xref: /openbmc/qemu/hw/vfio/pci-quirks.c (revision 4a09d0bb)
1 /*
2  * device quirks for PCI devices
3  *
4  * Copyright Red Hat, Inc. 2012-2015
5  *
6  * Authors:
7  *  Alex Williamson <alex.williamson@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu/error-report.h"
15 #include "qemu/range.h"
16 #include "qapi/error.h"
17 #include "hw/nvram/fw_cfg.h"
18 #include "pci.h"
19 #include "trace.h"
20 
21 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
22 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
23 {
24     return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
25            (device == PCI_ANY_ID || device == vdev->device_id);
26 }
27 
28 static bool vfio_is_vga(VFIOPCIDevice *vdev)
29 {
30     PCIDevice *pdev = &vdev->pdev;
31     uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
32 
33     return class == PCI_CLASS_DISPLAY_VGA;
34 }
35 
36 /*
37  * List of device ids/vendor ids for which to disable
38  * option rom loading. This avoids the guest hangs during rom
39  * execution as noticed with the BCM 57810 card for lack of a
40  * more better way to handle such issues.
41  * The  user can still override by specifying a romfile or
42  * rombar=1.
43  * Please see https://bugs.launchpad.net/qemu/+bug/1284874
44  * for an analysis of the 57810 card hang. When adding
45  * a new vendor id/device id combination below, please also add
46  * your card/environment details and information that could
47  * help in debugging to the bug tracking this issue
48  */
49 static const struct {
50     uint32_t vendor;
51     uint32_t device;
52 } romblacklist[] = {
53     { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
54 };
55 
56 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
57 {
58     int i;
59 
60     for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
61         if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
62             trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
63                                              romblacklist[i].vendor,
64                                              romblacklist[i].device);
65             return true;
66         }
67     }
68     return false;
69 }
70 
71 /*
72  * Device specific region quirks (mostly backdoors to PCI config space)
73  */
74 
75 /*
76  * The generic window quirks operate on an address and data register,
77  * vfio_generic_window_address_quirk handles the address register and
78  * vfio_generic_window_data_quirk handles the data register.  These ops
79  * pass reads and writes through to hardware until a value matching the
80  * stored address match/mask is written.  When this occurs, the data
81  * register access emulated PCI config space for the device rather than
82  * passing through accesses.  This enables devices where PCI config space
83  * is accessible behind a window register to maintain the virtualization
84  * provided through vfio.
85  */
86 typedef struct VFIOConfigWindowMatch {
87     uint32_t match;
88     uint32_t mask;
89 } VFIOConfigWindowMatch;
90 
91 typedef struct VFIOConfigWindowQuirk {
92     struct VFIOPCIDevice *vdev;
93 
94     uint32_t address_val;
95 
96     uint32_t address_offset;
97     uint32_t data_offset;
98 
99     bool window_enabled;
100     uint8_t bar;
101 
102     MemoryRegion *addr_mem;
103     MemoryRegion *data_mem;
104 
105     uint32_t nr_matches;
106     VFIOConfigWindowMatch matches[];
107 } VFIOConfigWindowQuirk;
108 
109 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
110                                                        hwaddr addr,
111                                                        unsigned size)
112 {
113     VFIOConfigWindowQuirk *window = opaque;
114     VFIOPCIDevice *vdev = window->vdev;
115 
116     return vfio_region_read(&vdev->bars[window->bar].region,
117                             addr + window->address_offset, size);
118 }
119 
120 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
121                                                     uint64_t data,
122                                                     unsigned size)
123 {
124     VFIOConfigWindowQuirk *window = opaque;
125     VFIOPCIDevice *vdev = window->vdev;
126     int i;
127 
128     window->window_enabled = false;
129 
130     vfio_region_write(&vdev->bars[window->bar].region,
131                       addr + window->address_offset, data, size);
132 
133     for (i = 0; i < window->nr_matches; i++) {
134         if ((data & ~window->matches[i].mask) == window->matches[i].match) {
135             window->window_enabled = true;
136             window->address_val = data & window->matches[i].mask;
137             trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
138                                     memory_region_name(window->addr_mem), data);
