1 /* 2 * device quirks for PCI devices 3 * 4 * Copyright Red Hat, Inc. 2012-2015 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/error-report.h" 15 #include "qemu/range.h" 16 #include "qapi/error.h" 17 #include "hw/nvram/fw_cfg.h" 18 #include "pci.h" 19 #include "trace.h" 20 21 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */ 22 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device) 23 { 24 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) && 25 (device == PCI_ANY_ID || device == vdev->device_id); 26 } 27 28 static bool vfio_is_vga(VFIOPCIDevice *vdev) 29 { 30 PCIDevice *pdev = &vdev->pdev; 31 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 32 33 return class == PCI_CLASS_DISPLAY_VGA; 34 } 35 36 /* 37 * List of device ids/vendor ids for which to disable 38 * option rom loading. This avoids the guest hangs during rom 39 * execution as noticed with the BCM 57810 card for lack of a 40 * more better way to handle such issues. 41 * The user can still override by specifying a romfile or 42 * rombar=1. 43 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 44 * for an analysis of the 57810 card hang. When adding 45 * a new vendor id/device id combination below, please also add 46 * your card/environment details and information that could 47 * help in debugging to the bug tracking this issue 48 */ 49 static const struct { 50 uint32_t vendor; 51 uint32_t device; 52 } romblacklist[] = { 53 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ 54 }; 55 56 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 57 { 58 int i; 59 60 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) { 61 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) { 62 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name, 63 romblacklist[i].vendor, 64 romblacklist[i].device); 65 return true; 66 } 67 } 68 return false; 69 } 70 71 /* 72 * Device specific region quirks (mostly backdoors to PCI config space) 73 */ 74 75 /* 76 * The generic window quirks operate on an address and data register, 77 * vfio_generic_window_address_quirk handles the address register and 78 * vfio_generic_window_data_quirk handles the data register. These ops 79 * pass reads and writes through to hardware until a value matching the 80 * stored address match/mask is written. When this occurs, the data 81 * register access emulated PCI config space for the device rather than 82 * passing through accesses. This enables devices where PCI config space 83 * is accessible behind a window register to maintain the virtualization 84 * provided through vfio. 85 */ 86 typedef struct VFIOConfigWindowMatch { 87 uint32_t match; 88 uint32_t mask; 89 } VFIOConfigWindowMatch; 90 91 typedef struct VFIOConfigWindowQuirk { 92 struct VFIOPCIDevice *vdev; 93 94 uint32_t address_val; 95 96 uint32_t address_offset; 97 uint32_t data_offset; 98 99 bool window_enabled; 100 uint8_t bar; 101 102 MemoryRegion *addr_mem; 103 MemoryRegion *data_mem; 104 105 uint32_t nr_matches; 106 VFIOConfigWindowMatch matches[]; 107 } VFIOConfigWindowQuirk; 108 109 static uint64_t vfio_generic_window_quirk_address_read(void *opaque, 110 hwaddr addr, 111 unsigned size) 112 { 113 VFIOConfigWindowQuirk *window = opaque; 114 VFIOPCIDevice *vdev = window->vdev; 115 116 return vfio_region_read(&vdev->bars[window->bar].region, 117 addr + window->address_offset, size); 118 } 119 120 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, 121 uint64_t data, 122 unsigned size) 123 { 124 VFIOConfigWindowQuirk *window = opaque; 125 VFIOPCIDevice *vdev = window->vdev; 126 int i; 127 128 window->window_enabled = false; 129 130 vfio_region_write(&vdev->bars[window->bar].region, 131 addr + window->address_offset, data, size); 132 133 for (i = 0; i < window->nr_matches; i++) { 134 if ((data & ~window->matches[i].mask) == window->matches[i].match) { 135 window->window_enabled = true; 136 window->address_val = data & window->matches[i].mask; 137 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, 138 memory_region_name(window->addr_mem), data); 139 break; 140 } 141 } 142 } 143 144 static const MemoryRegionOps vfio_generic_window_address_quirk = { 145 .read = vfio_generic_window_quirk_address_read, 146 .write = vfio_generic_window_quirk_address_write, 147 .endianness = DEVICE_LITTLE_ENDIAN, 148 }; 149 150 static uint64_t vfio_generic_window_quirk_data_read(void *opaque, 151 hwaddr addr, unsigned size) 152 { 153 VFIOConfigWindowQuirk *window = opaque; 154 VFIOPCIDevice *vdev = window->vdev; 155 uint64_t data; 156 157 /* Always read data reg, discard if window enabled */ 158 data = vfio_region_read(&vdev->bars[window->bar].region, 159 addr + window->data_offset, size); 160 161 if (window->window_enabled) { 162 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); 163 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, 164 memory_region_name(window->data_mem), data); 165 } 166 167 return data; 168 } 169 170 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, 171 uint64_t data, unsigned size) 172 { 173 VFIOConfigWindowQuirk *window = opaque; 174 VFIOPCIDevice *vdev = window->vdev; 175 176 if (window->window_enabled) { 177 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); 178 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, 179 memory_region_name(window->data_mem), data); 180 return; 181 } 182 183 vfio_region_write(&vdev->bars[window->bar].region, 184 addr + window->data_offset, data, size); 185 } 186 187 static const MemoryRegionOps vfio_generic_window_data_quirk = { 188 .read = vfio_generic_window_quirk_data_read, 189 .write = vfio_generic_window_quirk_data_write, 190 .endianness = DEVICE_LITTLE_ENDIAN, 191 }; 192 193 /* 194 * The generic mirror quirk handles devices which expose PCI config space 195 * through a region within a BAR. When enabled, reads and writes are 196 * redirected through to emulated PCI config space. XXX if PCI config space 197 * used memory regions, this could just be an alias. 198 */ 199 typedef struct VFIOConfigMirrorQuirk { 200 struct VFIOPCIDevice *vdev; 201 uint32_t offset; 202 uint8_t bar; 203 MemoryRegion *mem; 204 } VFIOConfigMirrorQuirk; 205 206 static uint64_t vfio_generic_quirk_mirror_read(void *opaque, 207 hwaddr addr, unsigned size) 208 { 209 VFIOConfigMirrorQuirk *mirror = opaque; 210 VFIOPCIDevice *vdev = mirror->vdev; 211 uint64_t data; 212 213 /* Read and discard in case the hardware cares */ 214 (void)vfio_region_read(&vdev->bars[mirror->bar].region, 215 addr + mirror->offset, size); 216 217 data = vfio_pci_read_config(&vdev->pdev, addr, size); 218 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, 219 memory_region_name(mirror->mem), 220 addr, data); 221 return data; 222 } 223 224 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, 225 uint64_t data, unsigned size) 226 { 227 VFIOConfigMirrorQuirk *mirror = opaque; 228 VFIOPCIDevice *vdev = mirror->vdev; 229 230 vfio_pci_write_config(&vdev->pdev, addr, data, size); 231 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, 232 memory_region_name(mirror->mem), 233 addr, data); 234 } 235 236 static const MemoryRegionOps vfio_generic_mirror_quirk = { 237 .read = vfio_generic_quirk_mirror_read, 238 .write = vfio_generic_quirk_mirror_write, 239 .endianness = DEVICE_LITTLE_ENDIAN, 240 }; 241 242 /* Is range1 fully contained within range2? */ 243 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 244 uint64_t first2, uint64_t len2) { 245 return (first1 >= first2 && first1 + len1 <= first2 + len2); 246 } 247 248 #define PCI_VENDOR_ID_ATI 0x1002 249 250 /* 251 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 252 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 253 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 254 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 255 * I/O port BAR address. Originally this was coded to return the virtual BAR 256 * address only if the physical register read returns the actual BAR address, 257 * but users have reported greater success if we return the virtual address 258 * unconditionally. 