRegionOps vfio_generic_window_address_quirk = { 146 .read = vfio_generic_window_quirk_address_read, 147 .write = vfio_generic_window_quirk_address_write, 148 .endianness = DEVICE_LITTLE_ENDIAN, 149 }; 150 151 static uint64_t vfio_generic_window_quirk_data_read(void *opaque, 152 hwaddr addr, unsigned size) 153 { 154 VFIOConfigWindowQuirk *window = opaque; 155 VFIOPCIDevice *vdev = window->vdev; 156 uint64_t data; 157 158 /* Always read data reg, discard if window enabled */ 159 data = vfio_region_read(&vdev->bars[window->bar].region, 160 addr + window->data_offset, size); 161 162 if (window->window_enabled) { 163 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); 164 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, 165 memory_region_name(window->data_mem), data); 166 } 167 168 return data; 169 } 170 171 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, 172 uint64_t data, unsigned size) 173 { 174 VFIOConfigWindowQuirk *window = opaque; 175 VFIOPCIDevice *vdev = window->vdev; 176 177 if (window->window_enabled) { 178 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); 179 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, 180 memory_region_name(window->data_mem), data); 181 return; 182 } 183 184 vfio_region_write(&vdev->bars[window->bar].region, 185 addr + window->data_offset, data, size); 186 } 187 188 static const MemoryRegionOps vfio_generic_window_data_quirk = { 189 .read = vfio_generic_window_quirk_data_read, 190 .write = vfio_generic_window_quirk_data_write, 191 .endianness = DEVICE_LITTLE_ENDIAN, 192 }; 193 194 /* 195 * The generic mirror quirk handles devices which expose PCI config space 196 * through a region within a BAR. When enabled, reads and writes are 197 * redirected through to emulated PCI config space. XXX if PCI config space 198 * used memory regions, this could just be an alias. 199 */ 200 typedef struct VFIOConfigMirrorQuirk { 201 struct VFIOPCIDevice *vdev; 202 uint32_t offset; 203 uint8_t bar; 204 MemoryRegion *mem; 205 } VFIOConfigMirrorQuirk; 206 207 static uint64_t vfio_generic_quirk_mirror_read(void *opaque, 208 hwaddr addr, unsigned size) 209 { 210 VFIOConfigMirrorQuirk *mirror = opaque; 211 VFIOPCIDevice *vdev = mirror->vdev; 212 uint64_t data; 213 214 /* Read and discard in case the hardware cares */ 215 (void)vfio_region_read(&vdev->bars[mirror->bar].region, 216 addr + mirror->offset, size); 217 218 data = vfio_pci_read_config(&vdev->pdev, addr, size); 219 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, 220 memory_region_name(mirror->mem), 221 addr, data); 222 return data; 223 } 224 225 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, 226 uint64_t data, unsigned size) 227 { 228 VFIOConfigMirrorQuirk *mirror = opaque; 229 VFIOPCIDevice *vdev = mirror->vdev; 230 231 vfio_pci_write_config(&vdev->pdev, addr, data, size); 232 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, 233 memory_region_name(mirror->mem), 234 addr, data); 235 } 236 237 static const MemoryRegionOps vfio_generic_mirror_quirk = { 238 .read = vfio_generic_quirk_mirror_read, 239 .write = vfio_generic_quirk_mirror_write, 240 .endianness = DEVICE_LITTLE_ENDIAN, 241 }; 242 243 /* Is range1 fully contained within range2? */ 244 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 245 uint64_t first2, uint64_t len2) { 246 return (first1 >= first2 && first1 + len1 <= first2 + len2); 247 } 248 249 #define PCI_VENDOR_ID_ATI 0x1002 250 251 /* 252 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 253 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 254 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 255 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 256 * I/O port BAR address. Originally this was coded to return the virtual BAR 257 * address only if the physical register read returns the actual BAR address, 258 * but users have reported greater success if we return the virtual address 259 * unconditionally. 260 */ 261 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 262 hwaddr addr, unsigned size) 263 { 264 VFIOPCIDevice *vdev = opaque; 265 uint64_t data = vfio_pci_read_config(&vdev->pdev, 266 PCI_BASE_ADDRESS_4 + 1, size); 267 268 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); 269 270 return data; 271 } 272 273 static const MemoryRegionOps vfio_ati_3c3_quirk = { 274 .read = vfio_ati_3c3_quirk_read, 275 .endianness = DEVICE_LITTLE_ENDIAN, 276 }; 277 278 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 279 { 280 VFIOQuirk *quirk; 281 282 /* 283 * As long as the BAR is >= 256 bytes it will be aligned such that the 284 * lower byte is always zero. Filter out anything else, if it exists. 285 */ 286 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 287 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 288 return; 289 } 290 291 quirk = g_malloc0(sizeof(*quirk)); 292 quirk->mem = g_new0(MemoryRegion, 1); 293 quirk->nr_mem = 1; 294 295 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, 296 "vfio-ati-3c3-quirk", 1); 297 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 298 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); 299 300 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 301 quirk, next); 302 303 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); 304 } 305 306 /* 307 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI 308 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 309 * the MMIO space directly, but a window to this space is provided through 310 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 311 * data register. When the address is programmed to a range of 0x4000-0x4fff 312 * PCI configuration space is available. Experimentation seems to indicate 313 * that read-only may be provided by hardware. 314 */ 315 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) 316 { 317 VFIOQuirk *quirk; 318 VFIOConfigWindowQuirk *window; 319 320 /* This windows doesn't seem to be used except by legacy VGA code */ 321 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 322 !vdev->vga || nr != 4) { 323 return; 324 } 325 326 quirk = g_malloc0(sizeof(*quirk)); 327 quirk->mem = g_new0(MemoryRegion, 2); 328 quirk->nr_mem = 2; 329 window = quirk->data = g_malloc0(sizeof(*window) + 330 sizeof(VFIOConfigWindowMatch)); 331 window->vdev = vdev; 332 window->address_offset = 0; 333 window->data_offset = 4; 334 window->nr_matches = 1; 335 window->matches[0].match = 0x4000; 336 window->matches[0].mask = vdev->config_size - 1; 337 window->bar = nr; 338 window->addr_mem = &quirk->mem[0]; 339 window->data_mem = &quirk->mem[1]; 340 341 memory_region_init_io(window->addr_mem, OBJECT(vdev), 342 &vfio_generic_window_address_quirk, window, 343 "vfio-ati-bar4-window-address-quirk", 4); 344 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 345 window->address_offset, 346 window->addr_mem, 1); 347 348 memory_region_init_io(window->data_mem, OBJECT(vdev), 349 &vfio_generic_window_data_quirk, window, 350 "vfio-ati-bar4-window-data-quirk", 4); 351 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 352 window->data_offset, 353 window->data_mem, 1); 354 355 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 356 357 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); 358 } 359 360 /* 361 * Trap the BAR2 MMIO mirror to config space as well. 362 */ 363 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) 364 { 365 VFIOQuirk *quirk; 366 VFIOConfigMirrorQuirk *mirror; 367 368 /* Only enable on newer devices where BAR2 is 64bit */ 369 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 370 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { 371 return; 372 } 373 374 quirk = g_malloc0(sizeof(*quirk)); 375 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 376 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 377 quirk->nr_mem = 1; 378 mirror->vdev = vdev; 379 mirror->offset = 0x4000; 380 mirror->bar = nr; 381 382 memory_region_init_io(mirror->mem, OBJECT(vdev), 383 &vfio_generic_mirror_quirk, mirror, 384 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); 385 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 386 mirror->offset, mirror->mem, 1); 387 388 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 389 390 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); 391 } 392 393 /* 394 * Older ATI/AMD cards like the X550 have a similar window to that above. 