1 /* 2 * device quirks for PCI devices 3 * 4 * Copyright Red Hat, Inc. 2012-2015 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "exec/memop.h" 15 #include "qemu/units.h" 16 #include "qemu/error-report.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/module.h" 19 #include "qemu/range.h" 20 #include "qapi/error.h" 21 #include "qapi/visitor.h" 22 #include <sys/ioctl.h> 23 #include "hw/hw.h" 24 #include "hw/nvram/fw_cfg.h" 25 #include "hw/qdev-properties.h" 26 #include "pci.h" 27 #include "trace.h" 28 29 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */ 30 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device) 31 { 32 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) && 33 (device == PCI_ANY_ID || device == vdev->device_id); 34 } 35 36 static bool vfio_is_vga(VFIOPCIDevice *vdev) 37 { 38 PCIDevice *pdev = &vdev->pdev; 39 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 40 41 return class == PCI_CLASS_DISPLAY_VGA; 42 } 43 44 /* 45 * List of device ids/vendor ids for which to disable 46 * option rom loading. This avoids the guest hangs during rom 47 * execution as noticed with the BCM 57810 card for lack of a 48 * more better way to handle such issues. 49 * The user can still override by specifying a romfile or 50 * rombar=1. 51 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 52 * for an analysis of the 57810 card hang. When adding 53 * a new vendor id/device id combination below, please also add 54 * your card/environment details and information that could 55 * help in debugging to the bug tracking this issue 56 */ 57 static const struct { 58 uint32_t vendor; 59 uint32_t device; 60 } romblacklist[] = { 61 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ 62 }; 63 64 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 65 { 66 int i; 67 68 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) { 69 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) { 70 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name, 71 romblacklist[i].vendor, 72 romblacklist[i].device); 73 return true; 74 } 75 } 76 return false; 77 } 78 79 /* 80 * Device specific region quirks (mostly backdoors to PCI config space) 81 */ 82 83 /* 84 * The generic window quirks operate on an address and data register, 85 * vfio_generic_window_address_quirk handles the address register and 86 * vfio_generic_window_data_quirk handles the data register. These ops 87 * pass reads and writes through to hardware until a value matching the 88 * stored address match/mask is written. When this occurs, the data 89 * register access emulated PCI config space for the device rather than 90 * passing through accesses. This enables devices where PCI config space 91 * is accessible behind a window register to maintain the virtualization 92 * provided through vfio. 93 */ 94 typedef struct VFIOConfigWindowMatch { 95 uint32_t match; 96 uint32_t mask; 97 } VFIOConfigWindowMatch; 98 99 typedef struct VFIOConfigWindowQuirk { 100 struct VFIOPCIDevice *vdev; 101 102 uint32_t address_val; 103 104 uint32_t address_offset; 105 uint32_t data_offset; 106 107 bool window_enabled; 108 uint8_t bar; 109 110 MemoryRegion *addr_mem; 111 MemoryRegion *data_mem; 112 113 uint32_t nr_matches; 114 VFIOConfigWindowMatch matches[]; 115 } VFIOConfigWindowQuirk; 116 117 static uint64_t vfio_generic_window_quirk_address_read(void *opaque, 118 hwaddr addr, 119 unsigned size) 120 { 121 VFIOConfigWindowQuirk *window = opaque; 122 VFIOPCIDevice *vdev = window->vdev; 123 124 return vfio_region_read(&vdev->bars[window->bar].region, 125 addr + window->address_offset, size); 126 } 127 128 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, 129 uint64_t data, 130 unsigned size) 131 { 132 VFIOConfigWindowQuirk *window = opaque; 133 VFIOPCIDevice *vdev = window->vdev; 134 int i; 135 136 window->window_enabled = false; 137 138 vfio_region_write(&vdev->bars[window->bar].region, 139 addr + window->address_offset, data, size); 140 141 for (i = 0; i < window->nr_matches; i++) { 142 if ((data & ~window->matches[i].mask) == window->matches[i].match) { 143 window->window_enabled = true; 144 window->address_val = data & window->matches[i].mask; 145 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, 146 memory_region_name(window->addr_mem), data); 147 break; 148 } 149 } 150 } 151 152 static const MemoryRegionOps vfio_generic_window_address_quirk = { 153 .read = vfio_generic_window_quirk_address_read, 154 .write = vfio_generic_window_quirk_address_write, 155 .endianness = DEVICE_LITTLE_ENDIAN, 156 }; 157 158 static uint64_t vfio_generic_window_quirk_data_read(void *opaque, 159 hwaddr addr, unsigned size) 160 { 161 VFIOConfigWindowQuirk *window = opaque; 162 VFIOPCIDevice *vdev = window->vdev; 163 uint64_t data; 164 165 /* Always read data reg, discard if window enabled */ 166 data = vfio_region_read(&vdev->bars[window->bar].region, 167 addr + window->data_offset, size); 168 169 if (window->window_enabled) { 170 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); 171 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, 172 memory_region_name(window->data_mem), data); 173 } 174 175 return data; 176 } 177 178 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, 179 uint64_t data, unsigned size) 180 { 181 VFIOConfigWindowQuirk *window = opaque; 182 VFIOPCIDevice *vdev = window->vdev; 183 184 if (window->window_enabled) { 185 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); 186 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, 187 memory_region_name(window->data_mem), data); 188 return; 189 } 190 191 vfio_region_write(&vdev->bars[window->bar].region, 192 addr + window->data_offset, data, size); 193 } 194 195 static const MemoryRegionOps vfio_generic_window_data_quirk = { 196 .read = vfio_generic_window_quirk_data_read, 197 .write = vfio_generic_window_quirk_data_write, 198 .endianness = DEVICE_LITTLE_ENDIAN, 199 }; 200 201 /* 202 * The generic mirror quirk handles devices which expose PCI config space 203 * through a region within a BAR. When enabled, reads and writes are 204 * redirected through to emulated PCI config space. XXX if PCI config space 205 * used memory regions, this could just be an alias. 206 */ 207 typedef struct VFIOConfigMirrorQuirk { 208 struct VFIOPCIDevice *vdev; 209 uint32_t offset; 210 uint8_t bar; 211 MemoryRegion *mem; 212 uint8_t data[]; 213 } VFIOConfigMirrorQuirk; 214 215 static uint64_t vfio_generic_quirk_mirror_read(void *opaque, 216 hwaddr addr, unsigned size) 217 { 218 VFIOConfigMirrorQuirk *mirror = opaque; 219 VFIOPCIDevice *vdev = mirror->vdev; 220 uint64_t data; 221 222 /* Read and discard in case the hardware cares */ 223 (void)vfio_region_read(&vdev->bars[mirror->bar].region, 224 addr + mirror->offset, size); 225 226 data = vfio_pci_read_config(&vdev->pdev, addr, size); 227 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, 228 memory_region_name(mirror->mem), 229 addr, data); 230 return data; 231 } 232 233 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, 234 uint64_t data, unsigned size) 235 { 236 VFIOConfigMirrorQuirk *mirror = opaque; 237 VFIOPCIDevice *vdev = mirror->vdev; 238 239 vfio_pci_write_config(&vdev->pdev, addr, data, size); 240 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, 241 memory_region_name(mirror->mem), 242 addr, data); 243 } 244 245 static const MemoryRegionOps vfio_generic_mirror_quirk = { 246 .read = vfio_generic_quirk_mirror_read, 247 .write = vfio_generic_quirk_mirror_write, 248 .endianness = DEVICE_LITTLE_ENDIAN, 249 }; 250 251 /* Is range1 fully contained within range2? */ 252 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 253 uint64_t first2, uint64_t len2) { 254 return (first1 >= first2 && first1 + len1 <= first2 + len2); 255 } 256 257 #define PCI_VENDOR_ID_ATI 0x1002 258 259 /* 260 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 261 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 262 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 263 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 264 * I/O port BAR address. Originally this was coded to return the virtual BAR 265 * address only if the physical register read returns the actual BAR address, 266 * but users have reported greater success if we return the virtual address 267 * unconditionally. 