259 */ 260 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 261 hwaddr addr, unsigned size) 262 { 263 VFIOPCIDevice *vdev = opaque; 264 uint64_t data = vfio_pci_read_config(&vdev->pdev, 265 PCI_BASE_ADDRESS_4 + 1, size); 266 267 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); 268 269 return data; 270 } 271 272 static const MemoryRegionOps vfio_ati_3c3_quirk = { 273 .read = vfio_ati_3c3_quirk_read, 274 .endianness = DEVICE_LITTLE_ENDIAN, 275 }; 276 277 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 278 { 279 VFIOQuirk *quirk; 280 281 /* 282 * As long as the BAR is >= 256 bytes it will be aligned such that the 283 * lower byte is always zero. Filter out anything else, if it exists. 284 */ 285 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 286 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 287 return; 288 } 289 290 quirk = g_malloc0(sizeof(*quirk)); 291 quirk->mem = g_new0(MemoryRegion, 1); 292 quirk->nr_mem = 1; 293 294 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, 295 "vfio-ati-3c3-quirk", 1); 296 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 297 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); 298 299 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 300 quirk, next); 301 302 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); 303 } 304 305 /* 306 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI 307 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 308 * the MMIO space directly, but a window to this space is provided through 309 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 310 * data register. When the address is programmed to a range of 0x4000-0x4fff 311 * PCI configuration space is available. Experimentation seems to indicate 312 * that read-only may be provided by hardware. 313 */ 314 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) 315 { 316 VFIOQuirk *quirk; 317 VFIOConfigWindowQuirk *window; 318 319 /* This windows doesn't seem to be used except by legacy VGA code */ 320 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 321 !vdev->vga || nr != 4) { 322 return; 323 } 324 325 quirk = g_malloc0(sizeof(*quirk)); 326 quirk->mem = g_new0(MemoryRegion, 2); 327 quirk->nr_mem = 2; 328 window = quirk->data = g_malloc0(sizeof(*window) + 329 sizeof(VFIOConfigWindowMatch)); 330 window->vdev = vdev; 331 window->address_offset = 0; 332 window->data_offset = 4; 333 window->nr_matches = 1; 334 window->matches[0].match = 0x4000; 335 window->matches[0].mask = vdev->config_size - 1; 336 window->bar = nr; 337 window->addr_mem = &quirk->mem[0]; 338 window->data_mem = &quirk->mem[1]; 339 340 memory_region_init_io(window->addr_mem, OBJECT(vdev), 341 &vfio_generic_window_address_quirk, window, 342 "vfio-ati-bar4-window-address-quirk", 4); 343 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 344 window->address_offset, 345 window->addr_mem, 1); 346 347 memory_region_init_io(window->data_mem, OBJECT(vdev), 348 &vfio_generic_window_data_quirk, window, 349 "vfio-ati-bar4-window-data-quirk", 4); 350 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 351 window->data_offset, 352 window->data_mem, 1); 353 354 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 355 356 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); 357 } 358 359 /* 360 * Trap the BAR2 MMIO mirror to config space as well. 361 */ 362 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) 363 { 364 VFIOQuirk *quirk; 365 VFIOConfigMirrorQuirk *mirror; 366 367 /* Only enable on newer devices where BAR2 is 64bit */ 368 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 369 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { 370 return; 371 } 372 373 quirk = g_malloc0(sizeof(*quirk)); 374 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 375 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 376 quirk->nr_mem = 1; 377 mirror->vdev = vdev; 378 mirror->offset = 0x4000; 379 mirror->bar = nr; 380 381 memory_region_init_io(mirror->mem, OBJECT(vdev), 382 &vfio_generic_mirror_quirk, mirror, 383 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); 384 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 385 mirror->offset, mirror->mem, 1); 386 387 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 388 389 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); 390 } 391 392 /* 393 * Older ATI/AMD cards like the X550 have a similar window to that above. 394 * I/O port BAR1 provides a window to a mirror of PCI config space located 395 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 396 * note it for future reference. 397 */ 398 399 #define PCI_VENDOR_ID_NVIDIA 0x10de 400 401 /* 402 * Nvidia has several different methods to get to config space, the 403 * nouveu project has several of these documented here: 404 * https://github.com/pathscale/envytools/tree/master/hwdocs 405 * 406 * The first quirk is actually not documented in envytools and is found 407 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 408 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 409 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 410 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 411 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 412 * is written for a write to 0x3d4. The BAR0 offset is then accessible 413 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 414 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 415 */ 416 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; 417 static const char *nv3d0_states[] = { "NONE", "SELECT", 418 "WINDOW", "READ", "WRITE" }; 419 420 typedef struct VFIONvidia3d0Quirk { 421 VFIOPCIDevice *vdev; 422 VFIONvidia3d0State state; 423 uint32_t offset; 424 } VFIONvidia3d0Quirk; 425 426 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, 427 hwaddr addr, unsigned size) 428 { 429 VFIONvidia3d0Quirk *quirk = opaque; 430 VFIOPCIDevice *vdev = quirk->vdev; 431 432 quirk->state = NONE; 433 434 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 435 addr + 0x14, size); 436 } 437 438 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, 439 uint64_t data, unsigned size) 440 { 441 VFIONvidia3d0Quirk *quirk = opaque; 442 VFIOPCIDevice *vdev = quirk->vdev; 443 VFIONvidia3d0State old_state = quirk->state; 444 445 quirk->state = NONE; 446 447 switch (data) { 448 case 0x338: 449 if (old_state == NONE) { 450 quirk->state = SELECT; 451 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 452 nv3d0_states[quirk->state]); 453 } 454 break; 455 case 0x538: 456 if (old_state == WINDOW) { 457 quirk->state = READ; 458 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 459 nv3d0_states[quirk->state]); 460 } 461 break; 462 case 0x738: 463 if (old_state == WINDOW) { 464 quirk->state = WRITE; 465 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 466 nv3d0_states[quirk->state]); 467 } 468 break; 469 } 470 471 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 472 addr + 0x14, data, size); 473 } 474 475 static const MemoryRegionOps vfio_nvidia_3d4_quirk = { 476 .read = vfio_nvidia_3d4_quirk_read, 477 .write = vfio_nvidia_3d4_quirk_write, 478 .endianness = DEVICE_LITTLE_ENDIAN, 479 }; 480 481 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 482 hwaddr addr, unsigned size) 483 { 484 