395 * I/O port BAR1 provides a window to a mirror of PCI config space located 396 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 397 * note it for future reference. 398 */ 399 400 #define PCI_VENDOR_ID_NVIDIA 0x10de 401 402 /* 403 * Nvidia has several different methods to get to config space, the 404 * nouveu project has several of these documented here: 405 * https://github.com/pathscale/envytools/tree/master/hwdocs 406 * 407 * The first quirk is actually not documented in envytools and is found 408 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 409 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 410 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 411 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 412 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 413 * is written for a write to 0x3d4. The BAR0 offset is then accessible 414 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 415 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 416 */ 417 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; 418 static const char *nv3d0_states[] = { "NONE", "SELECT", 419 "WINDOW", "READ", "WRITE" }; 420 421 typedef struct VFIONvidia3d0Quirk { 422 VFIOPCIDevice *vdev; 423 VFIONvidia3d0State state; 424 uint32_t offset; 425 } VFIONvidia3d0Quirk; 426 427 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, 428 hwaddr addr, unsigned size) 429 { 430 VFIONvidia3d0Quirk *quirk = opaque; 431 VFIOPCIDevice *vdev = quirk->vdev; 432 433 quirk->state = NONE; 434 435 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 436 addr + 0x14, size); 437 } 438 439 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, 440 uint64_t data, unsigned size) 441 { 442 VFIONvidia3d0Quirk *quirk = opaque; 443 VFIOPCIDevice *vdev = quirk->vdev; 444 VFIONvidia3d0State old_state = quirk->state; 445 446 quirk->state = NONE; 447 448 switch (data) { 449 case 0x338: 450 if (old_state == NONE) { 451 quirk->state = SELECT; 452 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 453 nv3d0_states[quirk->state]); 454 } 455 break; 456 case 0x538: 457 if (old_state == WINDOW) { 458 quirk->state = READ; 459 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 460 nv3d0_states[quirk->state]); 461 } 462 break; 463 case 0x738: 464 if (old_state == WINDOW) { 465 quirk->state = WRITE; 466 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 467 nv3d0_states[quirk->state]); 468 } 469 break; 470 } 471 472 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 473 addr + 0x14, data, size); 474 } 475 476 static const MemoryRegionOps vfio_nvidia_3d4_quirk = { 477 .read = vfio_nvidia_3d4_quirk_read, 478 .write = vfio_nvidia_3d4_quirk_write, 479 .endianness = DEVICE_LITTLE_ENDIAN, 480 }; 481 482 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 483 hwaddr addr, unsigned size) 484 { 485 VFIONvidia3d0Quirk *quirk = opaque; 486 VFIOPCIDevice *vdev = quirk->vdev; 487 VFIONvidia3d0State old_state = quirk->state; 488 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 489 addr + 0x10, size); 490 491 quirk->state = NONE; 492 493 if (old_state == READ && 494 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 495 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 496 497 data = vfio_pci_read_config(&vdev->pdev, offset, size); 498 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, 499 offset, size, data); 500 } 501 502 return data; 503 } 504 505 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 506 uint64_t data, unsigned size) 507 { 508 VFIONvidia3d0Quirk *quirk = opaque; 509 VFIOPCIDevice *vdev = quirk->vdev; 510 VFIONvidia3d0State old_state = quirk->state; 511 512 quirk->state = NONE; 513 514 if (old_state == SELECT) { 515 quirk->offset = (uint32_t)data; 516 quirk->state = WINDOW; 517 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 518 nv3d0_states[quirk->state]); 519 } else if (old_state == WRITE) { 520 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 521 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 522 523 vfio_pci_write_config(&vdev->pdev, offset, data, size); 524 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, 525 offset, data, size); 526 return; 527 } 528 } 529 530 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 531 addr + 0x10, data, size); 532 } 533 534 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 535 .read = vfio_nvidia_3d0_quirk_read, 536 .write = vfio_nvidia_3d0_quirk_write, 537 .endianness = DEVICE_LITTLE_ENDIAN, 538 }; 539 540 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 541 { 542 VFIOQuirk *quirk; 543 VFIONvidia3d0Quirk *data; 544 545 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 546 !vdev->bars[1].region.size) { 547 return; 548 } 549 550 quirk = g_malloc0(sizeof(*quirk)); 551 quirk->data = data = g_malloc0(sizeof(*data)); 552 quirk->mem = g_new0(MemoryRegion, 2); 553 quirk->nr_mem = 2; 554 data->vdev = vdev; 555 556 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, 557 data, "vfio-nvidia-3d4-quirk", 2); 558 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 559 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); 560 561 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, 562 data, "vfio-nvidia-3d0-quirk", 2); 563 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 564 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); 565 566 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 567 quirk, next); 568 569 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); 570 } 571 572 /* 573 * The second quirk is documented in envytools. The I/O port BAR5 is just 574 * a set of address/data ports to the MMIO BARs. The BAR we care about is 575 * again BAR0. This backdoor is apparently a bit newer than the one above 576 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 577 * space, including extended space is available at the 4k @0x88000. 