139             break;
140         }
141     }
142 }
143 
144 static const MemoryRegionOps vfio_generic_window_address_quirk = {
145     .read = vfio_generic_window_quirk_address_read,
146     .write = vfio_generic_window_quirk_address_write,
147     .endianness = DEVICE_LITTLE_ENDIAN,
148 };
149 
150 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
151                                                     hwaddr addr, unsigned size)
152 {
153     VFIOConfigWindowQuirk *window = opaque;
154     VFIOPCIDevice *vdev = window->vdev;
155     uint64_t data;
156 
157     /* Always read data reg, discard if window enabled */
158     data = vfio_region_read(&vdev->bars[window->bar].region,
159                             addr + window->data_offset, size);
160 
161     if (window->window_enabled) {
162         data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
163         trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
164                                     memory_region_name(window->data_mem), data);
165     }
166 
167     return data;
168 }
169 
170 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
171                                                  uint64_t data, unsigned size)
172 {
173     VFIOConfigWindowQuirk *window = opaque;
174     VFIOPCIDevice *vdev = window->vdev;
175 
176     if (window->window_enabled) {
177         vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
178         trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
179                                     memory_region_name(window->data_mem), data);
180         return;
181     }
182 
183     vfio_region_write(&vdev->bars[window->bar].region,
184                       addr + window->data_offset, data, size);
185 }
186 
187 static const MemoryRegionOps vfio_generic_window_data_quirk = {
188     .read = vfio_generic_window_quirk_data_read,
189     .write = vfio_generic_window_quirk_data_write,
190     .endianness = DEVICE_LITTLE_ENDIAN,
191 };
192 
193 /*
194  * The generic mirror quirk handles devices which expose PCI config space
195  * through a region within a BAR.  When enabled, reads and writes are
196  * redirected through to emulated PCI config space.  XXX if PCI config space
197  * used memory regions, this could just be an alias.
198  */
199 typedef struct VFIOConfigMirrorQuirk {
200     struct VFIOPCIDevice *vdev;
201     uint32_t offset;
202     uint8_t bar;
203     MemoryRegion *mem;
204 } VFIOConfigMirrorQuirk;
205 
206 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
207                                                hwaddr addr, unsigned size)
208 {
209     VFIOConfigMirrorQuirk *mirror = opaque;
210     VFIOPCIDevice *vdev = mirror->vdev;
211     uint64_t data;
212 
213     /* Read and discard in case the hardware cares */
214     (void)vfio_region_read(&vdev->bars[mirror->bar].region,
215                            addr + mirror->offset, size);
216 
217     data = vfio_pci_read_config(&vdev->pdev, addr, size);
218     trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
219                                          memory_region_name(mirror->mem),
220                                          addr, data);
221     return data;
222 }
223 
224 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
225                                             uint64_t data, unsigned size)
226 {
227     VFIOConfigMirrorQuirk *mirror = opaque;
228     VFIOPCIDevice *vdev = mirror->vdev;
229 
230     vfio_pci_write_config(&vdev->pdev, addr, data, size);
231     trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
232                                           memory_region_name(mirror->mem),
233                                           addr, data);
234 }
235 
236 static const MemoryRegionOps vfio_generic_mirror_quirk = {
237     .read = vfio_generic_quirk_mirror_read,
238     .write = vfio_generic_quirk_mirror_write,
239     .endianness = DEVICE_LITTLE_ENDIAN,
240 };
241 
242 /* Is range1 fully contained within range2?  */
243 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
244                                  uint64_t first2, uint64_t len2) {
245     return (first1 >= first2 && first1 + len1 <= first2 + len2);
246 }
247 
248 #define PCI_VENDOR_ID_ATI               0x1002
249 
250 /*
251  * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
252  * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
253  * BAR4 (older cards like the X550 used BAR1, but we don't care to support
254  * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
255  * I/O port BAR address.  Originally this was coded to return the virtual BAR
256  * address only if the physical register read returns the actual BAR address,
257  * but users have reported greater success if we return the virtual address
258  * unconditionally.