VFIONvidia3d0Quirk *quirk = opaque; 485 VFIOPCIDevice *vdev = quirk->vdev; 486 VFIONvidia3d0State old_state = quirk->state; 487 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 488 addr + 0x10, size); 489 490 quirk->state = NONE; 491 492 if (old_state == READ && 493 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 494 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 495 496 data = vfio_pci_read_config(&vdev->pdev, offset, size); 497 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, 498 offset, size, data); 499 } 500 501 return data; 502 } 503 504 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 505 uint64_t data, unsigned size) 506 { 507 VFIONvidia3d0Quirk *quirk = opaque; 508 VFIOPCIDevice *vdev = quirk->vdev; 509 VFIONvidia3d0State old_state = quirk->state; 510 511 quirk->state = NONE; 512 513 if (old_state == SELECT) { 514 quirk->offset = (uint32_t)data; 515 quirk->state = WINDOW; 516 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 517 nv3d0_states[quirk->state]); 518 } else if (old_state == WRITE) { 519 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 520 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 521 522 vfio_pci_write_config(&vdev->pdev, offset, data, size); 523 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, 524 offset, data, size); 525 return; 526 } 527 } 528 529 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 530 addr + 0x10, data, size); 531 } 532 533 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 534 .read = vfio_nvidia_3d0_quirk_read, 535 .write = vfio_nvidia_3d0_quirk_write, 536 .endianness = DEVICE_LITTLE_ENDIAN, 537 }; 538 539 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 540 { 541 VFIOQuirk *quirk; 542 VFIONvidia3d0Quirk *data; 543 544 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 545 !vdev->bars[1].region.size) { 546 return; 547 } 548 549 quirk = g_malloc0(sizeof(*quirk)); 550 quirk->data = data = g_malloc0(sizeof(*data)); 551 quirk->mem = g_new0(MemoryRegion, 2); 552 quirk->nr_mem = 2; 553 data->vdev = vdev; 554 555 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, 556 data, "vfio-nvidia-3d4-quirk", 2); 557 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 558 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); 559 560 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, 561 data, "vfio-nvidia-3d0-quirk", 2); 562 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 563 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); 564 565 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 566 quirk, next); 567 568 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); 569 } 570 571 /* 572 * The second quirk is documented in envytools. The I/O port BAR5 is just 573 * a set of address/data ports to the MMIO BARs. The BAR we care about is 574 * again BAR0. This backdoor is apparently a bit newer than the one above 575 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 576 * space, including extended space is available at the 4k @0x88000. 577 */ 578 typedef struct VFIONvidiaBAR5Quirk { 579 uint32_t master; 580 uint32_t enable; 581 MemoryRegion *addr_mem; 582 MemoryRegion *data_mem; 583 bool enabled; 584 VFIOConfigWindowQuirk window; /* last for match data */ 585 } VFIONvidiaBAR5Quirk; 586 587 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) 588 { 589 VFIOPCIDevice *vdev = bar5->window.vdev; 590 591 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { 592 return; 593 } 594 595 bar5->enabled = !bar5->enabled; 596 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, 597 bar5->enabled ? "Enable" : "Disable"); 598 memory_region_set_enabled(bar5->addr_mem, bar5->enabled); 599 memory_region_set_enabled(bar5->data_mem, bar5->enabled); 600 } 601 602 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, 603 hwaddr addr, unsigned size) 604 { 605 VFIONvidiaBAR5Quirk *bar5 = opaque; 606 VFIOPCIDevice *vdev = bar5->window.vdev; 607 608 return vfio_region_read(&vdev->bars[5].region, addr, size); 609 } 610 611 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, 612 uint64_t data, unsigned size) 613 { 614 VFIONvidiaBAR5Quirk *bar5 = opaque; 615 VFIOPCIDevice *vdev = bar5->window.vdev; 616 617 vfio_region_write(&vdev->bars[5].region, addr, data, size); 618 619 bar5->master = data; 620 vfio_nvidia_bar5_enable(bar5); 621 } 622 623 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { 624 .read = vfio_nvidia_bar5_quirk_master_read, 625 .write = vfio_nvidia_bar5_quirk_master_write, 626 .endianness = DEVICE_LITTLE_ENDIAN, 627 }; 628 629 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, 630 hwaddr addr, unsigned size) 631 { 632 VFIONvidiaBAR5Quirk *bar5 = opaque; 633 VFIOPCIDevice *vdev = bar5->window.vdev; 634 635 return vfio_region_read(&vdev->bars[5].region, addr + 4, size); 636 } 637 638 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, 639 uint64_t data, unsigned size) 640 { 641 VFIONvidiaBAR5Quirk *bar5 = opaque; 642 VFIOPCIDevice *vdev = bar5->window.vdev; 643 644 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); 645 646 bar5->enable = data; 647 vfio_nvidia_bar5_enable(bar5); 648 } 649 650 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { 651 .read = vfio_nvidia_bar5_quirk_enable_read, 652 .write = vfio_nvidia_bar5_quirk_enable_write, 653 .endianness = DEVICE_LITTLE_ENDIAN, 654 }; 655 656 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) 657 { 658 VFIOQuirk *quirk; 659 VFIONvidiaBAR5Quirk *bar5; 660 VFIOConfigWindowQuirk *window; 661 662 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 663 !vdev->vga || nr != 5) { 664 return; 665 } 666 667 quirk = g_malloc0(sizeof(*quirk)); 668 quirk->mem = g_new0(MemoryRegion, 4); 669 quirk->nr_mem = 4; 670 bar5 = quirk->data = g_malloc0(sizeof(*bar5) + 671 (sizeof(VFIOConfigWindowMatch) * 2)); 672 window = &bar5->window; 673 674 window->vdev = vdev; 675 window->address_offset = 0x8; 676 window->data_offset = 0xc; 677 window->nr_matches = 2; 678 window->matches[0].match = 0x1800; 679 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; 680 window->matches[1].match = 0x88000; 681 window->matches[1].mask = vdev->config_size - 1; 682 window->bar = nr; 683 window->addr_mem = bar5->addr_mem = &quirk->mem[0]; 684 window->data_mem = bar5->data_mem = &quirk->mem[1]; 685 686 memory_region_init_io(window->addr_mem, OBJECT(vdev), 687 &vfio_generic_window_address_quirk, window, 688 "vfio-nvidia-bar5-window-address-quirk", 4); 689 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 690 window->address_offset, 691 window->addr_mem, 1); 692 memory_region_set_enabled(window->addr_mem, false); 693 694 memory_region_init_io(window->data_mem, OBJECT(vdev), 695 &vfio_generic_window_data_quirk, window, 696 "vfio-nvidia-bar5-window-data-quirk", 4); 697 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 698 window->data_offset, 699 window->data_mem, 1); 700 memory_region_set_enabled(window->data_mem, false); 701 702 memory_region_init_io(&quirk->mem[2], OBJECT(vdev), 703 &vfio_nvidia_bar5_quirk_master, bar5, 704 "vfio-nvidia-bar5-master-quirk", 4); 705 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 706 0, &quirk->mem[2], 1); 707 708 memory_region_init_io(&quirk->mem[3], OBJECT(vdev), 709 &vfio_nvidia_bar5_quirk_enable, bar5, 710 "vfio-nvidia-bar5-enable-quirk", 4); 711 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 712 4, &quirk->mem[3], 1); 713 714 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 715 716 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); 717 } 718 719 /* 720 * Finally, BAR0 itself. We want to redirect any accesses to either 721 * 0x1800 or 0x88000 through the PCI config space access functions. 