578 */ 579 typedef struct VFIONvidiaBAR5Quirk { 580 uint32_t master; 581 uint32_t enable; 582 MemoryRegion *addr_mem; 583 MemoryRegion *data_mem; 584 bool enabled; 585 VFIOConfigWindowQuirk window; /* last for match data */ 586 } VFIONvidiaBAR5Quirk; 587 588 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) 589 { 590 VFIOPCIDevice *vdev = bar5->window.vdev; 591 592 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { 593 return; 594 } 595 596 bar5->enabled = !bar5->enabled; 597 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, 598 bar5->enabled ? "Enable" : "Disable"); 599 memory_region_set_enabled(bar5->addr_mem, bar5->enabled); 600 memory_region_set_enabled(bar5->data_mem, bar5->enabled); 601 } 602 603 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, 604 hwaddr addr, unsigned size) 605 { 606 VFIONvidiaBAR5Quirk *bar5 = opaque; 607 VFIOPCIDevice *vdev = bar5->window.vdev; 608 609 return vfio_region_read(&vdev->bars[5].region, addr, size); 610 } 611 612 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, 613 uint64_t data, unsigned size) 614 { 615 VFIONvidiaBAR5Quirk *bar5 = opaque; 616 VFIOPCIDevice *vdev = bar5->window.vdev; 617 618 vfio_region_write(&vdev->bars[5].region, addr, data, size); 619 620 bar5->master = data; 621 vfio_nvidia_bar5_enable(bar5); 622 } 623 624 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { 625 .read = vfio_nvidia_bar5_quirk_master_read, 626 .write = vfio_nvidia_bar5_quirk_master_write, 627 .endianness = DEVICE_LITTLE_ENDIAN, 628 }; 629 630 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, 631 hwaddr addr, unsigned size) 632 { 633 VFIONvidiaBAR5Quirk *bar5 = opaque; 634 VFIOPCIDevice *vdev = bar5->window.vdev; 635 636 return vfio_region_read(&vdev->bars[5].region, addr + 4, size); 637 } 638 639 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, 640 uint64_t data, unsigned size) 641 { 642 VFIONvidiaBAR5Quirk *bar5 = opaque; 643 VFIOPCIDevice *vdev = bar5->window.vdev; 644 645 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); 646 647 bar5->enable = data; 648 vfio_nvidia_bar5_enable(bar5); 649 } 650 651 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { 652 .read = vfio_nvidia_bar5_quirk_enable_read, 653 .write = vfio_nvidia_bar5_quirk_enable_write, 654 .endianness = DEVICE_LITTLE_ENDIAN, 655 }; 656 657 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) 658 { 659 VFIOQuirk *quirk; 660 VFIONvidiaBAR5Quirk *bar5; 661 VFIOConfigWindowQuirk *window; 662 663 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 664 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) { 665 return; 666 } 667 668 quirk = g_malloc0(sizeof(*quirk)); 669 quirk->mem = g_new0(MemoryRegion, 4); 670 quirk->nr_mem = 4; 671 bar5 = quirk->data = g_malloc0(sizeof(*bar5) + 672 (sizeof(VFIOConfigWindowMatch) * 2)); 673 window = &bar5->window; 674 675 window->vdev = vdev; 676 window->address_offset = 0x8; 677 window->data_offset = 0xc; 678 window->nr_matches = 2; 679 window->matches[0].match = 0x1800; 680 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; 681 window->matches[1].match = 0x88000; 682 window->matches[1].mask = vdev->config_size - 1; 683 window->bar = nr; 684 window->addr_mem = bar5->addr_mem = &quirk->mem[0]; 685 window->data_mem = bar5->data_mem = &quirk->mem[1]; 686 687 memory_region_init_io(window->addr_mem, OBJECT(vdev), 688 &vfio_generic_window_address_quirk, window, 689 "vfio-nvidia-bar5-window-address-quirk", 4); 690 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 691 window->address_offset, 692 window->addr_mem, 1); 693 memory_region_set_enabled(window->addr_mem, false); 694 695 memory_region_init_io(window->data_mem, OBJECT(vdev), 696 &vfio_generic_window_data_quirk, window, 697 "vfio-nvidia-bar5-window-data-quirk", 4); 698 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 699 window->data_offset, 700 window->data_mem, 1); 701 memory_region_set_enabled(window->data_mem, false); 702 703 memory_region_init_io(&quirk->mem[2], OBJECT(vdev), 704 &vfio_nvidia_bar5_quirk_master, bar5, 705 "vfio-nvidia-bar5-master-quirk", 4); 706 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 707 0, &quirk->mem[2], 1); 708 709 memory_region_init_io(&quirk->mem[3], OBJECT(vdev), 710 &vfio_nvidia_bar5_quirk_enable, bar5, 711 "vfio-nvidia-bar5-enable-quirk", 4); 712 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 713 4, &quirk->mem[3], 1); 714 715 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 716 717 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); 718 } 719 720 /* 721 * Finally, BAR0 itself. We want to redirect any accesses to either 722 * 0x1800 or 0x88000 through the PCI config space access functions. 723 */ 724 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, 725 uint64_t data, unsigned size) 726 { 727 VFIOConfigMirrorQuirk *mirror = opaque; 728 VFIOPCIDevice *vdev = mirror->vdev; 729 PCIDevice *pdev = &vdev->pdev; 730 731 vfio_generic_quirk_mirror_write(opaque, addr, data, size); 732 733 /* 734 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 735 * MSI capability ID register. Both the ID and next register are 736 * read-only, so we allow writes covering either of those to real hw. 737 */ 738 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 739 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 740 vfio_region_write(&vdev->bars[mirror->bar].region, 741 addr + mirror->offset, data, size); 742 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); 743 } 744 } 745 746 static const MemoryRegionOps vfio_nvidia_mirror_quirk = { 747 .read = vfio_generic_quirk_mirror_read, 748 .write = vfio_nvidia_quirk_mirror_write, 749 .endianness = DEVICE_LITTLE_ENDIAN, 750 }; 751 752 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) 753 { 754 VFIOQuirk *quirk; 755 VFIOConfigMirrorQuirk *mirror; 756 757 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 758 !vfio_is_vga(vdev) || nr != 0) { 759 return; 760 } 761 762 quirk = g_malloc0(sizeof(*quirk)); 763 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 764 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 765 quirk->nr_mem = 1; 766 mirror->vdev = vdev; 767 mirror->offset = 0x88000; 768 mirror->bar = nr; 769 770 memory_region_init_io(mirror->mem, OBJECT(vdev), 771 &vfio_nvidia_mirror_quirk, mirror, 772 "vfio-nvidia-bar0-88000-mirror-quirk", 773 vdev->config_size); 774 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 775 mirror->offset, mirror->mem, 1); 776 777 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 778 779 /* The 0x1800 offset mirror only seems to get used by legacy VGA */ 780 if (vdev->vga) { 781 quirk = g_malloc0(sizeof(*quirk)); 782 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 783 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 784 quirk->nr_mem = 1; 785 mirror->vdev = vdev; 786 mirror->offset = 0x1800; 787 mirror->bar = nr; 788 789 memory_region_init_io(mirror->mem, OBJECT(vdev), 790 &vfio_nvidia_mirror_quirk, mirror, 791 "vfio-nvidia-bar0-1800-mirror-quirk", 792 PCI_CONFIG_SPACE_SIZE); 793 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 794 mirror->offset, mirror->mem, 1); 795 796 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 797 } 798 799 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); 800 } 801 802 /* 803 * TODO - Some Nvidia devices provide config access to their companion HDA 804 * device and even to their parent bridge via these config space mirrors. 805 * Add quirks for those regions. 806 */ 807 808 #define PCI_VENDOR_ID_REALTEK 0x10ec 809 810 /* 811 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 812 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 813 * register. According to the Linux r8169 driver, the MSI-X table is addressed 814 * when the "type" portion of the address register is set to 0x1. This appears 815 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 816 * "address latched" indicator. Bits 12:15 are a mask field, which we can 817 * ignore because the MSI-X table should always be accessed as a dword (full 818 * mask). Bits 0:11 is offset within the type. 819 * 820 * Example trace: 821 * 822 * Read from MSI-X table offset 0 823 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 824 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 825 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 826 * 827 * Write 0xfee00000 to MSI-X table offset 0 828 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 829 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 830 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 831 */ 832 typedef struct VFIOrtl8168Quirk { 833 VFIOPCIDevice *vdev; 834 uint32_t