259  */
260 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
261                                         hwaddr addr, unsigned size)
262 {
263     VFIOPCIDevice *vdev = opaque;
264     uint64_t data = vfio_pci_read_config(&vdev->pdev,
265                                          PCI_BASE_ADDRESS_4 + 1, size);
266 
267     trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
268 
269     return data;
270 }
271 
272 static const MemoryRegionOps vfio_ati_3c3_quirk = {
273     .read = vfio_ati_3c3_quirk_read,
274     .endianness = DEVICE_LITTLE_ENDIAN,
275 };
276 
277 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
278 {
279     VFIOQuirk *quirk;
280 
281     /*
282      * As long as the BAR is >= 256 bytes it will be aligned such that the
283      * lower byte is always zero.  Filter out anything else, if it exists.
284      */
285     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
286         !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
287         return;
288     }
289 
290     quirk = g_malloc0(sizeof(*quirk));
291     quirk->mem = g_new0(MemoryRegion, 1);
292     quirk->nr_mem = 1;
293 
294     memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
295                           "vfio-ati-3c3-quirk", 1);
296     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
297                                 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
298 
299     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
300                       quirk, next);
301 
302     trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
303 }
304 
305 /*
306  * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
307  * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
308  * the MMIO space directly, but a window to this space is provided through
309  * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
310  * data register.  When the address is programmed to a range of 0x4000-0x4fff
311  * PCI configuration space is available.  Experimentation seems to indicate
312  * that read-only may be provided by hardware.
313  */
314 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
315 {
316     VFIOQuirk *quirk;
317     VFIOConfigWindowQuirk *window;
318 
319     /* This windows doesn't seem to be used except by legacy VGA code */
320     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
321         !vdev->vga || nr != 4) {
322         return;
323     }
324 
325     quirk = g_malloc0(sizeof(*quirk));
326     quirk->mem = g_new0(MemoryRegion, 2);
327     quirk->nr_mem = 2;
328     window = quirk->data = g_malloc0(sizeof(*window) +
329                                      sizeof(VFIOConfigWindowMatch));
330     window->vdev = vdev;
331     window->address_offset = 0;
332     window->data_offset = 4;
333     window->nr_matches = 1;
334     window->matches[0].match = 0x4000;
335     window->matches[0].mask = vdev->config_size - 1;
336     window->bar = nr;
337     window->addr_mem = &quirk->mem[0];
338     window->data_mem = &quirk->mem[1];
339 
340     memory_region_init_io(window->addr_mem, OBJECT(vdev),
341                           &vfio_generic_window_address_quirk, window,
342                           "vfio-ati-bar4-window-address-quirk", 4);
343     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
344                                         window->address_offset,
345                                         window->addr_mem, 1);
346 
347     memory_region_init_io(window->data_mem, OBJECT(vdev),
348                           &vfio_generic_window_data_quirk, window,
349                           "vfio-ati-bar4-window-data-quirk", 4);
350     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
351                                         window->data_offset,
352                                         window->data_mem, 1);
353 
354     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
355 
356     trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
357 }
358 
359 /*
360  * Trap the BAR2 MMIO mirror to config space as well.
361  */
362 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
363 {
364     VFIOQuirk *quirk;
365     VFIOConfigMirrorQuirk *mirror;
366 
367     /* Only enable on newer devices where BAR2 is 64bit */
368     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
369         !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
370         return;
371     }
372 
373     quirk = g_malloc0(sizeof(*quirk));
374     mirror = quirk->data = g_malloc0(sizeof(*mirror));
375     mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
376     quirk->nr_mem = 1;
377     mirror->vdev = vdev;
378     mirror->offset = 0x4000;
379     mirror->bar = nr;
380 
381     memory_region_init_io(mirror->mem, OBJECT(vdev),
382                           &vfio_generic_mirror_quirk, mirror,
383                           "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
384     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
385                                         mirror->offset, mirror->mem, 1);
386 
387     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
388 
389     trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
390 }
391 
392 /*
393  * Older ATI/AMD cards like the X550 have a similar window to that above.