722 */ 723 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, 724 uint64_t data, unsigned size) 725 { 726 VFIOConfigMirrorQuirk *mirror = opaque; 727 VFIOPCIDevice *vdev = mirror->vdev; 728 PCIDevice *pdev = &vdev->pdev; 729 730 vfio_generic_quirk_mirror_write(opaque, addr, data, size); 731 732 /* 733 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 734 * MSI capability ID register. Both the ID and next register are 735 * read-only, so we allow writes covering either of those to real hw. 736 */ 737 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 738 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 739 vfio_region_write(&vdev->bars[mirror->bar].region, 740 addr + mirror->offset, data, size); 741 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); 742 } 743 } 744 745 static const MemoryRegionOps vfio_nvidia_mirror_quirk = { 746 .read = vfio_generic_quirk_mirror_read, 747 .write = vfio_nvidia_quirk_mirror_write, 748 .endianness = DEVICE_LITTLE_ENDIAN, 749 }; 750 751 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) 752 { 753 VFIOQuirk *quirk; 754 VFIOConfigMirrorQuirk *mirror; 755 756 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 757 !vfio_is_vga(vdev) || nr != 0) { 758 return; 759 } 760 761 quirk = g_malloc0(sizeof(*quirk)); 762 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 763 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 764 quirk->nr_mem = 1; 765 mirror->vdev = vdev; 766 mirror->offset = 0x88000; 767 mirror->bar = nr; 768 769 memory_region_init_io(mirror->mem, OBJECT(vdev), 770 &vfio_nvidia_mirror_quirk, mirror, 771 "vfio-nvidia-bar0-88000-mirror-quirk", 772 vdev->config_size); 773 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 774 mirror->offset, mirror->mem, 1); 775 776 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 777 778 /* The 0x1800 offset mirror only seems to get used by legacy VGA */ 779 if (vdev->vga) { 780 quirk = g_malloc0(sizeof(*quirk)); 781 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 782 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1); 783 quirk->nr_mem = 1; 784 mirror->vdev = vdev; 785 mirror->offset = 0x1800; 786 mirror->bar = nr; 787 788 memory_region_init_io(mirror->mem, OBJECT(vdev), 789 &vfio_nvidia_mirror_quirk, mirror, 790 "vfio-nvidia-bar0-1800-mirror-quirk", 791 PCI_CONFIG_SPACE_SIZE); 792 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 793 mirror->offset, mirror->mem, 1); 794 795 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 796 } 797 798 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); 799 } 800 801 /* 802 * TODO - Some Nvidia devices provide config access to their companion HDA 803 * device and even to their parent bridge via these config space mirrors. 804 * Add quirks for those regions. 805 */ 806 807 #define PCI_VENDOR_ID_REALTEK 0x10ec 808 809 /* 810 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 811 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 812 * register. According to the Linux r8169 driver, the MSI-X table is addressed 813 * when the "type" portion of the address register is set to 0x1. This appears 814 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 815 * "address latched" indicator. Bits 12:15 are a mask field, which we can 816 * ignore because the MSI-X table should always be accessed as a dword (full 817 * mask). Bits 0:11 is offset within the type. 818 * 819 * Example trace: 820 * 821 * Read from MSI-X table offset 0 822 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 823 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 824 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 825 * 826 * Write 0xfee00000 to MSI-X table offset 0 827 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 828 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 829 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 830 */ 831 typedef struct VFIOrtl8168Quirk { 832 VFIOPCIDevice *vdev; 833 uint32_t addr; 834 uint32_t data; 835 bool enabled; 836 } VFIOrtl8168Quirk; 837 838 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, 839 hwaddr addr, unsigned size) 840 { 841 VFIOrtl8168Quirk *rtl = opaque; 842 VFIOPCIDevice *vdev = rtl->vdev; 843 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); 844 845 if (rtl->enabled) { 846 data = rtl->addr ^ 0x80000000U; /* latch/complete */ 847 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); 848 } 849 850 return data; 851 } 852 853 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, 854 uint64_t data, unsigned size) 855 { 856 VFIOrtl8168Quirk *rtl = opaque; 857 VFIOPCIDevice *vdev = rtl->vdev; 858 859 rtl->enabled = false; 860 861 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ 862 rtl->enabled = true; 863 rtl->addr = (uint32_t)data; 864 865 if (data & 0x80000000U) { /* Do write */ 866 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 867 hwaddr offset = data & 0xfff; 868 uint64_t val = rtl->data; 869 870 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, 871 (uint16_t)offset, val); 872 873 /* Write to the proper guest MSI-X table instead */ 874 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 875 offset, val, size, 876 MEMTXATTRS_UNSPECIFIED); 877 } 878 return; /* Do not write guest MSI-X data to hardware */ 879 } 880 } 881 882 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); 883 } 884 885 static const MemoryRegionOps vfio_rtl_address_quirk = { 886 .read = vfio_rtl8168_quirk_address_read, 887 .write = vfio_rtl8168_quirk_address_write, 888 .valid = { 889 .min_access_size = 4, 890 .max_access_size = 4, 891 .unaligned = false, 892 }, 893 .endianness = DEVICE_LITTLE_ENDIAN, 894 }; 895 896 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, 897 hwaddr addr, unsigned size) 898 { 899 VFIOrtl8168Quirk *rtl = opaque; 900 VFIOPCIDevice *vdev = rtl->vdev; 901 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); 902 903 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 904 hwaddr offset = rtl->addr & 0xfff; 905 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, 906 &data, size, MEMTXATTRS_UNSPECIFIED); 907 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); 908 } 909 910 return data; 911 } 912 913 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, 914 uint64_t data, unsigned size) 915 { 916 VFIOrtl8168Quirk *rtl = opaque; 917 VFIOPCIDevice *vdev = rtl->vdev; 918 919 rtl->data = (uint32_t)data; 920 921 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); 922 } 923 924 static const MemoryRegionOps vfio_rtl_data_quirk = { 925 .read = vfio_rtl8168_quirk_data_read, 926 .write = vfio_rtl8168_quirk_data_write, 927 .valid = { 928 .min_access_size = 4, 929 .max_access_size = 4, 930 .unaligned = false, 931 }, 932 .endianness = DEVICE_LITTLE_ENDIAN, 933 }; 934 935 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) 936 { 937 VFIOQuirk *quirk; 938 VFIOrtl8168Quirk *rtl; 939 940 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { 941 return; 942 } 943 944 quirk = g_malloc0(sizeof(*quirk)); 945 quirk->mem = g_new0(MemoryRegion, 2); 946 quirk->nr_mem = 2; 947 quirk->data = rtl = g_malloc0(sizeof(*rtl)); 948 rtl->vdev = vdev; 949 950 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), 951 &vfio_rtl_address_quirk, rtl, 952 "vfio-rtl8168-window-address-quirk", 4); 953 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 954 0x74, &quirk->mem[0], 1); 955 956 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), 957 &vfio_rtl_data_quirk, rtl, 958 "vfio-rtl8168-window-data-quirk", 4); 959 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 960 0x70, &quirk->mem[1], 1); 961 962 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 963 964 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); 965 } 966 967 /* 968 * Intel IGD support 969 * 970 * Obviously IGD is not a discrete device, this is evidenced not only by it 971 * being integrated into the CPU, but by the various chipset and BIOS 972 * dependencies that it brings along with it. Intel is trying to move away 973 * from this and Broadwell and newer devices can run in what Intel calls 974 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing 975 * more is required beyond assigning the IGD device to a VM. There are 976 * however support limitations to this mode. It only supports IGD as a 977 * secondary graphics device in the VM and it doesn't officially support any 978 * physical outputs. 