addr; 835 uint32_t data; 836 bool enabled; 837 } VFIOrtl8168Quirk; 838 839 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, 840 hwaddr addr, unsigned size) 841 { 842 VFIOrtl8168Quirk *rtl = opaque; 843 VFIOPCIDevice *vdev = rtl->vdev; 844 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); 845 846 if (rtl->enabled) { 847 data = rtl->addr ^ 0x80000000U; /* latch/complete */ 848 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); 849 } 850 851 return data; 852 } 853 854 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, 855 uint64_t data, unsigned size) 856 { 857 VFIOrtl8168Quirk *rtl = opaque; 858 VFIOPCIDevice *vdev = rtl->vdev; 859 860 rtl->enabled = false; 861 862 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ 863 rtl->enabled = true; 864 rtl->addr = (uint32_t)data; 865 866 if (data & 0x80000000U) { /* Do write */ 867 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 868 hwaddr offset = data & 0xfff; 869 uint64_t val = rtl->data; 870 871 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, 872 (uint16_t)offset, val); 873 874 /* Write to the proper guest MSI-X table instead */ 875 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 876 offset, val, size, 877 MEMTXATTRS_UNSPECIFIED); 878 } 879 return; /* Do not write guest MSI-X data to hardware */ 880 } 881 } 882 883 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); 884 } 885 886 static const MemoryRegionOps vfio_rtl_address_quirk = { 887 .read = vfio_rtl8168_quirk_address_read, 888 .write = vfio_rtl8168_quirk_address_write, 889 .valid = { 890 .min_access_size = 4, 891 .max_access_size = 4, 892 .unaligned = false, 893 }, 894 .endianness = DEVICE_LITTLE_ENDIAN, 895 }; 896 897 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, 898 hwaddr addr, unsigned size) 899 { 900 VFIOrtl8168Quirk *rtl = opaque; 901 VFIOPCIDevice *vdev = rtl->vdev; 902 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); 903 904 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 905 hwaddr offset = rtl->addr & 0xfff; 906 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, 907 &data, size, MEMTXATTRS_UNSPECIFIED); 908 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); 909 } 910 911 return data; 912 } 913 914 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, 915 uint64_t data, unsigned size) 916 { 917 VFIOrtl8168Quirk *rtl = opaque; 918 VFIOPCIDevice *vdev = rtl->vdev; 919 920 rtl->data = (uint32_t)data; 921 922 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); 923 } 924 925 static const MemoryRegionOps vfio_rtl_data_quirk = { 926 .read = vfio_rtl8168_quirk_data_read, 927 .write = vfio_rtl8168_quirk_data_write, 928 .valid = { 929 .min_access_size = 4, 930 .max_access_size = 4, 931 .unaligned = false, 932 }, 933 .endianness = DEVICE_LITTLE_ENDIAN, 934 }; 935 936 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) 937 { 938 VFIOQuirk *quirk; 939 VFIOrtl8168Quirk *rtl; 940 941 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { 942 return; 943 } 944 945 quirk = g_malloc0(sizeof(*quirk)); 946 quirk->mem = g_new0(MemoryRegion, 2); 947 quirk->nr_mem = 2; 948 quirk->data = rtl = g_malloc0(sizeof(*rtl)); 949 rtl->vdev = vdev; 950 951 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), 952 &vfio_rtl_address_quirk, rtl, 953 "vfio-rtl8168-window-address-quirk", 4); 954 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 955 0x74, &quirk->mem[0], 1); 956 957 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), 958 &vfio_rtl_data_quirk, rtl, 959 "vfio-rtl8168-window-data-quirk", 4); 960 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 961 0x70, &quirk->mem[1], 1); 962 963 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 964 965 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); 966 } 967 968 /* 969 * Intel IGD support 970 * 971 * Obviously IGD is not a discrete device, this is evidenced not only by it 972 * being integrated into the CPU, but by the various chipset and BIOS 973 * dependencies that it brings along with it. Intel is trying to move away 974 * from this and Broadwell and newer devices can run in what Intel calls 975 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing 976 * more is required beyond assigning the IGD device to a VM. There are 977 * however support limitations to this mode. It only supports IGD as a 978 * secondary graphics device in the VM and it doesn't officially support any 979 * physical outputs. 980 * 981 * The code here attempts to enable what we'll call legacy mode assignment, 982 * IGD retains most of the capabilities we expect for it to have on bare 983 * metal. To enable this mode, the IGD device must be assigned to the VM 984 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA 985 * support, we must have VM BIOS support for reserving and populating some 986 * of the required tables, and we need to tweak the chipset with revisions 987 * and IDs and an LPC/ISA bridge device. The intention is to make all of 988 * this happen automatically by installing the device at the correct VM PCI 989 * bus address. If any of the conditions are not met, we cross our fingers 990 * and hope the user knows better. 991 * 992 * NB - It is possible to enable physical outputs in UPT mode by supplying 993 * an OpRegion table. We don't do this by default because the guest driver 994 * behaves differently if an OpRegion is provided and no monitor is attached 995 * vs no OpRegion and a monitor being attached or not. Effectively, if a 996 * headless setup is desired, the OpRegion gets in the way of that. 997 */ 998 999 /* 1000 * This presumes the device is already known to be an Intel VGA device, so we 1001 * take liberties in which device ID bits match which generation. This should 1002 * not be taken as an indication that all the devices are supported, or even 1003 * supportable, some of them don't even support VT-d. 1004 * See linux:include/drm/i915_pciids.h for IDs. 1005 */ 1006 static int igd_gen(VFIOPCIDevice *vdev) 1007 { 1008 if ((vdev->device_id & 0xfff) == 0xa84) { 1009 return 8; /* Broxton */ 1010 } 1011 1012 switch (vdev->device_id & 0xff00) { 1013 /* Old, untested, unavailable, unknown */ 1014 case 0x0000: 1015 case 0x2500: 1016 case 0x2700: 1017 case 0x2900: 1018 case 0x2a00: 1019 case 0x2e00: 1020 case 0x3500: 1021 case 0xa000: 1022 return -1; 1023 /* SandyBridge, IvyBridge, ValleyView, Haswell */ 1024 case 0x0100: 1025 case 0x0400: 1026 case 0x0a00: 1027 case 0x0c00: 1028 case 0x0d00: 1029 case 0x0f00: 1030 return 6; 1031 /* BroadWell, CherryView, SkyLake, KabyLake */ 1032 case 0x1600: 1033 case 0x1900: 1034 case 0x2200: 1035 case 0x5900: 1036 return 8; 1037 } 1038 1039 return 8; /* Assume newer is compatible */ 1040 } 1041 1042 typedef struct VFIOIGDQuirk { 1043 struct VFIOPCIDevice *vdev; 1044 uint32_t index; 1045 uint32_t bdsm; 1046 } VFIOIGDQuirk; 1047 1048 #define IGD_GMCH 0x50 /* Graphics Control Register */ 1049 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */ 1050 #define IGD_ASLS 0xfc /* ASL Storage Register */ 1051 1052 /* 1053 * The OpRegion includes the Video BIOS Table, which seems important for 1054 * telling the driver what sort of outputs it has. Without this, the device 1055 * may work in the guest, but we may not get output. This also requires BIOS 1056 * support to reserve and populate a section of guest memory sufficient for 1057 * the table and to write the base address of that memory to the ASLS register 1058 * of the IGD device. 