268 */ 269 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 270 hwaddr addr, unsigned size) 271 { 272 VFIOPCIDevice *vdev = opaque; 273 uint64_t data = vfio_pci_read_config(&vdev->pdev, 274 PCI_BASE_ADDRESS_4 + 1, size); 275 276 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); 277 278 return data; 279 } 280 281 static const MemoryRegionOps vfio_ati_3c3_quirk = { 282 .read = vfio_ati_3c3_quirk_read, 283 .endianness = DEVICE_LITTLE_ENDIAN, 284 }; 285 286 static VFIOQuirk *vfio_quirk_alloc(int nr_mem) 287 { 288 VFIOQuirk *quirk = g_new0(VFIOQuirk, 1); 289 QLIST_INIT(&quirk->ioeventfds); 290 quirk->mem = g_new0(MemoryRegion, nr_mem); 291 quirk->nr_mem = nr_mem; 292 293 return quirk; 294 } 295 296 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd) 297 { 298 QLIST_REMOVE(ioeventfd, next); 299 memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, 300 true, ioeventfd->data, &ioeventfd->e); 301 302 if (ioeventfd->vfio) { 303 struct vfio_device_ioeventfd vfio_ioeventfd; 304 305 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); 306 vfio_ioeventfd.flags = ioeventfd->size; 307 vfio_ioeventfd.data = ioeventfd->data; 308 vfio_ioeventfd.offset = ioeventfd->region->fd_offset + 309 ioeventfd->region_addr; 310 vfio_ioeventfd.fd = -1; 311 312 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) { 313 error_report("Failed to remove vfio ioeventfd for %s+0x%" 314 HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)", 315 memory_region_name(ioeventfd->mr), ioeventfd->addr, 316 ioeventfd->size, ioeventfd->data); 317 } 318 } else { 319 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), 320 NULL, NULL, NULL); 321 } 322 323 event_notifier_cleanup(&ioeventfd->e); 324 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr), 325 (uint64_t)ioeventfd->addr, ioeventfd->size, 326 ioeventfd->data); 327 g_free(ioeventfd); 328 } 329 330 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk) 331 { 332 VFIOIOEventFD *ioeventfd, *tmp; 333 334 QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) { 335 if (ioeventfd->dynamic) { 336 vfio_ioeventfd_exit(vdev, ioeventfd); 337 } 338 } 339 } 340 341 static void vfio_ioeventfd_handler(void *opaque) 342 { 343 VFIOIOEventFD *ioeventfd = opaque; 344 345 if (event_notifier_test_and_clear(&ioeventfd->e)) { 346 vfio_region_write(ioeventfd->region, ioeventfd->region_addr, 347 ioeventfd->data, ioeventfd->size); 348 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr), 349 (uint64_t)ioeventfd->addr, ioeventfd->size, 350 ioeventfd->data); 351 } 352 } 353 354 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev, 355 MemoryRegion *mr, hwaddr addr, 356 unsigned size, uint64_t data, 357 VFIORegion *region, 358 hwaddr region_addr, bool dynamic) 359 { 360 VFIOIOEventFD *ioeventfd; 361 362 if (vdev->no_kvm_ioeventfd) { 363 return NULL; 364 } 365 366 ioeventfd = g_malloc0(sizeof(*ioeventfd)); 367 368 if (event_notifier_init(&ioeventfd->e, 0)) { 369 g_free(ioeventfd); 370 return NULL; 371 } 372 373 /* 374 * MemoryRegion and relative offset, plus additional ioeventfd setup 375 * parameters for configuring and later tearing down KVM ioeventfd. 376 */ 377 ioeventfd->mr = mr; 378 ioeventfd->addr = addr; 379 ioeventfd->size = size; 380 ioeventfd->data = data; 381 ioeventfd->dynamic = dynamic; 382 /* 383 * VFIORegion and relative offset for implementing the userspace 384 * handler. data & size fields shared for both uses. 385 */ 386 ioeventfd->region = region; 387 ioeventfd->region_addr = region_addr; 388 389 if (!vdev->no_vfio_ioeventfd) { 390 struct vfio_device_ioeventfd vfio_ioeventfd; 391 392 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); 393 vfio_ioeventfd.flags = ioeventfd->size; 394 vfio_ioeventfd.data = ioeventfd->data; 395 vfio_ioeventfd.offset = ioeventfd->region->fd_offset + 396 ioeventfd->region_addr; 397 vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e); 398 399 ioeventfd->vfio = !ioctl(vdev->vbasedev.fd, 400 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd); 401 } 402 403 if (!ioeventfd->vfio) { 404 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), 405 vfio_ioeventfd_handler, NULL, ioeventfd); 406 } 407 408 memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, 409 true, ioeventfd->data, &ioeventfd->e); 410 trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr, 411 size, data, ioeventfd->vfio); 412 413 return ioeventfd; 414 } 415 416 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 417 { 418 VFIOQuirk *quirk; 419 420 /* 421 * As long as the BAR is >= 256 bytes it will be aligned such that the 422 * lower byte is always zero. Filter out anything else, if it exists. 423 */ 424 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 425 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 426 return; 427 } 428 429 quirk = vfio_quirk_alloc(1); 430 431 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, 432 "vfio-ati-3c3-quirk", 1); 433 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 434 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); 435 436 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 437 quirk, next); 438 439 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); 440 } 441 442 /* 443 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI 444 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 445 * the MMIO space directly, but a window to this space is provided through 446 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 447 * data register. When the address is programmed to a range of 0x4000-0x4fff 448 * PCI configuration space is available. Experimentation seems to indicate 449 * that read-only may be provided by hardware. 450 */ 451 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) 452 { 453 VFIOQuirk *quirk; 454 VFIOConfigWindowQuirk *window; 455 456 /* This windows doesn't seem to be used except by legacy VGA code */ 457 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 458 !vdev->vga || nr != 4) { 459 return; 460 } 461 462 quirk = vfio_quirk_alloc(2); 463 window = quirk->data = g_malloc0(sizeof(*window) + 464 sizeof(VFIOConfigWindowMatch)); 465 window->vdev = vdev; 466 window->address_offset = 0; 467 window->data_offset = 4; 468 window->nr_matches = 1; 469 window->matches[0].match = 0x4000; 470 window->matches[0].mask = vdev->config_size - 1; 471 window->bar = nr; 472 window->addr_mem = &quirk->mem[0]; 473 window->data_mem = &quirk->mem[1]; 474 475 memory_region_init_io(window->addr_mem, OBJECT(vdev), 476 &vfio_generic_window_address_quirk, window, 477 "vfio-ati-bar4-window-address-quirk", 4); 478 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 479 window->address_offset, 480 window->addr_mem, 1); 481 482 memory_region_init_io(window->data_mem, OBJECT(vdev), 483 &vfio_generic_window_data_quirk, window, 484 "vfio-ati-bar4-window-data-quirk", 4); 485 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 486 window->data_offset, 487 window->data_mem, 1); 488 489 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 490 491 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); 492 } 493 494 /* 495 * Trap the BAR2 MMIO mirror to config space as well. 496 */ 497 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) 498 { 499 VFIOQuirk *quirk; 500 VFIOConfigMirrorQuirk *mirror; 501 502 /* Only enable on newer devices where BAR2 is 64bit */ 503 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 504 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { 505 return; 506 } 507 508 quirk = vfio_quirk_alloc(1); 509 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 510 mirror->mem = quirk->mem; 511 mirror->vdev = vdev; 512 mirror->offset = 0x4000; 513 mirror->bar = nr; 514 515 memory_region_init_io(mirror->mem, OBJECT(vdev), 516 &vfio_generic_mirror_quirk, mirror, 517 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); 518 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 519 mirror->offset, mirror->mem, 1); 520 521 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 522 523 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); 524 } 525 526 /* 527 * Older ATI/AMD cards like the X550 have a similar window to that above. 528 * I/O port BAR1 provides a window to a mirror of PCI config space located 529 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 530 * note it for future reference. 531 */ 532 533 /* 534 * Nvidia has several different methods to get to config space, the 535 * nouveu project has several of these documented here: 536 * https://github.com/pathscale/envytools/tree/master/hwdocs 537 * 538 * The first quirk is actually not documented in envytools and is found 539 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 540 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 541 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 542 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 543 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 544 * is written for a write to 0x3d4. The BAR0 offset is then accessible 545 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 546 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 547 */ 548 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; 549 static const char *nv3d0_states[] = { "NONE", "SELECT", 550 "WINDOW", "READ", "WRITE" }; 551 552 typedef struct VFIONvidia3d0Quirk { 553 VFIOPCIDevice *vdev; 554 VFIONvidia3d0State state; 555 uint32_t offset; 556 } VFIONvidia3d0Quirk; 557 558 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, 559 hwaddr addr, unsigned size) 560 { 561 VFIONvidia3d0Quirk *quirk = opaque; 562 VFIOPCIDevice *vdev = quirk->vdev; 563 564 quirk->state = NONE; 565 566 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 567 addr + 0x14, size); 568 } 569 570 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, 571 uint64_t data, unsigned size) 572 { 573 VFIONvidia3d0Quirk *quirk = opaque; 574 VFIOPCIDevice *vdev = quirk->vdev; 575 VFIONvidia3d0State old_state = quirk->state; 576 577 quirk->state = NONE; 578 579 switch (data) { 580 case 0x338: 581 if (old_state == NONE) { 582 quirk->state = SELECT; 583 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 584 nv3d0_states[quirk->state]); 585 } 586 break; 587 case 0x538: 588 if (old_state == WINDOW) { 589 quirk->state = READ; 590 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 591 nv3d0_states[quirk->state]); 592 } 593 break; 594 case 0x738: 595 if (old_state == WINDOW) { 596 quirk->state = WRITE; 597 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 598 nv3d0_states[quirk->state]); 599 } 600 break; 601 } 602 603 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 604 addr + 0x14, data, size); 605 } 606 607 static const MemoryRegionOps vfio_nvidia_3d4_quirk = { 608 .read = vfio_nvidia_3d4_quirk_read, 609 .write = vfio_nvidia_3d4_quirk_write, 610 .endianness = DEVICE_LITTLE_ENDIAN, 611 }; 612 613 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 614 hwaddr addr, unsigned size) 615 { 616 VFIONvidia3d0Quirk *quirk = opaque; 617 VFIOPCIDevice *vdev = quirk->vdev; 618 VFIONvidia3d0State old_state = quirk->state; 619 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 620 addr + 0x10, size); 621 622 quirk->state = NONE; 623 624 if (old_state == READ && 625 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 626 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 627 628 data = vfio_pci_read_config(&vdev->pdev, offset, size); 629 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, 630 offset, size, data); 631 } 632 633 return data; 634 } 635 636 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 637 uint64_t data, unsigned size) 638 { 639 VFIONvidia3d0Quirk *quirk = opaque; 640 VFIOPCIDevice *vdev = quirk->vdev; 641 VFIONvidia3d0State old_state = quirk->state; 642 643 quirk->state = NONE; 644 645 if (old_state == SELECT) { 646 quirk->offset = (uint32_t)data; 647 quirk->state = WINDOW; 648 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 649 nv3d0_states[quirk->state]); 650 } else if (old_state == WRITE) { 651 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 652 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 653 654 vfio_pci_write_config(&vdev->pdev, offset, data, size); 655 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, 656 offset, data, size); 657 return; 658 } 659 } 660 661 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 662 addr + 0x10, data, size); 663 } 664 665 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 666 .read = vfio_nvidia_3d0_quirk_read, 667 .write = vfio_nvidia_3d0_quirk_write, 668 .endianness = DEVICE_LITTLE_ENDIAN, 669 }; 670 671 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 672 { 673 VFIOQuirk *quirk; 674 VFIONvidia3d0Quirk *data; 675 676 if (vdev->no_geforce_quirks || 677 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 678 !vdev->bars[1].region.size) { 679 return; 680 } 681 682 quirk = vfio_quirk_alloc(2); 683 quirk->data = data = g_malloc0(sizeof(*data)); 684 data->vdev = vdev; 685 686 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, 687 data, "vfio-nvidia-3d4-quirk", 2); 688 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 689 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); 690 691 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, 692 data, "vfio-nvidia-3d0-quirk", 2); 693 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 694 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); 695 696 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 697 quirk, next); 698 699 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); 700 } 701 702 /* 703 * The second quirk is documented in envytools. The I/O port BAR5 is just 704 * a set of address/data ports to the MMIO BARs. The BAR we care about is 705 * again BAR0. This backdoor is apparently a bit newer than the one above 706 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 707 * space, including extended space is available at the 4k @0x88000. 708 */ 709 typedef struct VFIONvidiaBAR5Quirk { 710 uint32_t master; 711 uint32_t enable; 712 MemoryRegion *addr_mem; 713 MemoryRegion *data_mem; 714 bool enabled; 715 VFIOConfigWindowQuirk window; /* last for match data */ 716 } VFIONvidiaBAR5Quirk; 717 718 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) 719 { 720 VFIOPCIDevice *vdev = bar5->window.vdev; 721 722 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { 723 return; 724 } 725 726 bar5->enabled = !bar5->enabled; 727 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, 728 bar5->enabled ? "Enable" : "Disable"); 729 memory_region_set_enabled(bar5->addr_mem, bar5->enabled); 730 memory_region_set_enabled(bar5->data_mem, bar5->enabled); 731 } 732 733 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, 734 hwaddr addr, unsigned size) 735 { 736 VFIONvidiaBAR5Quirk *bar5 = opaque; 737 VFIOPCIDevice *vdev = bar5->window.vdev; 738 739 return vfio_region_read(&vdev->bars[5].region, addr, size); 740 } 741 742 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, 743 uint64_t data, unsigned size) 744 { 745 VFIONvidiaBAR5Quirk *bar5 = opaque; 746 VFIOPCIDevice *vdev = bar5->window.vdev; 747 748 vfio_region_write(&vdev->bars[5].region, addr, data, size); 749 750 bar5->master = data; 751 vfio_nvidia_bar5_enable(bar5); 752 } 753 754 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { 755 .read = vfio_nvidia_bar5_quirk_master_read, 756 .write = vfio_nvidia_bar5_quirk_master_write, 757 .endianness = DEVICE_LITTLE_ENDIAN, 758 }; 759 760 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, 761 hwaddr addr, unsigned size) 762 { 763 VFIONvidiaBAR5Quirk *bar5 = opaque; 764 VFIOPCIDevice *vdev = bar5->window.vdev; 765 766 return vfio_region_read(&vdev->bars[5].region, addr + 4, size); 767 } 768 769 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, 770 uint64_t data, unsigned size) 771 { 772 VFIONvidiaBAR5Quirk *bar5 = opaque; 773 VFIOPCIDevice *vdev = bar5->window.vdev; 774 775 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); 776 777 bar5->enable = data; 778 vfio_nvidia_bar5_enable(bar5); 779 } 780 781 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { 782 .read = vfio_nvidia_bar5_quirk_enable_read, 783 .write = vfio_nvidia_bar5_quirk_enable_write, 784 .endianness = DEVICE_LITTLE_ENDIAN, 785 }; 786 787 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) 788 { 789 VFIOQuirk *quirk; 790 VFIONvidiaBAR5Quirk *bar5; 791 VFIOConfigWindowQuirk *window; 792 793 if (vdev->no_geforce_quirks || 794 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 795 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) { 796 return; 797 } 798 799 quirk = vfio_quirk_alloc(4); 800 bar5 = quirk->data = g_malloc0(sizeof(*bar5) + 801 (sizeof(VFIOConfigWindowMatch) * 2)); 802 window = &bar5->window; 803 804 window->vdev = vdev; 805 window->address_offset = 0x8; 806 window->data_offset = 0xc; 807 window->nr_matches = 2; 808 window->matches[0].match = 0x1800; 809 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; 810 window->matches[1].match = 0x88000; 811 window->matches[1].mask = vdev->config_size - 1; 812 window->bar = nr; 813 window->addr_mem = bar5->addr_mem = &quirk->mem[0]; 814 window->data_mem = bar5->data_mem = &quirk->mem[1]; 815 816 memory_region_init_io(window->addr_mem, OBJECT(vdev), 817 &vfio_generic_window_address_quirk, window, 818 "vfio-nvidia-bar5-window-address-quirk", 4); 819 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 820 window->address_offset, 821 window->addr_mem, 1); 822 memory_region_set_enabled(window->addr_mem, false); 823 824 memory_region_init_io(window->data_mem, OBJECT(vdev), 825 &vfio_generic_window_data_quirk, window, 826 "vfio-nvidia-bar5-window-data-quirk", 4); 827 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 828 window->data_offset, 829 window->data_mem, 1); 830 memory_region_set_enabled(window->data_mem, false); 831 832 memory_region_init_io(&quirk->mem[2], OBJECT(vdev), 833 &vfio_nvidia_bar5_quirk_master, bar5, 834 "vfio-nvidia-bar5-master-quirk", 4); 835 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 836 0, &quirk->mem[2], 1); 837 838 memory_region_init_io(&quirk->mem[3], OBJECT(vdev), 839 &vfio_nvidia_bar5_quirk_enable, bar5, 840 "vfio-nvidia-bar5-enable-quirk", 4); 841 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 842 4, &quirk->mem[3], 1); 843 844 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 845 846 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); 847 } 848 849 typedef struct LastDataSet { 850 VFIOQuirk *quirk; 851 hwaddr addr; 852 uint64_t data; 853 unsigned size; 854 int hits; 855 int added; 856 } LastDataSet; 857 858 #define MAX_DYN_IOEVENTFD 10 859 #define HITS_FOR_IOEVENTFD 10 860 861 /* 862 * Finally, BAR0 itself. We want to redirect any accesses to either 863 * 0x1800 or 0x88000 through the PCI config space access functions. 864 */ 865 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, 866 uint64_t data, unsigned size) 867 { 868 VFIOConfigMirrorQuirk *mirror = opaque; 869 VFIOPCIDevice *vdev = mirror->vdev; 870 PCIDevice *pdev = &vdev->pdev; 871 LastDataSet *last = (LastDataSet *)&mirror->data; 872 873 vfio_generic_quirk_mirror_write(opaque, addr, data, size); 874 875 /* 876 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 877 * MSI capability ID register. Both the ID and next register are 878 * read-only, so we allow writes covering either of those to real hw. 879 */ 880 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 881 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 882 vfio_region_write(&vdev->bars[mirror->bar].region, 883 addr + mirror->offset, data, size); 884 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); 885 } 886 887 /* 888 * Automatically add an ioeventfd to handle any repeated write with the 889 * same data and size above the standard PCI config space header. This is 890 * primarily expected to accelerate the MSI-ACK behavior, such as noted 891 * above. Current hardware/drivers should trigger an ioeventfd at config 892 * offset 0x704 (region offset 0x88704), with data 0x0, size 4. 893 * 894 * The criteria of 10 successive hits is arbitrary but reliably adds the 895 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd, 896 * the remaining ones have a greater chance of being seen successively. 