979 * 980 * The code here attempts to enable what we'll call legacy mode assignment, 981 * IGD retains most of the capabilities we expect for it to have on bare 982 * metal. To enable this mode, the IGD device must be assigned to the VM 983 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA 984 * support, we must have VM BIOS support for reserving and populating some 985 * of the required tables, and we need to tweak the chipset with revisions 986 * and IDs and an LPC/ISA bridge device. The intention is to make all of 987 * this happen automatically by installing the device at the correct VM PCI 988 * bus address. If any of the conditions are not met, we cross our fingers 989 * and hope the user knows better. 990 * 991 * NB - It is possible to enable physical outputs in UPT mode by supplying 992 * an OpRegion table. We don't do this by default because the guest driver 993 * behaves differently if an OpRegion is provided and no monitor is attached 994 * vs no OpRegion and a monitor being attached or not. Effectively, if a 995 * headless setup is desired, the OpRegion gets in the way of that. 996 */ 997 998 /* 999 * This presumes the device is already known to be an Intel VGA device, so we 1000 * take liberties in which device ID bits match which generation. This should 1001 * not be taken as an indication that all the devices are supported, or even 1002 * supportable, some of them don't even support VT-d. 1003 * See linux:include/drm/i915_pciids.h for IDs. 1004 */ 1005 static int igd_gen(VFIOPCIDevice *vdev) 1006 { 1007 if ((vdev->device_id & 0xfff) == 0xa84) { 1008 return 8; /* Broxton */ 1009 } 1010 1011 switch (vdev->device_id & 0xff00) { 1012 /* Old, untested, unavailable, unknown */ 1013 case 0x0000: 1014 case 0x2500: 1015 case 0x2700: 1016 case 0x2900: 1017 case 0x2a00: 1018 case 0x2e00: 1019 case 0x3500: 1020 case 0xa000: 1021 return -1; 1022 /* SandyBridge, IvyBridge, ValleyView, Haswell */ 1023 case 0x0100: 1024 case 0x0400: 1025 case 0x0a00: 1026 case 0x0c00: 1027 case 0x0d00: 1028 case 0x0f00: 1029 return 6; 1030 /* BroadWell, CherryView, SkyLake, KabyLake */ 1031 case 0x1600: 1032 case 0x1900: 1033 case 0x2200: 1034 case 0x5900: 1035 return 8; 1036 } 1037 1038 return 8; /* Assume newer is compatible */ 1039 } 1040 1041 typedef struct VFIOIGDQuirk { 1042 struct VFIOPCIDevice *vdev; 1043 uint32_t index; 1044 } VFIOIGDQuirk; 1045 1046 #define IGD_GMCH 0x50 /* Graphics Control Register */ 1047 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */ 1048 #define IGD_ASLS 0xfc /* ASL Storage Register */ 1049 1050 /* 1051 * The OpRegion includes the Video BIOS Table, which seems important for 1052 * telling the driver what sort of outputs it has. Without this, the device 1053 * may work in the guest, but we may not get output. This also requires BIOS 1054 * support to reserve and populate a section of guest memory sufficient for 1055 * the table and to write the base address of that memory to the ASLS register 1056 * of the IGD device. 1057 */ 1058 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, 1059 struct vfio_region_info *info, Error **errp) 1060 { 1061 int ret; 1062 1063 vdev->igd_opregion = g_malloc0(info->size); 1064 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, 1065 info->size, info->offset); 1066 if (ret != info->size) { 1067 error_setg(errp, "failed to read IGD OpRegion"); 1068 g_free(vdev->igd_opregion); 1069 vdev->igd_opregion = NULL; 1070 return -EINVAL; 1071 } 1072 1073 /* 1074 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to 1075 * allocate 32bit reserved memory for, copy these contents into, and write 1076 * the reserved memory base address to the device ASLS register at 0xFC. 1077 * Alignment of this reserved region seems flexible, but using a 4k page 1078 * alignment seems to work well. This interface assumes a single IGD 1079 * device, which may be at VM address 00:02.0 in legacy mode or another 1080 * address in UPT mode. 1081 * 1082 * NB, there may be future use cases discovered where the VM should have 1083 * direct interaction with the host OpRegion, in which case the write to 1084 * the ASLS register would trigger MemoryRegion setup to enable that. 1085 */ 1086 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", 1087 vdev->igd_opregion, info->size); 1088 1089 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); 1090 1091 pci_set_long(vdev->pdev.config + IGD_ASLS, 0); 1092 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); 1093 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * The rather short list of registers that we copy from the host devices. 1100 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the 1101 * host bridge values may or may not be needed depending on the guest OS. 1102 * Since we're only munging revision and subsystem values on the host bridge, 1103 * we don't require our own device. The LPC/ISA bridge needs to be our very 1104 * own though. 1105 */ 1106 typedef struct { 1107 uint8_t offset; 1108 uint8_t len; 1109 } IGDHostInfo; 1110 1111 static const IGDHostInfo igd_host_bridge_infos[] = { 1112 {PCI_REVISION_ID, 2}, 1113 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1114 {PCI_SUBSYSTEM_ID, 2}, 1115 }; 1116 1117 static const IGDHostInfo igd_lpc_bridge_infos[] = { 1118 {PCI_VENDOR_ID, 2}, 1119 {PCI_DEVICE_ID, 2}, 1120 {PCI_REVISION_ID, 2}, 1121 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1122 {PCI_SUBSYSTEM_ID, 2}, 1123 }; 1124 1125 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev, 1126 struct vfio_region_info *info, 1127 const IGDHostInfo *list, int len) 1128 { 1129 int i, ret; 1130 1131 for (i = 0; i < len; i++) { 1132 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset, 1133 list[i].len, info->offset + list[i].offset); 1134 if (ret != list[i].len) { 1135 error_report("IGD copy failed: %m"); 1136 return -errno; 1137 } 1138 } 1139 1140 return 0; 1141 } 1142 1143 /* 1144 * Stuff a few values into the host bridge. 