394  * I/O port BAR1 provides a window to a mirror of PCI config space located
395  * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
396  * note it for future reference.
397  */
398 
399 #define PCI_VENDOR_ID_NVIDIA                    0x10de
400 
401 /*
402  * Nvidia has several different methods to get to config space, the
403  * nouveu project has several of these documented here:
404  * https://github.com/pathscale/envytools/tree/master/hwdocs
405  *
406  * The first quirk is actually not documented in envytools and is found
407  * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
408  * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
409  * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
410  * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
411  * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
412  * is written for a write to 0x3d4.  The BAR0 offset is then accessible
413  * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
414  * that use the I/O port BAR5 window but it doesn't hurt to leave it.
415  */
416 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
417 static const char *nv3d0_states[] = { "NONE", "SELECT",
418                                       "WINDOW", "READ", "WRITE" };
419 
420 typedef struct VFIONvidia3d0Quirk {
421     VFIOPCIDevice *vdev;
422     VFIONvidia3d0State state;
423     uint32_t offset;
424 } VFIONvidia3d0Quirk;
425 
426 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
427                                            hwaddr addr, unsigned size)
428 {
429     VFIONvidia3d0Quirk *quirk = opaque;
430     VFIOPCIDevice *vdev = quirk->vdev;
431 
432     quirk->state = NONE;
433 
434     return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
435                          addr + 0x14, size);
436 }
437 
438 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
439                                         uint64_t data, unsigned size)
440 {
441     VFIONvidia3d0Quirk *quirk = opaque;
442     VFIOPCIDevice *vdev = quirk->vdev;
443     VFIONvidia3d0State old_state = quirk->state;
444 
445     quirk->state = NONE;
446 
447     switch (data) {
448     case 0x338:
449         if (old_state == NONE) {
450             quirk->state = SELECT;
451             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
452                                               nv3d0_states[quirk->state]);
453         }
454         break;
455     case 0x538:
456         if (old_state == WINDOW) {
457             quirk->state = READ;
458             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
459                                               nv3d0_states[quirk->state]);
460         }
461         break;
462     case 0x738:
463         if (old_state == WINDOW) {
464             quirk->state = WRITE;
465             trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
466                                               nv3d0_states[quirk->state]);
467         }
468         break;
469     }
470 
471     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
472                    addr + 0x14, data, size);
473 }
474 
475 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
476     .read = vfio_nvidia_3d4_quirk_read,
477     .write = vfio_nvidia_3d4_quirk_write,
478     .endianness = DEVICE_LITTLE_ENDIAN,
479 };
480 
481 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
482                                            hwaddr addr, unsigned size)
483 {
484     VFIONvidia3d0Quirk *quirk = opaque;
485     VFIOPCIDevice *vdev = quirk->vdev;
486     VFIONvidia3d0State old_state = quirk->state;
487     uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
488                                   addr + 0x10, size);
489 
490     quirk->state = NONE;
491 
492     if (old_state == READ &&
493         (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
494         uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
495 
496         data = vfio_pci_read_config(&vdev->pdev, offset, size);
497         trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
498                                          offset, size, data);
499     }
500 
501     return data;
502 }
503 
504 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
505                                         uint64_t data, unsigned size)
506 {
507     VFIONvidia3d0Quirk *quirk = opaque;
508     VFIOPCIDevice *vdev = quirk->vdev;
509     VFIONvidia3d0State old_state = quirk->state;
510 
511     quirk->state = NONE;
512 
513     if (old_state == SELECT) {
514         quirk->offset = (uint32_t)data;
515         quirk->state = WINDOW;
516         trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
517                                           nv3d0_states[quirk->state]);
518     } else if (old_state == WRITE) {
519         if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
520             uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
521 
522             vfio_pci_write_config(&vdev->pdev, offset, data, size);
523             trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
524                                               offset, data, size);
525             return;
526         }
527     }
528 
529     vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
530                    addr + 0x10, data, size);
531 }
532 
533 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