897 * To avoid the pathological case of burning up all of QEMU's open file 898 * handles, arbitrarily limit this algorithm from adding no more than 10 899 * ioeventfds, print an error if we would have added an 11th, and then 900 * stop counting. 901 */ 902 if (!vdev->no_kvm_ioeventfd && 903 addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) { 904 if (addr != last->addr || data != last->data || size != last->size) { 905 last->addr = addr; 906 last->data = data; 907 last->size = size; 908 last->hits = 1; 909 } else if (++last->hits >= HITS_FOR_IOEVENTFD) { 910 if (last->added < MAX_DYN_IOEVENTFD) { 911 VFIOIOEventFD *ioeventfd; 912 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size, 913 data, &vdev->bars[mirror->bar].region, 914 mirror->offset + addr, true); 915 if (ioeventfd) { 916 VFIOQuirk *quirk = last->quirk; 917 918 QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next); 919 last->added++; 920 } 921 } else { 922 last->added++; 923 warn_report("NVIDIA ioeventfd queue full for %s, unable to " 924 "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", " 925 "size %u", vdev->vbasedev.name, addr, data, size); 926 } 927 } 928 } 929 } 930 931 static const MemoryRegionOps vfio_nvidia_mirror_quirk = { 932 .read = vfio_generic_quirk_mirror_read, 933 .write = vfio_nvidia_quirk_mirror_write, 934 .endianness = DEVICE_LITTLE_ENDIAN, 935 }; 936 937 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk) 938 { 939 VFIOConfigMirrorQuirk *mirror = quirk->data; 940 LastDataSet *last = (LastDataSet *)&mirror->data; 941 942 last->addr = last->data = last->size = last->hits = last->added = 0; 943 944 vfio_drop_dynamic_eventfds(vdev, quirk); 945 } 946 947 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) 948 { 949 VFIOQuirk *quirk; 950 VFIOConfigMirrorQuirk *mirror; 951 LastDataSet *last; 952 953 if (vdev->no_geforce_quirks || 954 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 955 !vfio_is_vga(vdev) || nr != 0) { 956 return; 957 } 958 959 quirk = vfio_quirk_alloc(1); 960 quirk->reset = vfio_nvidia_bar0_quirk_reset; 961 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); 962 mirror->mem = quirk->mem; 963 mirror->vdev = vdev; 964 mirror->offset = 0x88000; 965 mirror->bar = nr; 966 last = (LastDataSet *)&mirror->data; 967 last->quirk = quirk; 968 969 memory_region_init_io(mirror->mem, OBJECT(vdev), 970 &vfio_nvidia_mirror_quirk, mirror, 971 "vfio-nvidia-bar0-88000-mirror-quirk", 972 vdev->config_size); 973 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 974 mirror->offset, mirror->mem, 1); 975 976 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 977 978 /* The 0x1800 offset mirror only seems to get used by legacy VGA */ 979 if (vdev->vga) { 980 quirk = vfio_quirk_alloc(1); 981 quirk->reset = vfio_nvidia_bar0_quirk_reset; 982 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); 983 mirror->mem = quirk->mem; 984 mirror->vdev = vdev; 985 mirror->offset = 0x1800; 986 mirror->bar = nr; 987 last = (LastDataSet *)&mirror->data; 988 last->quirk = quirk; 989 990 memory_region_init_io(mirror->mem, OBJECT(vdev), 991 &vfio_nvidia_mirror_quirk, mirror, 992 "vfio-nvidia-bar0-1800-mirror-quirk", 993 PCI_CONFIG_SPACE_SIZE); 994 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 995 mirror->offset, mirror->mem, 1); 996 997 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 998 } 999 1000 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); 1001 } 1002 1003 /* 1004 * TODO - Some Nvidia devices provide config access to their companion HDA 1005 * device and even to their parent bridge via these config space mirrors. 1006 * Add quirks for those regions. 1007 */ 1008 1009 #define PCI_VENDOR_ID_REALTEK 0x10ec 1010 1011 /* 1012 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 1013 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 1014 * register. According to the Linux r8169 driver, the MSI-X table is addressed 1015 * when the "type" portion of the address register is set to 0x1. This appears 1016 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 1017 * "address latched" indicator. Bits 12:15 are a mask field, which we can 1018 * ignore because the MSI-X table should always be accessed as a dword (full 1019 * mask). Bits 0:11 is offset within the type. 1020 * 1021 * Example trace: 1022 * 1023 * Read from MSI-X table offset 0 1024 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 1025 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 1026 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 1027 * 1028 * Write 0xfee00000 to MSI-X table offset 0 1029 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 1030 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 1031 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 1032 */ 1033 typedef struct VFIOrtl8168Quirk { 1034 VFIOPCIDevice *vdev; 1035 uint32_t addr; 1036 uint32_t data; 1037 bool enabled; 1038 } VFIOrtl8168Quirk; 1039 1040 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, 1041 hwaddr addr, unsigned size) 1042 { 1043 VFIOrtl8168Quirk *rtl = opaque; 1044 VFIOPCIDevice *vdev = rtl->vdev; 1045 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); 1046 1047 if (rtl->enabled) { 1048 data = rtl->addr ^ 0x80000000U; /* latch/complete */ 1049 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); 1050 } 1051 1052 return data; 1053 } 1054 1055 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, 1056 uint64_t data, unsigned size) 1057 { 1058 VFIOrtl8168Quirk *rtl = opaque; 1059 VFIOPCIDevice *vdev = rtl->vdev; 1060 1061 rtl->enabled = false; 1062 1063 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ 1064 rtl->enabled = true; 1065 rtl->addr = (uint32_t)data; 1066 1067 if (data & 0x80000000U) { /* Do write */ 1068 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 1069 hwaddr offset = data & 0xfff; 1070 uint64_t val = rtl->data; 1071 1072 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, 1073 (uint16_t)offset, val); 1074 1075 /* Write to the proper guest MSI-X table instead */ 1076 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 1077 offset, val, size_memop(size), 1078 MEMTXATTRS_UNSPECIFIED); 1079 } 1080 return; /* Do not write guest MSI-X data to hardware */ 1081 } 1082 } 1083 1084 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); 1085 } 1086 1087 static const MemoryRegionOps vfio_rtl_address_quirk = { 1088 .read = vfio_rtl8168_quirk_address_read, 1089 .write = vfio_rtl8168_quirk_address_write, 1090 .valid = { 1091 .min_access_size = 4, 1092 .max_access_size = 4, 1093 .unaligned = false, 1094 }, 1095 .endianness = DEVICE_LITTLE_ENDIAN, 1096 }; 1097 1098 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, 1099 hwaddr addr, unsigned size) 1100 { 1101 VFIOrtl8168Quirk *rtl = opaque; 1102 VFIOPCIDevice *vdev = rtl->vdev; 1103 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); 1104 1105 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 1106 hwaddr offset = rtl->addr & 0xfff; 1107 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, 1108 &data, size_memop(size), 1109 MEMTXATTRS_UNSPECIFIED); 1110 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); 1111 } 1112 1113 return data; 1114 } 1115 1116 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, 1117 uint64_t data, unsigned size) 1118 { 1119 VFIOrtl8168Quirk *rtl = opaque; 1120 VFIOPCIDevice *vdev = rtl->vdev; 1121 1122 rtl->data = (uint32_t)data; 1123 1124 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); 1125 } 1126 1127 static const MemoryRegionOps vfio_rtl_data_quirk = { 1128 .read = vfio_rtl8168_quirk_data_read, 1129 .write = vfio_rtl8168_quirk_data_write, 1130 .valid = { 1131 .min_access_size = 4, 1132 .max_access_size = 4, 1133 .unaligned = false, 1134 }, 1135 .endianness = DEVICE_LITTLE_ENDIAN, 1136 }; 1137 1138 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) 1139 { 1140 VFIOQuirk *quirk; 1141 VFIOrtl8168Quirk *rtl; 1142 1143 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { 1144 return; 1145 } 1146 1147 quirk = vfio_quirk_alloc(2); 1148 quirk->data = rtl = g_malloc0(sizeof(*rtl)); 1149 rtl->vdev = vdev; 1150 1151 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), 1152 &vfio_rtl_address_quirk, rtl, 1153 "vfio-rtl8168-window-address-quirk", 4); 1154 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1155 0x74, &quirk->mem[0], 1); 1156 1157 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), 1158 &vfio_rtl_data_quirk, rtl, 1159 "vfio-rtl8168-window-data-quirk", 4); 1160 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1161 0x70, &quirk->mem[1], 1); 1162 1163 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1164 1165 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); 1166 } 1167 1168 /* 1169 * Intel IGD support 1170 * 1171 * Obviously IGD is not a discrete device, this is evidenced not only by it 1172 * being integrated into the CPU, but by the various chipset and BIOS 1173 * dependencies that it brings along with it. Intel is trying to move away 1174 * from this and Broadwell and newer devices can run in what Intel calls 1175 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing 1176 * more is required beyond assigning the IGD device to a VM. There are 1177 * however support limitations to this mode. It only supports IGD as a 1178 * secondary graphics device in the VM and it doesn't officially support any 1179 * physical outputs. 