1145 */ 1146 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev, 1147 struct vfio_region_info *info) 1148 { 1149 PCIBus *bus; 1150 PCIDevice *host_bridge; 1151 int ret; 1152 1153 bus = pci_device_root_bus(&vdev->pdev); 1154 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0)); 1155 1156 if (!host_bridge) { 1157 error_report("Can't find host bridge"); 1158 return -ENODEV; 1159 } 1160 1161 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos, 1162 ARRAY_SIZE(igd_host_bridge_infos)); 1163 if (!ret) { 1164 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name); 1165 } 1166 1167 return ret; 1168 } 1169 1170 /* 1171 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write 1172 * arbitrary values into just any bridge, so we must create our own. We try 1173 * to handle if the user has created it for us, which they might want to do 1174 * to enable multifuction so we don't occupy the whole PCI slot. 1175 */ 1176 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp) 1177 { 1178 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) { 1179 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0"); 1180 } 1181 } 1182 1183 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data) 1184 { 1185 DeviceClass *dc = DEVICE_CLASS(klass); 1186 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1187 1188 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment"; 1189 dc->hotpluggable = false; 1190 k->realize = vfio_pci_igd_lpc_bridge_realize; 1191 k->class_id = PCI_CLASS_BRIDGE_ISA; 1192 } 1193 1194 static TypeInfo vfio_pci_igd_lpc_bridge_info = { 1195 .name = "vfio-pci-igd-lpc-bridge", 1196 .parent = TYPE_PCI_DEVICE, 1197 .class_init = vfio_pci_igd_lpc_bridge_class_init, 1198 }; 1199 1200 static void vfio_pci_igd_register_types(void) 1201 { 1202 type_register_static(&vfio_pci_igd_lpc_bridge_info); 1203 } 1204 1205 type_init(vfio_pci_igd_register_types) 1206 1207 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev, 1208 struct vfio_region_info *info) 1209 { 1210 PCIDevice *lpc_bridge; 1211 int ret; 1212 1213 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1214 0, PCI_DEVFN(0x1f, 0)); 1215 if (!lpc_bridge) { 1216 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev), 1217 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge"); 1218 } 1219 1220 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos, 1221 ARRAY_SIZE(igd_lpc_bridge_infos)); 1222 if (!ret) { 1223 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name); 1224 } 1225 1226 return ret; 1227 } 1228 1229 /* 1230 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE 1231 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore 1232 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index 1233 * for programming the GTT. 1234 * 1235 * See linux:include/drm/i915_drm.h for shift and mask values. 1236 */ 1237 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev) 1238 { 1239 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1240 int ggms, gen = igd_gen(vdev); 1241 1242 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1243 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1244 if (gen > 6) { 1245 ggms = 1 << ggms; 1246 } 1247 1248 ggms *= 1024 * 1024; 1249 1250 return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8); 1251 } 1252 1253 /* 1254 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes. 1255 * Somehow the host stolen memory range is used for this, but how the ROM gets 1256 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it 1257 * reprograms the GTT through the IOBAR where we can trap it and transpose the 1258 * programming to the VM allocated buffer. That buffer gets reserved by the VM 1259 * firmware via the fw_cfg entry added below. Here we're just monitoring the 1260 * IOBAR address and data registers to detect a write sequence targeting the 1261 * GTTADR. This code is developed by observed behavior and doesn't have a 1262 * direct spec reference, unfortunately. 1263 */ 1264 static uint64_t vfio_igd_quirk_data_read(void *opaque, 1265 hwaddr addr, unsigned size) 1266 { 1267 VFIOIGDQuirk *igd = opaque; 1268 VFIOPCIDevice *vdev = igd->vdev; 1269 1270 igd->index = ~0; 1271 1272 return vfio_region_read(&vdev->bars[4].region, addr + 4, size); 1273 } 1274 1275 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr, 1276 uint64_t data, unsigned size) 1277 { 1278 VFIOIGDQuirk *igd = opaque; 1279 VFIOPCIDevice *vdev = igd->vdev; 1280 uint64_t val = data; 1281 int gen = igd_gen(vdev); 1282 1283 /* 1284 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie. 1285 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE 1286 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so 1287 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points 1288 * to a 4k page, which we translate to a page from the VM allocated region, 1289 * pointed to by the BDSM register. If this is not set, we fail. 1290 * 1291 * We trap writes to the full configured GTT size, but we typically only 1292 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often 1293 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous 1294 * write of that last entry does work, but is hopefully unnecessary since 1295 * we clear the previous GTT on initialization. 1296 */ 1297 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) { 1298 if (gen < 8 || (igd->index % 8 == 1)) { 1299 uint32_t base; 1300 1301 base = pci_get_long(vdev->pdev.config + IGD_BDSM); 1302 if (!base) { 1303 hw_error("vfio-igd: Guest attempted to program IGD GTT before " 1304 "BIOS reserved stolen memory. Unsupported BIOS?"); 1305 } 1306 1307 val = base | (data & ((1 << 20) - 1)); 1308 } else { 1309 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */ 1310 } 1311 1312 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name, 1313 igd->index, data, val); 1314 } 1315 1316 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size); 1317 1318 igd->index = ~0; 1319 } 1320 1321 static const MemoryRegionOps vfio_igd_data_quirk = { 1322 .read = vfio_igd_quirk_data_read, 1323 .write = vfio_igd_quirk_data_write, 1324 .endianness = DEVICE_LITTLE_ENDIAN, 1325 }; 1326 1327 static uint64_t vfio_igd_quirk_index_read(void *opaque, 1328 hwaddr addr, unsigned size) 1329 { 1330 VFIOIGDQuirk *igd = opaque; 1331 VFIOPCIDevice *vdev = igd->vdev; 1332 1333 igd->index = ~0; 1334 1335 return vfio_region_read(&vdev->bars[4].region, addr, size); 1336 } 1337 1338 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr, 1339 uint64_t data, unsigned size) 1340 { 1341 VFIOIGDQuirk *igd = opaque; 1342 VFIOPCIDevice *vdev = igd->vdev; 1343 1344 igd->index = data; 1345 1346 vfio_region_write(&vdev->bars[4].region, addr, data, size); 1347 } 1348 1349 static const MemoryRegionOps vfio_igd_index_quirk = { 1350 .read = vfio_igd_quirk_index_read, 1351 .write = vfio_igd_quirk_index_write, 1352 .endianness = DEVICE_LITTLE_ENDIAN, 1353 }; 1354 1355 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) 1356 { 1357 struct vfio_region_info *rom = NULL, *opregion = NULL, 1358 *host = NULL, *lpc = NULL; 1359 VFIOQuirk *quirk; 1360 VFIOIGDQuirk *igd; 1361 PCIDevice *lpc_bridge; 1362 int i, ret, ggms_mb, gms_mb = 0, gen; 1363 uint64_t *bdsm_size; 1364 uint32_t gmch; 1365 uint16_t cmd_orig, cmd; 1366 Error *err = NULL; 1367 1368 /* 1369 * This must be an Intel VGA device at address 00:02.0 for us to even 1370 * consider enabling legacy mode. The vBIOS has dependencies on the 1371 * PCI bus address. 1372 */ 1373 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || 1374 !vfio_is_vga(vdev) || nr != 4 || 1375 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 1376 0, PCI_DEVFN(0x2, 0))) { 1377 return; 1378 } 1379 1380 /* 1381 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we 1382 * can stuff host values into, so if there's already one there and it's not 1383 * one we can hack on, legacy mode is no-go. Sorry Q35. 1384 */ 1385 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1386 0, PCI_DEVFN(0x1f, 0)); 1387 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), 1388 "vfio-pci-igd-lpc-bridge")) { 1389 error_report("IGD device %s cannot support legacy mode due to existing " 1390 "devices at address 1f.0", vdev->vbasedev.name); 1391 return; 1392 } 1393 1394 /* 1395 * IGD is not a standard, they like to change their specs often. We 1396 * only attempt to support back to SandBridge and we hope that newer 1397 * devices maintain compatibility with generation 8. 