534     .read = vfio_nvidia_3d0_quirk_read,
535     .write = vfio_nvidia_3d0_quirk_write,
536     .endianness = DEVICE_LITTLE_ENDIAN,
537 };
538 
539 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
540 {
541     VFIOQuirk *quirk;
542     VFIONvidia3d0Quirk *data;
543 
544     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
545         !vdev->bars[1].region.size) {
546         return;
547     }
548 
549     quirk = g_malloc0(sizeof(*quirk));
550     quirk->data = data = g_malloc0(sizeof(*data));
551     quirk->mem = g_new0(MemoryRegion, 2);
552     quirk->nr_mem = 2;
553     data->vdev = vdev;
554 
555     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
556                           data, "vfio-nvidia-3d4-quirk", 2);
557     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
558                                 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
559 
560     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
561                           data, "vfio-nvidia-3d0-quirk", 2);
562     memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
563                                 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
564 
565     QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
566                       quirk, next);
567 
568     trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
569 }
570 
571 /*
572  * The second quirk is documented in envytools.  The I/O port BAR5 is just
573  * a set of address/data ports to the MMIO BARs.  The BAR we care about is
574  * again BAR0.  This backdoor is apparently a bit newer than the one above
575  * so we need to not only trap 256 bytes @0x1800, but all of PCI config
576  * space, including extended space is available at the 4k @0x88000.
577  */
578 typedef struct VFIONvidiaBAR5Quirk {
579     uint32_t master;
580     uint32_t enable;
581     MemoryRegion *addr_mem;
582     MemoryRegion *data_mem;
583     bool enabled;
584     VFIOConfigWindowQuirk window; /* last for match data */
585 } VFIONvidiaBAR5Quirk;
586 
587 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
588 {
589     VFIOPCIDevice *vdev = bar5->window.vdev;
590 
591     if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
592         return;
593     }
594 
595     bar5->enabled = !bar5->enabled;
596     trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
597                                        bar5->enabled ?  "Enable" : "Disable");
598     memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
599     memory_region_set_enabled(bar5->data_mem, bar5->enabled);
600 }
601 
602 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
603                                                    hwaddr addr, unsigned size)
604 {
605     VFIONvidiaBAR5Quirk *bar5 = opaque;
606     VFIOPCIDevice *vdev = bar5->window.vdev;
607 
608     return vfio_region_read(&vdev->bars[5].region, addr, size);
609 }
610 
611 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
612                                                 uint64_t data, unsigned size)
613 {
614     VFIONvidiaBAR5Quirk *bar5 = opaque;
615     VFIOPCIDevice *vdev = bar5->window.vdev;
616 
617     vfio_region_write(&vdev->bars[5].region, addr, data, size);
618 
619     bar5->master = data;
620     vfio_nvidia_bar5_enable(bar5);
621 }
622 
623 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
624     .read = vfio_nvidia_bar5_quirk_master_read,
625     .write = vfio_nvidia_bar5_quirk_master_write,
626     .endianness = DEVICE_LITTLE_ENDIAN,
627 };
628 
629 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
630                                                    hwaddr addr, unsigned size)
631 {
632     VFIONvidiaBAR5Quirk *bar5 = opaque;
633     VFIOPCIDevice *vdev = bar5->window.vdev;
634 
635     return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
636 }
637 
638 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
639                                                 uint64_t data, unsigned size)
640 {
641     VFIONvidiaBAR5Quirk *bar5 = opaque;
642     VFIOPCIDevice *vdev = bar5->window.vdev;
643 
644     vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
645 
646     bar5->enable = data;
647     vfio_nvidia_bar5_enable(bar5);
648 }
649 
650 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
651     .read = vfio_nvidia_bar5_quirk_enable_read,
652     .write = vfio_nvidia_bar5_quirk_enable_write,
653     .endianness = DEVICE_LITTLE_ENDIAN,
654 };
655 
656 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
657 {
658     VFIOQuirk *quirk;
659     VFIONvidiaBAR5Quirk *bar5;
660     VFIOConfigWindowQuirk *window;
661 
662     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
663         !vdev->vga || nr != 5) {
664         return;
665     }
666 
667     quirk = g_malloc0(sizeof(*quirk));
668     quirk->mem = g_new0(MemoryRegion, 4);
669     quirk->nr_mem = 4;
670     bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
671                                    (sizeof(VFIOConfigWindowMatch) * 2));
672     window = &bar5->window;
673 
674     window->vdev = vdev;
675     window->address_offset = 0x8;
676     window->data_offset = 0xc;
677     window->nr_matches = 2;
678     window->matches[0].match = 0x1800;
679     window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
680     window->matches[1].match = 0x88000;
681     window->matches[1].mask = vdev->config_size - 1;