1059 */ 1060 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, 1061 struct vfio_region_info *info, Error **errp) 1062 { 1063 int ret; 1064 1065 vdev->igd_opregion = g_malloc0(info->size); 1066 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, 1067 info->size, info->offset); 1068 if (ret != info->size) { 1069 error_setg(errp, "failed to read IGD OpRegion"); 1070 g_free(vdev->igd_opregion); 1071 vdev->igd_opregion = NULL; 1072 return -EINVAL; 1073 } 1074 1075 /* 1076 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to 1077 * allocate 32bit reserved memory for, copy these contents into, and write 1078 * the reserved memory base address to the device ASLS register at 0xFC. 1079 * Alignment of this reserved region seems flexible, but using a 4k page 1080 * alignment seems to work well. This interface assumes a single IGD 1081 * device, which may be at VM address 00:02.0 in legacy mode or another 1082 * address in UPT mode. 1083 * 1084 * NB, there may be future use cases discovered where the VM should have 1085 * direct interaction with the host OpRegion, in which case the write to 1086 * the ASLS register would trigger MemoryRegion setup to enable that. 1087 */ 1088 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", 1089 vdev->igd_opregion, info->size); 1090 1091 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); 1092 1093 pci_set_long(vdev->pdev.config + IGD_ASLS, 0); 1094 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); 1095 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); 1096 1097 return 0; 1098 } 1099 1100 /* 1101 * The rather short list of registers that we copy from the host devices. 1102 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the 1103 * host bridge values may or may not be needed depending on the guest OS. 1104 * Since we're only munging revision and subsystem values on the host bridge, 1105 * we don't require our own device. The LPC/ISA bridge needs to be our very 1106 * own though. 1107 */ 1108 typedef struct { 1109 uint8_t offset; 1110 uint8_t len; 1111 } IGDHostInfo; 1112 1113 static const IGDHostInfo igd_host_bridge_infos[] = { 1114 {PCI_REVISION_ID, 2}, 1115 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1116 {PCI_SUBSYSTEM_ID, 2}, 1117 }; 1118 1119 static const IGDHostInfo igd_lpc_bridge_infos[] = { 1120 {PCI_VENDOR_ID, 2}, 1121 {PCI_DEVICE_ID, 2}, 1122 {PCI_REVISION_ID, 2}, 1123 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1124 {PCI_SUBSYSTEM_ID, 2}, 1125 }; 1126 1127 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev, 1128 struct vfio_region_info *info, 1129 const IGDHostInfo *list, int len) 1130 { 1131 int i, ret; 1132 1133 for (i = 0; i < len; i++) { 1134 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset, 1135 list[i].len, info->offset + list[i].offset); 1136 if (ret != list[i].len) { 1137 error_report("IGD copy failed: %m"); 1138 return -errno; 1139 } 1140 } 1141 1142 return 0; 1143 } 1144 1145 /* 1146 * Stuff a few values into the host bridge. 1147 */ 1148 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev, 1149 struct vfio_region_info *info) 1150 { 1151 PCIBus *bus; 1152 PCIDevice *host_bridge; 1153 int ret; 1154 1155 bus = pci_device_root_bus(&vdev->pdev); 1156 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0)); 1157 1158 if (!host_bridge) { 1159 error_report("Can't find host bridge"); 1160 return -ENODEV; 1161 } 1162 1163 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos, 1164 ARRAY_SIZE(igd_host_bridge_infos)); 1165 if (!ret) { 1166 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name); 1167 } 1168 1169 return ret; 1170 } 1171 1172 /* 1173 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write 1174 * arbitrary values into just any bridge, so we must create our own. We try 1175 * to handle if the user has created it for us, which they might want to do 1176 * to enable multifunction so we don't occupy the whole PCI slot. 1177 */ 1178 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp) 1179 { 1180 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) { 1181 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0"); 1182 } 1183 } 1184 1185 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data) 1186 { 1187 DeviceClass *dc = DEVICE_CLASS(klass); 1188 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1189 1190 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1191 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment"; 1192 dc->hotpluggable = false; 1193 k->realize = vfio_pci_igd_lpc_bridge_realize; 1194 k->class_id = PCI_CLASS_BRIDGE_ISA; 1195 } 1196 1197 static TypeInfo vfio_pci_igd_lpc_bridge_info = { 1198 .name = "vfio-pci-igd-lpc-bridge", 1199 .parent = TYPE_PCI_DEVICE, 1200 .class_init = vfio_pci_igd_lpc_bridge_class_init, 1201 }; 1202 1203 static void vfio_pci_igd_register_types(void) 1204 { 1205 type_register_static(&vfio_pci_igd_lpc_bridge_info); 1206 } 1207 1208 type_init(vfio_pci_igd_register_types) 1209 1210 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev, 1211 struct vfio_region_info *info) 1212 { 1213 PCIDevice *lpc_bridge; 1214 int ret; 1215 1216 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1217 0, PCI_DEVFN(0x1f, 0)); 1218 if (!lpc_bridge) { 1219 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev), 1220 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge"); 1221 } 1222 1223 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos, 1224 ARRAY_SIZE(igd_lpc_bridge_infos)); 1225 if (!ret) { 1226 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name); 1227 } 1228 1229 return ret; 1230 } 1231 1232 /* 1233 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE 1234 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore 1235 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index 1236 * for programming the GTT. 1237 * 1238 * See linux:include/drm/i915_drm.h for shift and mask values. 1239 */ 1240 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev) 1241 { 1242 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1243 int ggms, gen = igd_gen(vdev); 1244 1245 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1246 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1247 if (gen > 6) { 1248 ggms = 1 << ggms; 1249 } 1250 1251 ggms *= 1024 * 1024; 1252 1253 return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8); 1254 } 1255 1256 /* 1257 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes. 1258 * Somehow the host stolen memory range is used for this, but how the ROM gets 1259 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it 1260 * reprograms the GTT through the IOBAR where we can trap it and transpose the 1261 * programming to the VM allocated buffer. That buffer gets reserved by the VM 1262 * firmware via the fw_cfg entry added below. Here we're just monitoring the 1263 * IOBAR address and data registers to detect a write sequence targeting the 1264 * GTTADR. This code is developed by observed behavior and doesn't have a 1265 * direct spec reference, unfortunately. 1266 */ 1267 static uint64_t vfio_igd_quirk_data_read(void *opaque, 1268 hwaddr addr, unsigned size) 1269 { 1270 VFIOIGDQuirk *igd = opaque; 1271 VFIOPCIDevice *vdev = igd->vdev; 1272 1273 igd->index = ~0; 1274 1275 return vfio_region_read(&vdev->bars[4].region, addr + 4, size); 1276 } 1277 1278 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr, 1279 uint64_t data, unsigned size) 1280 { 1281 VFIOIGDQuirk *igd = opaque; 1282 VFIOPCIDevice *vdev = igd->vdev; 1283 uint64_t val = data; 1284 int gen = igd_gen(vdev); 1285 1286 /* 1287 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie. 1288 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE 1289 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so 1290 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points 1291 * to a 4k page, which we translate to a page from the VM allocated region, 1292 * pointed to by the BDSM register. If this is not set, we fail. 1293 * 1294 * We trap writes to the full configured GTT size, but we typically only 1295 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often 1296 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous 1297 * write of that last entry does work, but is hopefully unnecessary since 1298 * we clear the previous GTT on initialization. 