1398 */ 1399 gen = igd_gen(vdev); 1400 if (gen != 6 && gen != 8) { 1401 error_report("IGD device %s is unsupported in legacy mode, " 1402 "try SandyBridge or newer", vdev->vbasedev.name); 1403 return; 1404 } 1405 1406 /* 1407 * Most of what we're doing here is to enable the ROM to run, so if 1408 * there's no ROM, there's no point in setting up this quirk. 1409 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. 1410 */ 1411 ret = vfio_get_region_info(&vdev->vbasedev, 1412 VFIO_PCI_ROM_REGION_INDEX, &rom); 1413 if ((ret || !rom->size) && !vdev->pdev.romfile) { 1414 error_report("IGD device %s has no ROM, legacy mode disabled", 1415 vdev->vbasedev.name); 1416 goto out; 1417 } 1418 1419 /* 1420 * Ignore the hotplug corner case, mark the ROM failed, we can't 1421 * create the devices we need for legacy mode in the hotplug scenario. 1422 */ 1423 if (vdev->pdev.qdev.hotplugged) { 1424 error_report("IGD device %s hotplugged, ROM disabled, " 1425 "legacy mode disabled", vdev->vbasedev.name); 1426 vdev->rom_read_failed = true; 1427 goto out; 1428 } 1429 1430 /* 1431 * Check whether we have all the vfio device specific regions to 1432 * support legacy mode (added in Linux v4.6). If not, bail. 1433 */ 1434 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1435 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1436 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); 1437 if (ret) { 1438 error_report("IGD device %s does not support OpRegion access," 1439 "legacy mode disabled", vdev->vbasedev.name); 1440 goto out; 1441 } 1442 1443 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1444 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1445 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); 1446 if (ret) { 1447 error_report("IGD device %s does not support host bridge access," 1448 "legacy mode disabled", vdev->vbasedev.name); 1449 goto out; 1450 } 1451 1452 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1453 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1454 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); 1455 if (ret) { 1456 error_report("IGD device %s does not support LPC bridge access," 1457 "legacy mode disabled", vdev->vbasedev.name); 1458 goto out; 1459 } 1460 1461 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); 1462 1463 /* 1464 * If IGD VGA Disable is clear (expected) and VGA is not already enabled, 1465 * try to enable it. Probably shouldn't be using legacy mode without VGA, 1466 * but also no point in us enabling VGA if disabled in hardware. 1467 */ 1468 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) { 1469 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); 1470 error_report("IGD device %s failed to enable VGA access, " 1471 "legacy mode disabled", vdev->vbasedev.name); 1472 goto out; 1473 } 1474 1475 /* Create our LPC/ISA bridge */ 1476 ret = vfio_pci_igd_lpc_init(vdev, lpc); 1477 if (ret) { 1478 error_report("IGD device %s failed to create LPC bridge, " 1479 "legacy mode disabled", vdev->vbasedev.name); 1480 goto out; 1481 } 1482 1483 /* Stuff some host values into the VM PCI host bridge */ 1484 ret = vfio_pci_igd_host_init(vdev, host); 1485 if (ret) { 1486 error_report("IGD device %s failed to modify host bridge, " 1487 "legacy mode disabled", vdev->vbasedev.name); 1488 goto out; 1489 } 1490 1491 /* Setup OpRegion access */ 1492 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err); 1493 if (ret) { 1494 error_append_hint(&err, "IGD legacy mode disabled\n"); 1495 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); 1496 goto out; 1497 } 1498 1499 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ 1500 quirk = g_malloc0(sizeof(*quirk)); 1501 quirk->mem = g_new0(MemoryRegion, 2); 1502 quirk->nr_mem = 2; 1503 igd = quirk->data = g_malloc0(sizeof(*igd)); 1504 igd->vdev = vdev; 1505 igd->index = ~0; 1506 1507 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, 1508 igd, "vfio-igd-index-quirk", 4); 1509 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1510 0, &quirk->mem[0], 1); 1511 1512 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, 1513 igd, "vfio-igd-data-quirk", 4); 1514 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1515 4, &quirk->mem[1], 1); 1516 1517 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1518 1519 /* Determine the size of stolen memory needed for GTT */ 1520 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1521 if (gen > 6) { 1522 ggms_mb = 1 << ggms_mb; 1523 } 1524 1525 /* 1526 * Assume we have no GMS memory, but allow it to be overrided by device 1527 * option (experimental). The spec doesn't actually allow zero GMS when 1528 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused, 1529 * so let's not waste VM memory for it. 1530 */ 1531 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8)); 1532 1533 if (vdev->igd_gms) { 1534 if (vdev->igd_gms <= 0x10) { 1535 gms_mb = vdev->igd_gms * 32; 1536 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8); 1537 } else { 1538 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms); 1539 vdev->igd_gms = 0; 1540 } 1541 } 1542 1543 /* 1544 * Request reserved memory for stolen memory via fw_cfg. VM firmware 1545 * must allocate a 1MB aligned reserved memory region below 4GB with 1546 * the requested size (in bytes) for use by the Intel PCI class VGA 1547 * device at VM address 00:02.0. The base address of this reserved 1548 * memory region must be written to the device BDSM regsiter at PCI 1549 * config offset 0x5C. 1550 */ 1551 bdsm_size = g_malloc(sizeof(*bdsm_size)); 1552 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024); 1553 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", 1554 bdsm_size, sizeof(*bdsm_size)); 1555 1556 /* GMCH is read-only, emulated */ 1557 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); 1558 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); 1559 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); 1560 1561 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ 1562 pci_set_long(vdev->pdev.config + IGD_BDSM, 0); 1563 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); 1564 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); 1565 1566 /* 1567 * This IOBAR gives us access to GTTADR, which allows us to write to 1568 * the GTT itself. So let's go ahead and write zero to all the GTT 1569 * entries to avoid spurious DMA faults. Be sure I/O access is enabled 1570 * before talking to the device. 1571 */ 1572 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1573 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1574 error_report("IGD device %s - failed to read PCI command register", 1575 vdev->vbasedev.name); 1576 } 1577 1578 cmd = cmd_orig | PCI_COMMAND_IO; 1579 1580 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), 1581 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { 1582 error_report("IGD device %s - failed to write PCI command register", 1583 vdev->vbasedev.name); 1584 } 1585 1586 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { 1587 vfio_region_write(&vdev->bars[4].region, 0, i, 4); 1588 vfio_region_write(&vdev->bars[4].region, 4, 0, 4); 1589 } 1590 1591 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1592 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1593 error_report("IGD device %s - failed to restore PCI command register", 1594 vdev->vbasedev.name); 1595 } 1596 1597 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); 1598 1599 out: 1600 g_free(rom); 1601 g_free(opregion); 1602 g_free(host); 1603 g_free(lpc); 1604 } 1605 1606 /* 1607 * Common quirk probe entry points. 