682     window->bar = nr;
683     window->addr_mem = bar5->addr_mem = &quirk->mem[0];
684     window->data_mem = bar5->data_mem = &quirk->mem[1];
685 
686     memory_region_init_io(window->addr_mem, OBJECT(vdev),
687                           &vfio_generic_window_address_quirk, window,
688                           "vfio-nvidia-bar5-window-address-quirk", 4);
689     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
690                                         window->address_offset,
691                                         window->addr_mem, 1);
692     memory_region_set_enabled(window->addr_mem, false);
693 
694     memory_region_init_io(window->data_mem, OBJECT(vdev),
695                           &vfio_generic_window_data_quirk, window,
696                           "vfio-nvidia-bar5-window-data-quirk", 4);
697     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
698                                         window->data_offset,
699                                         window->data_mem, 1);
700     memory_region_set_enabled(window->data_mem, false);
701 
702     memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
703                           &vfio_nvidia_bar5_quirk_master, bar5,
704                           "vfio-nvidia-bar5-master-quirk", 4);
705     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
706                                         0, &quirk->mem[2], 1);
707 
708     memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
709                           &vfio_nvidia_bar5_quirk_enable, bar5,
710                           "vfio-nvidia-bar5-enable-quirk", 4);
711     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
712                                         4, &quirk->mem[3], 1);
713 
714     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
715 
716     trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
717 }
718 
719 /*
720  * Finally, BAR0 itself.  We want to redirect any accesses to either
721  * 0x1800 or 0x88000 through the PCI config space access functions.
722  */
723 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
724                                            uint64_t data, unsigned size)
725 {
726     VFIOConfigMirrorQuirk *mirror = opaque;
727     VFIOPCIDevice *vdev = mirror->vdev;
728     PCIDevice *pdev = &vdev->pdev;
729 
730     vfio_generic_quirk_mirror_write(opaque, addr, data, size);
731 
732     /*
733      * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
734      * MSI capability ID register.  Both the ID and next register are
735      * read-only, so we allow writes covering either of those to real hw.
736      */
737     if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
738         vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
739         vfio_region_write(&vdev->bars[mirror->bar].region,
740                           addr + mirror->offset, data, size);
741         trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
742     }
743 }
744 
745 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
746     .read = vfio_generic_quirk_mirror_read,
747     .write = vfio_nvidia_quirk_mirror_write,
748     .endianness = DEVICE_LITTLE_ENDIAN,
749 };
750 
751 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
752 {
753     VFIOQuirk *quirk;
754     VFIOConfigMirrorQuirk *mirror;
755 
756     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
757         !vfio_is_vga(vdev) || nr != 0) {
758         return;
759     }
760 
761     quirk = g_malloc0(sizeof(*quirk));
762     mirror = quirk->data = g_malloc0(sizeof(*mirror));
763     mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
764     quirk->nr_mem = 1;
765     mirror->vdev = vdev;
766     mirror->offset = 0x88000;
767     mirror->bar = nr;
768 
769     memory_region_init_io(mirror->mem, OBJECT(vdev),
770                           &vfio_nvidia_mirror_quirk, mirror,
771                           "vfio-nvidia-bar0-88000-mirror-quirk",
772                           vdev->config_size);
773     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
774                                         mirror->offset, mirror->mem, 1);
775 
776     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
777 
778     /* The 0x1800 offset mirror only seems to get used by legacy VGA */
779     if (vdev->vga) {
780         quirk = g_malloc0(sizeof(*quirk));
781         mirror = quirk->data = g_malloc0(sizeof(*mirror));
782         mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
783         quirk->nr_mem = 1;
784         mirror->vdev = vdev;
785         mirror->offset = 0x1800;
786         mirror->bar = nr;
787 
788         memory_region_init_io(mirror->mem, OBJECT(vdev),
789                               &vfio_nvidia_mirror_quirk, mirror,
790                               "vfio-nvidia-bar0-1800-mirror-quirk",
791                               PCI_CONFIG_SPACE_SIZE);
792         memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
793                                             mirror->offset, mirror->mem, 1);
794 
795         QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
796     }
797 
798     trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
799 }
800 
801 /*
802  * TODO - Some Nvidia devices provide config access to their companion HDA
803  * device and even to their parent bridge via these config space mirrors.