1299 */ 1300 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) { 1301 if (gen < 8 || (igd->index % 8 == 1)) { 1302 uint32_t base; 1303 1304 base = pci_get_long(vdev->pdev.config + IGD_BDSM); 1305 if (!base) { 1306 hw_error("vfio-igd: Guest attempted to program IGD GTT before " 1307 "BIOS reserved stolen memory. Unsupported BIOS?"); 1308 } 1309 1310 val = data - igd->bdsm + base; 1311 } else { 1312 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */ 1313 } 1314 1315 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name, 1316 igd->index, data, val); 1317 } 1318 1319 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size); 1320 1321 igd->index = ~0; 1322 } 1323 1324 static const MemoryRegionOps vfio_igd_data_quirk = { 1325 .read = vfio_igd_quirk_data_read, 1326 .write = vfio_igd_quirk_data_write, 1327 .endianness = DEVICE_LITTLE_ENDIAN, 1328 }; 1329 1330 static uint64_t vfio_igd_quirk_index_read(void *opaque, 1331 hwaddr addr, unsigned size) 1332 { 1333 VFIOIGDQuirk *igd = opaque; 1334 VFIOPCIDevice *vdev = igd->vdev; 1335 1336 igd->index = ~0; 1337 1338 return vfio_region_read(&vdev->bars[4].region, addr, size); 1339 } 1340 1341 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr, 1342 uint64_t data, unsigned size) 1343 { 1344 VFIOIGDQuirk *igd = opaque; 1345 VFIOPCIDevice *vdev = igd->vdev; 1346 1347 igd->index = data; 1348 1349 vfio_region_write(&vdev->bars[4].region, addr, data, size); 1350 } 1351 1352 static const MemoryRegionOps vfio_igd_index_quirk = { 1353 .read = vfio_igd_quirk_index_read, 1354 .write = vfio_igd_quirk_index_write, 1355 .endianness = DEVICE_LITTLE_ENDIAN, 1356 }; 1357 1358 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) 1359 { 1360 struct vfio_region_info *rom = NULL, *opregion = NULL, 1361 *host = NULL, *lpc = NULL; 1362 VFIOQuirk *quirk; 1363 VFIOIGDQuirk *igd; 1364 PCIDevice *lpc_bridge; 1365 int i, ret, ggms_mb, gms_mb = 0, gen; 1366 uint64_t *bdsm_size; 1367 uint32_t gmch; 1368 uint16_t cmd_orig, cmd; 1369 Error *err = NULL; 1370 1371 /* 1372 * This must be an Intel VGA device at address 00:02.0 for us to even 1373 * consider enabling legacy mode. The vBIOS has dependencies on the 1374 * PCI bus address. 1375 */ 1376 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || 1377 !vfio_is_vga(vdev) || nr != 4 || 1378 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 1379 0, PCI_DEVFN(0x2, 0))) { 1380 return; 1381 } 1382 1383 /* 1384 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we 1385 * can stuff host values into, so if there's already one there and it's not 1386 * one we can hack on, legacy mode is no-go. Sorry Q35. 1387 */ 1388 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1389 0, PCI_DEVFN(0x1f, 0)); 1390 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), 1391 "vfio-pci-igd-lpc-bridge")) { 1392 error_report("IGD device %s cannot support legacy mode due to existing " 1393 "devices at address 1f.0", vdev->vbasedev.name); 1394 return; 1395 } 1396 1397 /* 1398 * IGD is not a standard, they like to change their specs often. We 1399 * only attempt to support back to SandBridge and we hope that newer 1400 * devices maintain compatibility with generation 8. 1401 */ 1402 gen = igd_gen(vdev); 1403 if (gen != 6 && gen != 8) { 1404 error_report("IGD device %s is unsupported in legacy mode, " 1405 "try SandyBridge or newer", vdev->vbasedev.name); 1406 return; 1407 } 1408 1409 /* 1410 * Most of what we're doing here is to enable the ROM to run, so if 1411 * there's no ROM, there's no point in setting up this quirk. 1412 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. 1413 */ 1414 ret = vfio_get_region_info(&vdev->vbasedev, 1415 VFIO_PCI_ROM_REGION_INDEX, &rom); 1416 if ((ret || !rom->size) && !vdev->pdev.romfile) { 1417 error_report("IGD device %s has no ROM, legacy mode disabled", 1418 vdev->vbasedev.name); 1419 goto out; 1420 } 1421 1422 /* 1423 * Ignore the hotplug corner case, mark the ROM failed, we can't 1424 * create the devices we need for legacy mode in the hotplug scenario. 1425 */ 1426 if (vdev->pdev.qdev.hotplugged) { 1427 error_report("IGD device %s hotplugged, ROM disabled, " 1428 "legacy mode disabled", vdev->vbasedev.name); 1429 vdev->rom_read_failed = true; 1430 goto out; 1431 } 1432 1433 /* 1434 * Check whether we have all the vfio device specific regions to 1435 * support legacy mode (added in Linux v4.6). If not, bail. 1436 */ 1437 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1438 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1439 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); 1440 if (ret) { 1441 error_report("IGD device %s does not support OpRegion access," 1442 "legacy mode disabled", vdev->vbasedev.name); 1443 goto out; 1444 } 1445 1446 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1447 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1448 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); 1449 if (ret) { 1450 error_report("IGD device %s does not support host bridge access," 1451 "legacy mode disabled", vdev->vbasedev.name); 1452 goto out; 1453 } 1454 1455 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1456 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1457 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); 1458 if (ret) { 1459 error_report("IGD device %s does not support LPC bridge access," 1460 "legacy mode disabled", vdev->vbasedev.name); 1461 goto out; 1462 } 1463 1464 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); 1465 1466 /* 1467 * If IGD VGA Disable is clear (expected) and VGA is not already enabled, 1468 * try to enable it. Probably shouldn't be using legacy mode without VGA, 1469 * but also no point in us enabling VGA if disabled in hardware. 1470 */ 1471 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) { 1472 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); 1473 error_report("IGD device %s failed to enable VGA access, " 1474 "legacy mode disabled", vdev->vbasedev.name); 1475 goto out; 1476 } 1477 1478 /* Create our LPC/ISA bridge */ 1479 ret = vfio_pci_igd_lpc_init(vdev, lpc); 1480 if (ret) { 1481 error_report("IGD device %s failed to create LPC bridge, " 1482 "legacy mode disabled", vdev->vbasedev.name); 1483 goto out; 1484 } 1485 1486 /* Stuff some host values into the VM PCI host bridge */ 1487 ret = vfio_pci_igd_host_init(vdev, host); 1488 if (ret) { 1489 error_report("IGD device %s failed to modify host bridge, " 1490 "legacy mode disabled", vdev->vbasedev.name); 1491 goto out; 1492 } 1493 1494 /* Setup OpRegion access */ 1495 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err); 1496 if (ret) { 1497 error_append_hint(&err, "IGD legacy mode disabled\n"); 1498 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); 1499 goto out; 1500 } 1501 1502 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ 1503 quirk = g_malloc0(sizeof(*quirk)); 1504 quirk->mem = g_new0(MemoryRegion, 2); 1505 quirk->nr_mem = 2; 1506 igd = quirk->data = g_malloc0(sizeof(*igd)); 1507 igd->vdev = vdev; 1508 igd->index = ~0; 1509 