1608 */ 1609 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 1610 { 1611 vfio_vga_probe_ati_3c3_quirk(vdev); 1612 vfio_vga_probe_nvidia_3d0_quirk(vdev); 1613 } 1614 1615 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) 1616 { 1617 VFIOQuirk *quirk; 1618 int i, j; 1619 1620 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1621 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { 1622 for (j = 0; j < quirk->nr_mem; j++) { 1623 memory_region_del_subregion(&vdev->vga->region[i].mem, 1624 &quirk->mem[j]); 1625 } 1626 } 1627 } 1628 } 1629 1630 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) 1631 { 1632 int i, j; 1633 1634 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1635 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { 1636 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); 1637 QLIST_REMOVE(quirk, next); 1638 for (j = 0; j < quirk->nr_mem; j++) { 1639 object_unparent(OBJECT(&quirk->mem[j])); 1640 } 1641 g_free(quirk->mem); 1642 g_free(quirk->data); 1643 g_free(quirk); 1644 } 1645 } 1646 } 1647 1648 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 1649 { 1650 vfio_probe_ati_bar4_quirk(vdev, nr); 1651 vfio_probe_ati_bar2_quirk(vdev, nr); 1652 vfio_probe_nvidia_bar5_quirk(vdev, nr); 1653 vfio_probe_nvidia_bar0_quirk(vdev, nr); 1654 vfio_probe_rtl8168_bar2_quirk(vdev, nr); 1655 vfio_probe_igd_bar4_quirk(vdev, nr); 1656 } 1657 1658 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) 1659 { 1660 VFIOBAR *bar = &vdev->bars[nr]; 1661 VFIOQuirk *quirk; 1662 int i; 1663 1664 QLIST_FOREACH(quirk, &bar->quirks, next) { 1665 for (i = 0; i < quirk->nr_mem; i++) { 1666 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); 1667 } 1668 } 1669 } 1670 1671 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) 1672 { 1673 VFIOBAR *bar = &vdev->bars[nr]; 1674 int i; 1675 1676 while (!QLIST_EMPTY(&bar->quirks)) { 1677 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 1678 QLIST_REMOVE(quirk, next); 1679 for (i = 0; i < quirk->nr_mem; i++) { 1680 object_unparent(OBJECT(&quirk->mem[i])); 1681 } 1682 g_free(quirk->mem); 1683 g_free(quirk->data); 1684 g_free(quirk); 1685 } 1686 } 1687 1688 /* 1689 * Reset quirks 1690 */ 1691 1692 /* 1693 * AMD Radeon PCI config reset, based on Linux: 1694 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() 1695 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset 1696 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() 1697 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() 1698 * IDs: include/drm/drm_pciids.h 1699 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 1700 * 1701 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the 1702 * hardware that should be fixed on future ASICs. The symptom of this is that 1703 * once the accerlated driver loads, Windows guests will bsod on subsequent 1704 * attmpts to load the driver, such as after VM reset or shutdown/restart. To 1705 * work around this, we do an AMD specific PCI config reset, followed by an SMC 1706 * reset. The PCI config reset only works if SMC firmware is running, so we 1707 * have a dependency on the state of the device as to whether this reset will 1708 * be effective. There are still cases where we won't be able to kick the 1709 * device into working, but this greatly improves the usability overall. The 1710 * config reset magic is relatively common on AMD GPUs, but the setup and SMC 1711 * poking is largely ASIC specific. 1712 */ 1713 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) 1714 { 1715 uint32_t clk, pc_c; 1716 1717 /* 1718 * Registers 200h and 204h are index and data registers for accessing 1719 * indirect configuration registers within the device. 1720 */ 1721 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1722 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1723 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); 1724 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1725 1726 return (!(clk & 1) && (0x20100 <= pc_c)); 1727 } 1728 1729 /* 1730 * The scope of a config reset is controlled by a mode bit in the misc register 1731 * and a fuse, exposed as a bit in another register. The fuse is the default 1732 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula 1733 * scope = !(misc ^ fuse), where the resulting scope is defined the same as 1734 * the fuse. A truth table therefore tells us that if misc == fuse, we need 1735 * to flip the value of the bit in the misc register. 1736 */ 1737 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) 1738 { 1739 uint32_t misc, fuse; 1740 bool a, b; 1741 1742 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); 1743 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1744 b = fuse & 64; 1745 1746 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); 1747 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1748 a = misc & 2; 1749 1750 if (a == b) { 1751 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); 1752 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ 1753 } 1754 } 1755 1756 static int vfio_radeon_reset(VFIOPCIDevice *vdev) 1757 { 1758 PCIDevice *pdev = &vdev->pdev; 1759 int i, ret = 0; 1760 uint32_t data; 1761 1762 /* Defer to a kernel implemented reset */ 1763 if (vdev->vbasedev.reset_works) { 1764 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); 1765 return -ENODEV; 1766 } 1767 1768 /* Enable only memory BAR access */ 1769 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); 1770 1771 /* Reset only works if SMC firmware is loaded and running */ 1772 if (!vfio_radeon_smc_is_running(vdev)) { 1773 ret = -EINVAL; 1774 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); 1775 goto out; 1776 } 1777 1778 /* Make sure only the GFX function is reset */ 1779 vfio_radeon_set_gfx_only_reset(vdev); 1780 1781 /* AMD PCI config reset */ 1782 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); 1783 usleep(100); 1784 1785 /* Read back the memory size to make sure we're out of reset */ 1786 for (i = 0; i < 100000; i++) { 1787 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { 1788 goto reset_smc; 1789 } 1790 usleep(1); 1791 } 1792 1793 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); 1794 1795 reset_smc: 1796 /* Reset SMC */ 1797 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); 1798 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1799 data |= 1; 1800 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 1801 1802 /* Disable SMC clock */ 1803 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1804 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1805 data |= 1; 1806 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 1807 1808 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); 1809 1810 out: 1811 /* Restore PCI command register */ 1812 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); 1813 1814 return ret; 1815 } 1816 1817 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) 1818 { 1819 switch (vdev->vendor_id) { 1820 case 0x1002: 1821 switch (vdev->device_id) { 1822 /* Bonaire */ 1823 case 0x6649: /* Bonaire [FirePro W5100] */ 1824 case 0x6650: 1825 case 0x6651: 1826 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ 1827 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ 1828 case 0x665d: /* Bonaire [Radeon R7 200 Series] */ 1829 /* Hawaii */ 1830 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ 1831 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ 1832 case 0x67A2: 1833 case 0x67A8: 1834 case 0x67A9: 1835 case 0x67AA: 1836 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ 1837 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ 1838 case 0x67B8: 1839 case 0x67B9: 1840 case 0x67BA: 1841 case 0x67BE: 1842 vdev->resetfn = vfio_radeon_reset; 1843 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); 1844 break; 1845 } 1846 break; 1847 } 1848 } 1849