1180 * 1181 * The code here attempts to enable what we'll call legacy mode assignment, 1182 * IGD retains most of the capabilities we expect for it to have on bare 1183 * metal. To enable this mode, the IGD device must be assigned to the VM 1184 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA 1185 * support, we must have VM BIOS support for reserving and populating some 1186 * of the required tables, and we need to tweak the chipset with revisions 1187 * and IDs and an LPC/ISA bridge device. The intention is to make all of 1188 * this happen automatically by installing the device at the correct VM PCI 1189 * bus address. If any of the conditions are not met, we cross our fingers 1190 * and hope the user knows better. 1191 * 1192 * NB - It is possible to enable physical outputs in UPT mode by supplying 1193 * an OpRegion table. We don't do this by default because the guest driver 1194 * behaves differently if an OpRegion is provided and no monitor is attached 1195 * vs no OpRegion and a monitor being attached or not. Effectively, if a 1196 * headless setup is desired, the OpRegion gets in the way of that. 1197 */ 1198 1199 /* 1200 * This presumes the device is already known to be an Intel VGA device, so we 1201 * take liberties in which device ID bits match which generation. This should 1202 * not be taken as an indication that all the devices are supported, or even 1203 * supportable, some of them don't even support VT-d. 1204 * See linux:include/drm/i915_pciids.h for IDs. 1205 */ 1206 static int igd_gen(VFIOPCIDevice *vdev) 1207 { 1208 if ((vdev->device_id & 0xfff) == 0xa84) { 1209 return 8; /* Broxton */ 1210 } 1211 1212 switch (vdev->device_id & 0xff00) { 1213 /* Old, untested, unavailable, unknown */ 1214 case 0x0000: 1215 case 0x2500: 1216 case 0x2700: 1217 case 0x2900: 1218 case 0x2a00: 1219 case 0x2e00: 1220 case 0x3500: 1221 case 0xa000: 1222 return -1; 1223 /* SandyBridge, IvyBridge, ValleyView, Haswell */ 1224 case 0x0100: 1225 case 0x0400: 1226 case 0x0a00: 1227 case 0x0c00: 1228 case 0x0d00: 1229 case 0x0f00: 1230 return 6; 1231 /* BroadWell, CherryView, SkyLake, KabyLake */ 1232 case 0x1600: 1233 case 0x1900: 1234 case 0x2200: 1235 case 0x5900: 1236 return 8; 1237 } 1238 1239 return 8; /* Assume newer is compatible */ 1240 } 1241 1242 typedef struct VFIOIGDQuirk { 1243 struct VFIOPCIDevice *vdev; 1244 uint32_t index; 1245 uint32_t bdsm; 1246 } VFIOIGDQuirk; 1247 1248 #define IGD_GMCH 0x50 /* Graphics Control Register */ 1249 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */ 1250 #define IGD_ASLS 0xfc /* ASL Storage Register */ 1251 1252 /* 1253 * The OpRegion includes the Video BIOS Table, which seems important for 1254 * telling the driver what sort of outputs it has. Without this, the device 1255 * may work in the guest, but we may not get output. This also requires BIOS 1256 * support to reserve and populate a section of guest memory sufficient for 1257 * the table and to write the base address of that memory to the ASLS register 1258 * of the IGD device. 1259 */ 1260 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, 1261 struct vfio_region_info *info, Error **errp) 1262 { 1263 int ret; 1264 1265 vdev->igd_opregion = g_malloc0(info->size); 1266 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, 1267 info->size, info->offset); 1268 if (ret != info->size) { 1269 error_setg(errp, "failed to read IGD OpRegion"); 1270 g_free(vdev->igd_opregion); 1271 vdev->igd_opregion = NULL; 1272 return -EINVAL; 1273 } 1274 1275 /* 1276 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to 1277 * allocate 32bit reserved memory for, copy these contents into, and write 1278 * the reserved memory base address to the device ASLS register at 0xFC. 1279 * Alignment of this reserved region seems flexible, but using a 4k page 1280 * alignment seems to work well. This interface assumes a single IGD 1281 * device, which may be at VM address 00:02.0 in legacy mode or another 1282 * address in UPT mode. 1283 * 1284 * NB, there may be future use cases discovered where the VM should have 1285 * direct interaction with the host OpRegion, in which case the write to 1286 * the ASLS register would trigger MemoryRegion setup to enable that. 1287 */ 1288 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", 1289 vdev->igd_opregion, info->size); 1290 1291 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); 1292 1293 pci_set_long(vdev->pdev.config + IGD_ASLS, 0); 1294 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); 1295 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); 1296 1297 return 0; 1298 } 1299 1300 /* 1301 * The rather short list of registers that we copy from the host devices. 1302 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the 1303 * host bridge values may or may not be needed depending on the guest OS. 1304 * Since we're only munging revision and subsystem values on the host bridge, 1305 * we don't require our own device. The LPC/ISA bridge needs to be our very 1306 * own though. 1307 */ 1308 typedef struct { 1309 uint8_t offset; 1310 uint8_t len; 1311 } IGDHostInfo; 1312 1313 static const IGDHostInfo igd_host_bridge_infos[] = { 1314 {PCI_REVISION_ID, 2}, 1315 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1316 {PCI_SUBSYSTEM_ID, 2}, 1317 }; 1318 1319 static const IGDHostInfo igd_lpc_bridge_infos[] = { 1320 {PCI_VENDOR_ID, 2}, 1321 {PCI_DEVICE_ID, 2}, 1322 {PCI_REVISION_ID, 2}, 1323 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1324 {PCI_SUBSYSTEM_ID, 2}, 1325 }; 1326 1327 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev, 1328 struct vfio_region_info *info, 1329 const IGDHostInfo *list, int len) 1330 { 1331 int i, ret; 1332 1333 for (i = 0; i < len; i++) { 1334 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset, 1335 list[i].len, info->offset + list[i].offset); 1336 if (ret != list[i].len) { 1337 error_report("IGD copy failed: %m"); 1338 return -errno; 1339 } 1340 } 1341 1342 return 0; 1343 } 1344 1345 /* 1346 * Stuff a few values into the host bridge. 1347 */ 1348 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev, 1349 struct vfio_region_info *info) 1350 { 1351 PCIBus *bus; 1352 PCIDevice *host_bridge; 1353 int ret; 1354 1355 bus = pci_device_root_bus(&vdev->pdev); 1356 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0)); 1357 1358 if (!host_bridge) { 1359 error_report("Can't find host bridge"); 1360 return -ENODEV; 1361 } 1362 1363 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos, 1364 ARRAY_SIZE(igd_host_bridge_infos)); 1365 if (!ret) { 1366 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name); 1367 } 1368 1369 return ret; 1370 } 1371 1372 /* 1373 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write 1374 * arbitrary values into just any bridge, so we must create our own. We try 1375 * to handle if the user has created it for us, which they might want to do 1376 * to enable multifunction so we don't occupy the whole PCI slot. 1377 */ 1378 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp) 1379 { 1380 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) { 1381 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0"); 1382 } 1383 } 1384 1385 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data) 1386 { 1387 DeviceClass *dc = DEVICE_CLASS(klass); 1388 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1389 1390 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1391 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment"; 1392 dc->hotpluggable = false; 1393 k->realize = vfio_pci_igd_lpc_bridge_realize; 1394 k->class_id = PCI_CLASS_BRIDGE_ISA; 1395 } 1396 1397 static TypeInfo vfio_pci_igd_lpc_bridge_info = { 1398 .name = "vfio-pci-igd-lpc-bridge", 1399 .parent = TYPE_PCI_DEVICE, 1400 .class_init = vfio_pci_igd_lpc_bridge_class_init, 1401 .interfaces = (InterfaceInfo[]) { 1402 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1403 { }, 1404 }, 1405 }; 1406 1407 static void vfio_pci_igd_register_types(void) 1408 { 1409 type_register_static(&vfio_pci_igd_lpc_bridge_info); 1410 } 1411 1412 type_init(vfio_pci_igd_register_types) 1413 1414 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev, 1415 struct vfio_region_info *info) 1416 { 1417 PCIDevice *lpc_bridge; 1418 int ret; 1419 1420 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1421 0, PCI_DEVFN(0x1f, 0)); 1422 if (!lpc_bridge) { 1423 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev), 1424 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge"); 1425 } 1426 1427 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos, 1428 ARRAY_SIZE(igd_lpc_bridge_infos)); 1429 if (!ret) { 1430 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name); 1431 } 1432 1433 return ret; 1434 } 1435 1436 /* 1437 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE 1438 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore 1439 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index 1440 * for programming the GTT. 1441 * 1442 * See linux:include/drm/i915_drm.h for shift and mask values. 