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4); 1510 igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */ 1511 1512 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, 1513 igd, "vfio-igd-index-quirk", 4); 1514 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1515 0, &quirk->mem[0], 1); 1516 1517 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, 1518 igd, "vfio-igd-data-quirk", 4); 1519 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1520 4, &quirk->mem[1], 1); 1521 1522 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1523 1524 /* Determine the size of stolen memory needed for GTT */ 1525 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1526 if (gen > 6) { 1527 ggms_mb = 1 << ggms_mb; 1528 } 1529 1530 /* 1531 * Assume we have no GMS memory, but allow it to be overrided by device 1532 * option (experimental). The spec doesn't actually allow zero GMS when 1533 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused, 1534 * so let's not waste VM memory for it. 1535 */ 1536 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8)); 1537 1538 if (vdev->igd_gms) { 1539 if (vdev->igd_gms <= 0x10) { 1540 gms_mb = vdev->igd_gms * 32; 1541 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8); 1542 } else { 1543 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms); 1544 vdev->igd_gms = 0; 1545 } 1546 } 1547 1548 /* 1549 * Request reserved memory for stolen memory via fw_cfg. VM firmware 1550 * must allocate a 1MB aligned reserved memory region below 4GB with 1551 * the requested size (in bytes) for use by the Intel PCI class VGA 1552 * device at VM address 00:02.0. The base address of this reserved 1553 * memory region must be written to the device BDSM regsiter at PCI 1554 * config offset 0x5C. 1555 */ 1556 bdsm_size = g_malloc(sizeof(*bdsm_size)); 1557 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024); 1558 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", 1559 bdsm_size, sizeof(*bdsm_size)); 1560 1561 /* GMCH is read-only, emulated */ 1562 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); 1563 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); 1564 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); 1565 1566 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ 1567 pci_set_long(vdev->pdev.config + IGD_BDSM, 0); 1568 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); 1569 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); 1570 1571 /* 1572 * This IOBAR gives us access to GTTADR, which allows us to write to 1573 * the GTT itself. So let's go ahead and write zero to all the GTT 1574 * entries to avoid spurious DMA faults. Be sure I/O access is enabled 1575 * before talking to the device. 1576 */ 1577 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1578 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1579 error_report("IGD device %s - failed to read PCI command register", 1580 vdev->vbasedev.name); 1581 } 1582 1583 cmd = cmd_orig | PCI_COMMAND_IO; 1584 1585 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), 1586 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { 1587 error_report("IGD device %s - failed to write PCI command register", 1588 vdev->vbasedev.name); 1589 } 1590 1591 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { 1592 vfio_region_write(&vdev->bars[4].region, 0, i, 4); 1593 vfio_region_write(&vdev->bars[4].region, 4, 0, 4); 1594 } 1595 1596 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1597 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1598 error_report("IGD device %s - failed to restore PCI command register", 1599 vdev->vbasedev.name); 1600 } 1601 1602 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); 1603 1604 out: 1605 g_free(rom); 1606 g_free(opregion); 1607 g_free(host); 1608 g_free(lpc); 1609 } 1610 1611 /* 1612 * Common quirk probe entry points. 1613 */ 1614 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 1615 { 1616 vfio_vga_probe_ati_3c3_quirk(vdev); 1617 vfio_vga_probe_nvidia_3d0_quirk(vdev); 1618 } 1619 1620 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) 1621 { 1622 VFIOQuirk *quirk; 1623 int i, j; 1624 1625 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1626 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { 1627 for (j = 0; j < quirk->nr_mem; j++) { 1628 memory_region_del_subregion(&vdev->vga->region[i].mem, 1629 &quirk->mem[j]); 1630 } 1631 } 1632 } 1633 } 1634 1635 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) 1636 { 1637 int i, j; 1638 1639 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1640 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { 1641 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); 1642 QLIST_REMOVE(quirk, next); 1643 for (j = 0; j < quirk->nr_mem; j++) { 1644 object_unparent(OBJECT(&quirk->mem[j])); 1645 } 1646 g_free(quirk->mem); 1647 g_free(quirk->data); 1648 g_free(quirk); 1649 } 1650 } 1651 } 1652 1653 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 1654 { 1655 vfio_probe_ati_bar4_quirk(vdev, nr); 1656 vfio_probe_ati_bar2_quirk(vdev, nr); 1657 vfio_probe_nvidia_bar5_quirk(vdev, nr); 1658 vfio_probe_nvidia_bar0_quirk(vdev, nr); 1659 vfio_probe_rtl8168_bar2_quirk(vdev, nr); 1660 vfio_probe_igd_bar4_quirk(vdev, nr); 1661 } 1662 1663 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) 1664 { 1665 VFIOBAR *bar = &vdev->bars[nr]; 1666 VFIOQuirk *quirk; 1667 int i; 1668 1669 QLIST_FOREACH(quirk, &bar->quirks, next) { 1670 for (i = 0; i < quirk->nr_mem; i++) { 1671 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); 1672 } 1673 } 1674 } 1675 1676 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) 1677 { 1678 VFIOBAR *bar = &vdev->bars[nr]; 1679 int i; 1680 1681 while (!QLIST_EMPTY(&bar->quirks)) { 1682 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 1683 QLIST_REMOVE(quirk, next); 1684 for (i = 0; i < quirk->nr_mem; i++) { 1685 object_unparent(OBJECT(&quirk->mem[i])); 1686 } 1687 g_free(quirk->mem); 1688 g_free(quirk->data); 1689 g_free(quirk); 1690 } 1691 } 1692 1693 /* 1694 * Reset quirks 1695 */ 1696 1697 /* 1698 * AMD Radeon PCI config reset, based on Linux: 1699 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() 1700 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset 1701 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() 1702 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() 1703 * IDs: include/drm/drm_pciids.h 1704 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 1705 * 1706 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the 1707 * hardware that should be fixed on future ASICs. The symptom of this is that 1708 * once the accerlated driver loads, Windows guests will bsod on subsequent 1709 * attmpts to load the driver, such as after VM reset or shutdown/restart. To 1710 * work around this, we do an AMD specific PCI config reset, followed by an SMC 1711 * reset. The PCI config reset only works if SMC firmware is running, so we 1712 * have a dependency on the state of the device as to whether this reset will 1713 * be effective. There are still cases where we won't be able to kick the 1714 * device into working, but this greatly improves the usability overall. The 1715 * config reset magic is relatively common on AMD GPUs, but the setup and SMC 1716 * poking is largely ASIC specific. 1717 */ 1718 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) 1719 { 1720 uint32_t clk, pc_c; 1721 1722 /* 1723 * Registers 200h and 204h are index and data registers for accessing 1724 * indirect configuration registers within the device. 