1443 */ 1444 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev) 1445 { 1446 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1447 int ggms, gen = igd_gen(vdev); 1448 1449 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1450 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1451 if (gen > 6) { 1452 ggms = 1 << ggms; 1453 } 1454 1455 ggms *= MiB; 1456 1457 return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8); 1458 } 1459 1460 /* 1461 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes. 1462 * Somehow the host stolen memory range is used for this, but how the ROM gets 1463 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it 1464 * reprograms the GTT through the IOBAR where we can trap it and transpose the 1465 * programming to the VM allocated buffer. That buffer gets reserved by the VM 1466 * firmware via the fw_cfg entry added below. Here we're just monitoring the 1467 * IOBAR address and data registers to detect a write sequence targeting the 1468 * GTTADR. This code is developed by observed behavior and doesn't have a 1469 * direct spec reference, unfortunately. 1470 */ 1471 static uint64_t vfio_igd_quirk_data_read(void *opaque, 1472 hwaddr addr, unsigned size) 1473 { 1474 VFIOIGDQuirk *igd = opaque; 1475 VFIOPCIDevice *vdev = igd->vdev; 1476 1477 igd->index = ~0; 1478 1479 return vfio_region_read(&vdev->bars[4].region, addr + 4, size); 1480 } 1481 1482 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr, 1483 uint64_t data, unsigned size) 1484 { 1485 VFIOIGDQuirk *igd = opaque; 1486 VFIOPCIDevice *vdev = igd->vdev; 1487 uint64_t val = data; 1488 int gen = igd_gen(vdev); 1489 1490 /* 1491 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie. 1492 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE 1493 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so 1494 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points 1495 * to a 4k page, which we translate to a page from the VM allocated region, 1496 * pointed to by the BDSM register. If this is not set, we fail. 1497 * 1498 * We trap writes to the full configured GTT size, but we typically only 1499 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often 1500 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous 1501 * write of that last entry does work, but is hopefully unnecessary since 1502 * we clear the previous GTT on initialization. 1503 */ 1504 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) { 1505 if (gen < 8 || (igd->index % 8 == 1)) { 1506 uint32_t base; 1507 1508 base = pci_get_long(vdev->pdev.config + IGD_BDSM); 1509 if (!base) { 1510 hw_error("vfio-igd: Guest attempted to program IGD GTT before " 1511 "BIOS reserved stolen memory. Unsupported BIOS?"); 1512 } 1513 1514 val = data - igd->bdsm + base; 1515 } else { 1516 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */ 1517 } 1518 1519 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name, 1520 igd->index, data, val); 1521 } 1522 1523 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size); 1524 1525 igd->index = ~0; 1526 } 1527 1528 static const MemoryRegionOps vfio_igd_data_quirk = { 1529 .read = vfio_igd_quirk_data_read, 1530 .write = vfio_igd_quirk_data_write, 1531 .endianness = DEVICE_LITTLE_ENDIAN, 1532 }; 1533 1534 static uint64_t vfio_igd_quirk_index_read(void *opaque, 1535 hwaddr addr, unsigned size) 1536 { 1537 VFIOIGDQuirk *igd = opaque; 1538 VFIOPCIDevice *vdev = igd->vdev; 1539 1540 igd->index = ~0; 1541 1542 return vfio_region_read(&vdev->bars[4].region, addr, size); 1543 } 1544 1545 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr, 1546 uint64_t data, unsigned size) 1547 { 1548 VFIOIGDQuirk *igd = opaque; 1549 VFIOPCIDevice *vdev = igd->vdev; 1550 1551 igd->index = data; 1552 1553 vfio_region_write(&vdev->bars[4].region, addr, data, size); 1554 } 1555 1556 static const MemoryRegionOps vfio_igd_index_quirk = { 1557 .read = vfio_igd_quirk_index_read, 1558 .write = vfio_igd_quirk_index_write, 1559 .endianness = DEVICE_LITTLE_ENDIAN, 1560 }; 1561 1562 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) 1563 { 1564 struct vfio_region_info *rom = NULL, *opregion = NULL, 1565 *host = NULL, *lpc = NULL; 1566 VFIOQuirk *quirk; 1567 VFIOIGDQuirk *igd; 1568 PCIDevice *lpc_bridge; 1569 int i, ret, ggms_mb, gms_mb = 0, gen; 1570 uint64_t *bdsm_size; 1571 uint32_t gmch; 1572 uint16_t cmd_orig, cmd; 1573 Error *err = NULL; 1574 1575 /* 1576 * This must be an Intel VGA device at address 00:02.0 for us to even 1577 * consider enabling legacy mode. The vBIOS has dependencies on the 1578 * PCI bus address. 1579 */ 1580 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || 1581 !vfio_is_vga(vdev) || nr != 4 || 1582 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 1583 0, PCI_DEVFN(0x2, 0))) { 1584 return; 1585 } 1586 1587 /* 1588 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we 1589 * can stuff host values into, so if there's already one there and it's not 1590 * one we can hack on, legacy mode is no-go. Sorry Q35. 1591 */ 1592 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1593 0, PCI_DEVFN(0x1f, 0)); 1594 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), 1595 "vfio-pci-igd-lpc-bridge")) { 1596 error_report("IGD device %s cannot support legacy mode due to existing " 1597 "devices at address 1f.0", vdev->vbasedev.name); 1598 return; 1599 } 1600 1601 /* 1602 * IGD is not a standard, they like to change their specs often. We 1603 * only attempt to support back to SandBridge and we hope that newer 1604 * devices maintain compatibility with generation 8. 1605 */ 1606 gen = igd_gen(vdev); 1607 if (gen != 6 && gen != 8) { 1608 error_report("IGD device %s is unsupported in legacy mode, " 1609 "try SandyBridge or newer", vdev->vbasedev.name); 1610 return; 1611 } 1612 1613 /* 1614 * Most of what we're doing here is to enable the ROM to run, so if 1615 * there's no ROM, there's no point in setting up this quirk. 1616 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. 1617 */ 1618 ret = vfio_get_region_info(&vdev->vbasedev, 1619 VFIO_PCI_ROM_REGION_INDEX, &rom); 1620 if ((ret || !rom->size) && !vdev->pdev.romfile) { 1621 error_report("IGD device %s has no ROM, legacy mode disabled", 1622 vdev->vbasedev.name); 1623 goto out; 1624 } 1625 1626 /* 1627 * Ignore the hotplug corner case, mark the ROM failed, we can't 1628 * create the devices we need for legacy mode in the hotplug scenario. 1629 */ 1630 if (vdev->pdev.qdev.hotplugged) { 1631 error_report("IGD device %s hotplugged, ROM disabled, " 1632 "legacy mode disabled", vdev->vbasedev.name); 1633 vdev->rom_read_failed = true; 1634 goto out; 1635 } 1636 1637 /* 1638 * Check whether we have all the vfio device specific regions to 1639 * support legacy mode (added in Linux v4.6). If not, bail. 1640 */ 1641 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1642 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1643 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); 1644 if (ret) { 1645 error_report("IGD device %s does not support OpRegion access," 1646 "legacy mode disabled", vdev->vbasedev.name); 1647 goto out; 1648 } 1649 1650 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1651 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1652 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); 1653 if (ret) { 1654 error_report("IGD device %s does not support host bridge access," 1655 "legacy mode disabled", vdev->vbasedev.name); 1656 goto out; 1657 } 1658 1659 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1660 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1661 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); 1662 if (ret) { 1663 error_report("IGD device %s does not support LPC bridge access," 1664 "legacy mode disabled", vdev->vbasedev.name); 1665 goto out; 1666 } 1667 1668 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); 1669 1670 /* 1671 * If IGD VGA Disable is clear (expected) and VGA is not already enabled, 1672 * try to enable it. Probably shouldn't be using legacy mode without VGA, 1673 * but also no point in us enabling VGA if disabled in hardware. 1674 */ 1675 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) { 1676 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 1677 error_report("IGD device %s failed to enable VGA access, " 1678 "legacy mode disabled", vdev->vbasedev.name); 1679 goto out; 1680 } 1681 1682 /* Create our LPC/ISA bridge */ 1683 ret = vfio_pci_igd_lpc_init(vdev, lpc); 1684 if (ret) { 1685 error_report("IGD device %s failed to create LPC bridge, " 1686 "legacy mode disabled", vdev->vbasedev.name); 1687 goto out; 1688 } 1689 1690 /* Stuff some host values into the VM PCI host bridge */ 1691 ret = vfio_pci_igd_host_init(vdev, host); 1692 if (ret) { 1693 error_report("IGD device %s failed to modify host bridge, " 1694 "legacy mode disabled", vdev->vbasedev.name); 1695 goto out; 1696 } 1697 1698 /* Setup OpRegion access */ 1699 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err); 1700 if (ret) { 1701 error_append_hint(&err, "IGD legacy mode disabled\n"); 1702 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 1703 goto out; 1704 } 1705 1706 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ 1707 quirk = vfio_quirk_alloc(2); 1708 igd = quirk->data = g_malloc0(sizeof(*igd)); 1709 igd->vdev = vdev; 1710 igd->index = ~0; 1711 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4); 1712 igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */ 1713 1714 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, 1715 igd, "vfio-igd-index-quirk", 4); 1716 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1717 0, &quirk->mem[0], 1); 1718 1719 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, 1720 igd, "vfio-igd-data-quirk", 4); 1721 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1722 4, &quirk->mem[1], 1); 1723 1724 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1725 1726 /* Determine the size of stolen memory needed for GTT */ 1727 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1728 