1725 */ 1726 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1727 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1728 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); 1729 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1730 1731 return (!(clk & 1) && (0x20100 <= pc_c)); 1732 } 1733 1734 /* 1735 * The scope of a config reset is controlled by a mode bit in the misc register 1736 * and a fuse, exposed as a bit in another register. The fuse is the default 1737 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula 1738 * scope = !(misc ^ fuse), where the resulting scope is defined the same as 1739 * the fuse. A truth table therefore tells us that if misc == fuse, we need 1740 * to flip the value of the bit in the misc register. 1741 */ 1742 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) 1743 { 1744 uint32_t misc, fuse; 1745 bool a, b; 1746 1747 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); 1748 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1749 b = fuse & 64; 1750 1751 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); 1752 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1753 a = misc & 2; 1754 1755 if (a == b) { 1756 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); 1757 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ 1758 } 1759 } 1760 1761 static int vfio_radeon_reset(VFIOPCIDevice *vdev) 1762 { 1763 PCIDevice *pdev = &vdev->pdev; 1764 int i, ret = 0; 1765 uint32_t data; 1766 1767 /* Defer to a kernel implemented reset */ 1768 if (vdev->vbasedev.reset_works) { 1769 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); 1770 return -ENODEV; 1771 } 1772 1773 /* Enable only memory BAR access */ 1774 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); 1775 1776 /* Reset only works if SMC firmware is loaded and running */ 1777 if (!vfio_radeon_smc_is_running(vdev)) { 1778 ret = -EINVAL; 1779 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); 1780 goto out; 1781 } 1782 1783 /* Make sure only the GFX function is reset */ 1784 vfio_radeon_set_gfx_only_reset(vdev); 1785 1786 /* AMD PCI config reset */ 1787 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); 1788 usleep(100); 1789 1790 /* Read back the memory size to make sure we're out of reset */ 1791 for (i = 0; i < 100000; i++) { 1792 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { 1793 goto reset_smc; 1794 } 1795 usleep(1); 1796 } 1797 1798 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); 1799 1800 reset_smc: 1801 /* Reset SMC */ 1802 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); 1803 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1804 data |= 1; 1805 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 1806 1807 /* Disable SMC clock */ 1808 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1809 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1810 data |= 1; 1811 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 1812 1813 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); 1814 1815 out: 1816 /* Restore PCI command register */ 1817 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); 1818 1819 return ret; 1820 } 1821 1822 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) 1823 { 1824 switch (vdev->vendor_id) { 1825 case 0x1002: 1826 switch (vdev->device_id) { 1827 /* Bonaire */ 1828 case 0x6649: /* Bonaire [FirePro W5100] */ 1829 case 0x6650: 1830 case 0x6651: 1831 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ 1832 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ 1833 case 0x665d: /* Bonaire [Radeon R7 200 Series] */ 1834 /* Hawaii */ 1835 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ 1836 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ 1837 case 0x67A2: 1838 case 0x67A8: 1839 case 0x67A9: 1840 case 0x67AA: 1841 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ 1842 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ 1843 case 0x67B8: 1844 case 0x67B9: 1845 case 0x67BA: 1846 case 0x67BE: 1847 vdev->resetfn = vfio_radeon_reset; 1848 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); 1849 break; 1850 } 1851 break; 1852 } 1853 } 1854 1855 /* 1856 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify 1857 * devices as a member of a clique. Devices within the same clique ID 1858 * are capable of direct P2P. It's the user's responsibility that this 1859 * is correct. The spec says that this may reside at any unused config 1860 * offset, but reserves and recommends hypervisors place this at C8h. 1861 * The spec also states that the hypervisor should place this capability 1862 * at the end of the capability list, thus next is defined as 0h. 1863 * 1864 * +----------------+----------------+----------------+----------------+ 1865 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) | 1866 * +----------------+----------------+----------------+----------------+ 1867 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') | 1868 * +---------------------------------+---------------------------------+ 1869 * 1870 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf 1871 */ 1872 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v, 1873 const char *name, void *opaque, 1874 Error **errp) 1875 { 1876 DeviceState *dev = DEVICE(obj); 1877 Property *prop = opaque; 1878 uint8_t *ptr = qdev_get_prop_ptr(dev, prop); 1879 1880 visit_type_uint8(v, name, ptr, errp); 1881 } 1882 1883 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v, 1884 const char *name, void *opaque, 1885 Error **errp) 1886 { 1887 DeviceState *dev = DEVICE(obj); 1888 Property *prop = opaque; 1889 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop); 1890 Error *local_err = NULL; 1891 1892 if (dev->realized) { 1893 qdev_prop_set_after_realize(dev, name, errp); 1894 return; 1895 } 1896 1897 visit_type_uint8(v, name, &value, &local_err); 1898 if (local_err) { 1899 error_propagate(errp, local_err); 1900 return; 1901 } 1902 1903 if (value & ~0xF) { 1904 error_setg(errp, "Property %s: valid range 0-15", name); 1905 return; 1906 } 1907 1908 *ptr = value; 1909 } 1910 1911 const PropertyInfo qdev_prop_nv_gpudirect_clique = { 1912 .name = "uint4", 1913 .description = "NVIDIA GPUDirect Clique ID (0 - 15)", 1914 .get = get_nv_gpudirect_clique_id, 1915 .set = set_nv_gpudirect_clique_id, 1916 }; 1917 1918 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp) 1919 { 1920 PCIDevice *pdev = &vdev->pdev; 1921 int ret, pos = 0xC8; 1922 1923 if (vdev->nv_gpudirect_clique == 0xFF) { 1924 return 0; 1925 } 1926 1927 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { 1928 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor"); 1929 return -EINVAL; 1930 } 1931 1932 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) != 1933 PCI_BASE_CLASS_DISPLAY) { 1934 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class"); 1935 return -EINVAL; 1936 } 1937 1938 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp); 1939 if (ret < 0) { 1940 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: "); 1941 return ret; 1942 } 1943 1944 memset(vdev->emulated_config_bits + pos, 0xFF, 8); 1945 pos += PCI_CAP_FLAGS; 1946 pci_set_byte(pdev->config + pos++, 8); 1947 pci_set_byte(pdev->config + pos++, 'P'); 1948 pci_set_byte(pdev->config + pos++, '2'); 1949 pci_set_byte(pdev->config + pos++, 'P'); 1950 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3); 1951 pci_set_byte(pdev->config + pos, 0); 1952 1953 return 0; 1954 } 1955 1956 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp) 1957 { 1958 int ret; 1959 1960 ret = vfio_add_nv_gpudirect_cap(vdev, errp); 1961 if (ret) { 1962 return ret; 1963 } 1964 1965 return 0; 1966 } 1967