if (gen > 6) { 1729 ggms_mb = 1 << ggms_mb; 1730 } 1731 1732 /* 1733 * Assume we have no GMS memory, but allow it to be overrided by device 1734 * option (experimental). The spec doesn't actually allow zero GMS when 1735 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused, 1736 * so let's not waste VM memory for it. 1737 */ 1738 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8)); 1739 1740 if (vdev->igd_gms) { 1741 if (vdev->igd_gms <= 0x10) { 1742 gms_mb = vdev->igd_gms * 32; 1743 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8); 1744 } else { 1745 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms); 1746 vdev->igd_gms = 0; 1747 } 1748 } 1749 1750 /* 1751 * Request reserved memory for stolen memory via fw_cfg. VM firmware 1752 * must allocate a 1MB aligned reserved memory region below 4GB with 1753 * the requested size (in bytes) for use by the Intel PCI class VGA 1754 * device at VM address 00:02.0. The base address of this reserved 1755 * memory region must be written to the device BDSM regsiter at PCI 1756 * config offset 0x5C. 1757 */ 1758 bdsm_size = g_malloc(sizeof(*bdsm_size)); 1759 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB); 1760 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", 1761 bdsm_size, sizeof(*bdsm_size)); 1762 1763 /* GMCH is read-only, emulated */ 1764 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); 1765 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); 1766 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); 1767 1768 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ 1769 pci_set_long(vdev->pdev.config + IGD_BDSM, 0); 1770 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); 1771 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); 1772 1773 /* 1774 * This IOBAR gives us access to GTTADR, which allows us to write to 1775 * the GTT itself. So let's go ahead and write zero to all the GTT 1776 * entries to avoid spurious DMA faults. Be sure I/O access is enabled 1777 * before talking to the device. 1778 */ 1779 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1780 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1781 error_report("IGD device %s - failed to read PCI command register", 1782 vdev->vbasedev.name); 1783 } 1784 1785 cmd = cmd_orig | PCI_COMMAND_IO; 1786 1787 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), 1788 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { 1789 error_report("IGD device %s - failed to write PCI command register", 1790 vdev->vbasedev.name); 1791 } 1792 1793 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { 1794 vfio_region_write(&vdev->bars[4].region, 0, i, 4); 1795 vfio_region_write(&vdev->bars[4].region, 4, 0, 4); 1796 } 1797 1798 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1799 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1800 error_report("IGD device %s - failed to restore PCI command register", 1801 vdev->vbasedev.name); 1802 } 1803 1804 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); 1805 1806 out: 1807 g_free(rom); 1808 g_free(opregion); 1809 g_free(host); 1810 g_free(lpc); 1811 } 1812 1813 /* 1814 * Common quirk probe entry points. 1815 */ 1816 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 1817 { 1818 vfio_vga_probe_ati_3c3_quirk(vdev); 1819 vfio_vga_probe_nvidia_3d0_quirk(vdev); 1820 } 1821 1822 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) 1823 { 1824 VFIOQuirk *quirk; 1825 int i, j; 1826 1827 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1828 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { 1829 for (j = 0; j < quirk->nr_mem; j++) { 1830 memory_region_del_subregion(&vdev->vga->region[i].mem, 1831 &quirk->mem[j]); 1832 } 1833 } 1834 } 1835 } 1836 1837 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) 1838 { 1839 int i, j; 1840 1841 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1842 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { 1843 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); 1844 QLIST_REMOVE(quirk, next); 1845 for (j = 0; j < quirk->nr_mem; j++) { 1846 object_unparent(OBJECT(&quirk->mem[j])); 1847 } 1848 g_free(quirk->mem); 1849 g_free(quirk->data); 1850 g_free(quirk); 1851 } 1852 } 1853 } 1854 1855 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 1856 { 1857 vfio_probe_ati_bar4_quirk(vdev, nr); 1858 vfio_probe_ati_bar2_quirk(vdev, nr); 1859 vfio_probe_nvidia_bar5_quirk(vdev, nr); 1860 vfio_probe_nvidia_bar0_quirk(vdev, nr); 1861 vfio_probe_rtl8168_bar2_quirk(vdev, nr); 1862 vfio_probe_igd_bar4_quirk(vdev, nr); 1863 } 1864 1865 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) 1866 { 1867 VFIOBAR *bar = &vdev->bars[nr]; 1868 VFIOQuirk *quirk; 1869 int i; 1870 1871 QLIST_FOREACH(quirk, &bar->quirks, next) { 1872 while (!QLIST_EMPTY(&quirk->ioeventfds)) { 1873 vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds)); 1874 } 1875 1876 for (i = 0; i < quirk->nr_mem; i++) { 1877 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); 1878 } 1879 } 1880 } 1881 1882 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) 1883 { 1884 VFIOBAR *bar = &vdev->bars[nr]; 1885 int i; 1886 1887 while (!QLIST_EMPTY(&bar->quirks)) { 1888 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 1889 QLIST_REMOVE(quirk, next); 1890 for (i = 0; i < quirk->nr_mem; i++) { 1891 object_unparent(OBJECT(&quirk->mem[i])); 1892 } 1893 g_free(quirk->mem); 1894 g_free(quirk->data); 1895 g_free(quirk); 1896 } 1897 } 1898 1899 /* 1900 * Reset quirks 1901 */ 1902 void vfio_quirk_reset(VFIOPCIDevice *vdev) 1903 { 1904 int i; 1905 1906 for (i = 0; i < PCI_ROM_SLOT; i++) { 1907 VFIOQuirk *quirk; 1908 VFIOBAR *bar = &vdev->bars[i]; 1909 1910 QLIST_FOREACH(quirk, &bar->quirks, next) { 1911 if (quirk->reset) { 1912 quirk->reset(vdev, quirk); 1913 } 1914 } 1915 } 1916 } 1917 1918 /* 1919 * AMD Radeon PCI config reset, based on Linux: 1920 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() 1921 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset 1922 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() 1923 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() 1924 * IDs: include/drm/drm_pciids.h 1925 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 1926 * 1927 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the 1928 * hardware that should be fixed on future ASICs. The symptom of this is that 1929 * once the accerlated driver loads, Windows guests will bsod on subsequent 1930 * attmpts to load the driver, such as after VM reset or shutdown/restart. To 1931 * work around this, we do an AMD specific PCI config reset, followed by an SMC 1932 * reset. The PCI config reset only works if SMC firmware is running, so we 1933 * have a dependency on the state of the device as to whether this reset will 1934 * be effective. There are still cases where we won't be able to kick the 1935 * device into working, but this greatly improves the usability overall. The 1936 * config reset magic is relatively common on AMD GPUs, but the setup and SMC 1937 * poking is largely ASIC specific. 1938 */ 1939 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) 1940 { 1941 uint32_t clk, pc_c; 1942 1943 /* 1944 * Registers 200h and 204h are index and data registers for accessing 1945 * indirect configuration registers within the device. 1946 */ 1947 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1948 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1949 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); 1950 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1951 1952 return (!(clk & 1) && (0x20100 <= pc_c)); 1953 } 1954 1955 /* 1956 * The scope of a config reset is controlled by a mode bit in the misc register 1957 * and a fuse, exposed as a bit in another register. The fuse is the default 1958 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula 1959 * scope = !(misc ^ fuse), where the resulting scope is defined the same as 1960 * the fuse. A truth table therefore tells us that if misc == fuse, we need 1961 * to flip the value of the bit in the misc register. 1962 */ 1963 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) 1964 { 1965 uint32_t misc, fuse; 1966 bool a, b; 1967 1968 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); 1969 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1970 b = fuse & 64; 1971 1972 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); 1973 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1974 a = misc & 2; 1975 1976 if (a == b) { 1977 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); 1978 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ 1979 } 1980 } 1981 1982 static int vfio_radeon_reset(VFIOPCIDevice *vdev) 1983 { 1984 PCIDevice *pdev = &vdev->pdev; 1985 int i, ret = 0; 1986 uint32_t data; 1987 1988 /* Defer to a kernel implemented reset */ 1989 if (vdev->vbasedev.reset_works) { 1990 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); 1991 return -ENODEV; 1992 } 1993 1994 /* Enable only memory BAR access */ 1995 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); 1996 1997 /* Reset only works if SMC firmware is loaded and running */ 1998 if (!vfio_radeon_smc_is_running(vdev)) { 1999 ret = -EINVAL; 2000 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); 2001 goto out; 2002 } 2003 2004 /* Make sure only the GFX function is reset */ 2005 vfio_radeon_set_gfx_only_reset(vdev); 2006 2007 /* AMD PCI config reset */ 2008 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); 2009 usleep(100); 2010 2011 /* Read back the memory size to make sure we're out of reset */ 2012 for (i = 0; i < 100000; i++) { 2013 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { 2014 goto reset_smc; 2015 } 2016 usleep(1); 2017 } 2018 2019 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); 2020 2021 reset_smc: 2022 /* Reset SMC */ 2023 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); 2024 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 2025 data |= 1; 2026 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 2027 2028 /* Disable SMC clock */ 2029 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 2030 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 2031 data |= 1; 2032 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 2033 2034 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); 2035 2036 out: 2037 /* Restore PCI command register */ 2038 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); 2039 2040 return ret; 2041 } 2042 2043 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) 2044 { 2045 switch (vdev->vendor_id) { 2046 case 0x1002: 2047 switch (vdev->device_id) { 2048 /* Bonaire */ 2049 case 0x6649: /* Bonaire [FirePro W5100] */ 2050 case 0x6650: 2051 case 0x6651: 2052 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ 2053 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ 2054 case 0x665d: /* Bonaire [Radeon R7 200 Series] */ 2055 /* Hawaii */ 2056 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ 2057 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ 2058 case 0x67A2: 2059 case 0x67A8: 2060 case 0x67A9: 2061 case 0x67AA: 2062 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ 2063 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ 2064 case 0x67B8: 2065 case 0x67B9: 2066 case 0x67BA: 2067 case 0x67BE: 2068 vdev->resetfn = vfio_radeon_reset; 2069 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); 2070 break; 2071 } 2072 break; 2073 } 2074 } 2075 2076 /* 2077 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify 2078 * devices as a member of a clique. Devices within the same clique ID 2079 * are capable of direct P2P. It's the user's responsibility that this 2080 * is correct. The spec says that this may reside at any unused config 2081 * offset, but reserves and recommends hypervisors place this at C8h. 2082 * The spec also states that the hypervisor should place this capability 2083 * at the end of the capability list, thus next is defined as 0h. 2084 * 2085 * +----------------+----------------+----------------+----------------+ 2086 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) | 2087 * +----------------+----------------+----------------+----------------+ 2088 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') | 2089 * +---------------------------------+---------------------------------+ 2090 * 2091 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf 2092 */ 2093 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v, 2094 const char *name, void *opaque, 2095 Error **errp) 2096 { 2097 DeviceState *dev = DEVICE(obj); 2098 Property *prop = opaque; 2099 uint8_t *ptr = qdev_get_prop_ptr(dev, prop); 2100 2101 visit_type_uint8(v, name, ptr, errp); 2102 } 2103 2104 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v, 2105 const char *name, void *opaque, 2106 Error **errp) 2107 { 2108 DeviceState *dev = DEVICE(obj); 2109 Property *prop = opaque; 2110 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop); 2111 Error *local_err = NULL; 2112 2113 if (dev->realized) { 2114 qdev_prop_set_after_realize(dev, name, errp); 2115 return; 2116 } 2117 2118 visit_type_uint8(v, name, &value, &local_err); 2119 if (local_err) { 2120 error_propagate(errp, local_err); 2121 return; 2122 } 2123 2124 if (value & ~0xF) { 2125 error_setg(errp, "Property %s: valid range 0-15", name); 2126 return; 2127 } 2128 2129 *ptr = value; 2130 } 2131 2132 const PropertyInfo qdev_prop_nv_gpudirect_clique = { 2133 .name = "uint4", 2134 .description = "NVIDIA GPUDirect Clique ID (0 - 15)", 2135 .get = get_nv_gpudirect_clique_id, 2136 .set = set_nv_gpudirect_clique_id, 2137 }; 2138 2139 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp) 2140 { 2141 PCIDevice *pdev = &vdev->pdev; 2142 int ret, pos = 0xC8; 2143 2144 if (vdev->nv_gpudirect_clique == 0xFF) { 2145 return 0; 2146 } 2147 2148 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { 2149 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor"); 2150 return -EINVAL; 2151 } 2152 2153 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) != 2154 PCI_BASE_CLASS_DISPLAY) { 2155 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class"); 2156 return -EINVAL; 2157 } 2158 2159 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp); 2160 if (ret < 0) { 2161 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: "); 2162 return ret; 2163 } 2164 2165 memset(vdev->emulated_config_bits + pos, 0xFF, 8); 2166 pos += PCI_CAP_FLAGS; 2167 pci_set_byte(pdev->config + pos++, 8); 2168 pci_set_byte(pdev->config + pos++, 'P'); 2169 pci_set_byte(pdev->config + pos++, '2'); 2170 pci_set_byte(pdev->config + pos++, 'P'); 2171 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3); 2172 pci_set_byte(pdev->config + pos, 0); 2173 2174 return 0; 2175 } 2176 2177 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp) 2178 { 2179 int ret; 2180 2181 ret = vfio_add_nv_gpudirect_cap(vdev, errp); 2182 if (ret) { 2183 return ret; 2184 } 2185 2186 return 0; 2187 } 2188 2189 static void vfio_pci_nvlink2_get_tgt(Object *obj, Visitor *v, 2190 const char *name, 2191 void *opaque, Error **errp) 2192 { 2193 uint64_t tgt = (uintptr_t) opaque; 2194 visit_type_uint64(v, name, &tgt, errp); 2195 } 2196 2197 static void vfio_pci_nvlink2_get_link_speed(Object *obj, Visitor *v, 2198 const char *name, 2199 void *opaque, Error **errp) 2200 { 2201 uint32_t link_speed = (uint32_t)(uintptr_t) opaque; 2202 visit_type_uint32(v, name, &link_speed, errp); 2203 } 2204 2205 int vfio_pci_nvidia_v100_ram_init(VFIOPCIDevice *vdev, Error **errp) 2206 { 2207 int ret; 2208 void *p; 2209 struct vfio_region_info *nv2reg = NULL; 2210 struct vfio_info_cap_header *hdr; 2211 struct vfio_region_info_cap_nvlink2_ssatgt *cap; 2212 VFIOQuirk *quirk; 2213 2214 ret = vfio_get_dev_region_info(&vdev->vbasedev, 2215 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | 2216 PCI_VENDOR_ID_NVIDIA, 2217 VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM, 2218 &nv2reg); 2219 if (ret) { 2220 return ret; 2221 } 2222 2223 hdr = vfio_get_region_info_cap(nv2reg, VFIO_REGION_INFO_CAP_NVLINK2_SSATGT); 2224 if (!hdr) { 2225 ret = -ENODEV; 2226 goto free_exit; 2227 } 2228 cap = (void *) hdr; 2229 2230 p = mmap(NULL, nv2reg->size, PROT_READ | PROT_WRITE | PROT_EXEC, 2231 MAP_SHARED, vdev->vbasedev.fd, nv2reg->offset); 2232 if (p == MAP_FAILED) { 2233 ret = -errno; 2234 goto free_exit; 2235 } 2236 2237 quirk = vfio_quirk_alloc(1); 2238 memory_region_init_ram_ptr(&quirk->mem[0], OBJECT(vdev), "nvlink2-mr", 2239 nv2reg->size, p); 2240 QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next); 2241 2242 object_property_add(OBJECT(vdev), "nvlink2-tgt", "uint64", 2243 vfio_pci_nvlink2_get_tgt, NULL, NULL, 2244 (void *) (uintptr_t) cap->tgt, NULL); 2245 trace_vfio_pci_nvidia_gpu_setup_quirk(vdev->vbasedev.name, cap->tgt, 2246 nv2reg->size); 2247 free_exit: 2248 g_free(nv2reg); 2249 2250 return ret; 2251 } 2252 2253 int vfio_pci_nvlink2_init(VFIOPCIDevice *vdev, Error **errp) 2254 { 2255 int ret; 2256 void *p; 2257 struct vfio_region_info *atsdreg = NULL; 2258 struct vfio_info_cap_header *hdr; 2259 struct vfio_region_info_cap_nvlink2_ssatgt *captgt; 2260 struct vfio_region_info_cap_nvlink2_lnkspd *capspeed; 2261 VFIOQuirk *quirk; 2262 2263 ret = vfio_get_dev_region_info(&vdev->vbasedev, 2264 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | 2265 PCI_VENDOR_ID_IBM, 2266 VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD, 2267 &atsdreg); 2268 if (ret) { 2269 return ret; 2270 } 2271 2272 hdr = vfio_get_region_info_cap(atsdreg, 2273 VFIO_REGION_INFO_CAP_NVLINK2_SSATGT); 2274 if (!hdr) { 2275 ret = -ENODEV; 2276 goto free_exit; 2277 } 2278 captgt = (void *) hdr; 2279 2280 hdr = vfio_get_region_info_cap(atsdreg, 2281 VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD); 2282 if (!hdr) { 2283 ret = -ENODEV; 2284 goto free_exit; 2285 } 2286 capspeed = (void *) hdr; 2287 2288 /* Some NVLink bridges may not have assigned ATSD */ 2289 if (atsdreg->size) { 2290 p = mmap(NULL, atsdreg->size, PROT_READ | PROT_WRITE | PROT_EXEC, 2291 MAP_SHARED, vdev->vbasedev.fd, atsdreg->offset); 2292 if (p == MAP_FAILED) { 2293 ret = -errno; 2294 goto free_exit; 2295 } 2296 2297 quirk = vfio_quirk_alloc(1); 2298 memory_region_init_ram_device_ptr(&quirk->mem[0], OBJECT(vdev), 2299 "nvlink2-atsd-mr", atsdreg->size, p); 2300 QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next); 2301 } 2302 2303 object_property_add(OBJECT(vdev), "nvlink2-tgt", "uint64", 2304 vfio_pci_nvlink2_get_tgt, NULL, NULL, 2305 (void *) (uintptr_t) captgt->tgt, NULL); 2306 trace_vfio_pci_nvlink2_setup_quirk_ssatgt(vdev->vbasedev.name, captgt->tgt, 2307 atsdreg->size); 2308 2309 object_property_add(OBJECT(vdev), "nvlink2-link-speed", "uint32", 2310 vfio_pci_nvlink2_get_link_speed, NULL, NULL, 2311 (void *) (uintptr_t) capspeed->link_speed, NULL); 2312 trace_vfio_pci_nvlink2_setup_quirk_lnkspd(vdev->vbasedev.name, 2313 capspeed->link_speed); 2314 free_exit: 2315 g_free(atsdreg); 2316 2317 return ret; 2318 } 2319