804  * Add quirks for those regions.
805  */
806 
807 #define PCI_VENDOR_ID_REALTEK 0x10ec
808 
809 /*
810  * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
811  * offset 0x70 there is a dword data register, offset 0x74 is a dword address
812  * register.  According to the Linux r8169 driver, the MSI-X table is addressed
813  * when the "type" portion of the address register is set to 0x1.  This appears
814  * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
815  * "address latched" indicator.  Bits 12:15 are a mask field, which we can
816  * ignore because the MSI-X table should always be accessed as a dword (full
817  * mask).  Bits 0:11 is offset within the type.
818  *
819  * Example trace:
820  *
821  * Read from MSI-X table offset 0
822  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
823  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
824  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
825  *
826  * Write 0xfee00000 to MSI-X table offset 0
827  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
828  * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
829  * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
830  */
831 typedef struct VFIOrtl8168Quirk {
832     VFIOPCIDevice *vdev;
833     uint32_t addr;
834     uint32_t data;
835     bool enabled;
836 } VFIOrtl8168Quirk;
837 
838 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
839                                                 hwaddr addr, unsigned size)
840 {
841     VFIOrtl8168Quirk *rtl = opaque;
842     VFIOPCIDevice *vdev = rtl->vdev;
843     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
844 
845     if (rtl->enabled) {
846         data = rtl->addr ^ 0x80000000U; /* latch/complete */
847         trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
848     }
849 
850     return data;
851 }
852 
853 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
854                                              uint64_t data, unsigned size)
855 {
856     VFIOrtl8168Quirk *rtl = opaque;
857     VFIOPCIDevice *vdev = rtl->vdev;
858 
859     rtl->enabled = false;
860 
861     if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
862         rtl->enabled = true;
863         rtl->addr = (uint32_t)data;
864 
865         if (data & 0x80000000U) { /* Do write */
866             if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
867                 hwaddr offset = data & 0xfff;
868                 uint64_t val = rtl->data;
869 
870                 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
871                                                     (uint16_t)offset, val);
872 
873                 /* Write to the proper guest MSI-X table instead */
874                 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
875                                              offset, val, size,
876                                              MEMTXATTRS_UNSPECIFIED);
877             }
878             return; /* Do not write guest MSI-X data to hardware */
879         }
880     }
881 
882     vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
883 }
884 
885 static const MemoryRegionOps vfio_rtl_address_quirk = {
886     .read = vfio_rtl8168_quirk_address_read,
887     .write = vfio_rtl8168_quirk_address_write,
888     .valid = {
889         .min_access_size = 4,
890         .max_access_size = 4,
891         .unaligned = false,
892     },
893     .endianness = DEVICE_LITTLE_ENDIAN,
894 };
895 
896 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
897                                              hwaddr addr, unsigned size)
898 {
899     VFIOrtl8168Quirk *rtl = opaque;
900     VFIOPCIDevice *vdev = rtl->vdev;
901     uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
902 
903     if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
904         hwaddr offset = rtl->addr & 0xfff;
905         memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
906                                     &data, size, MEMTXATTRS_UNSPECIFIED);
907         trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
908     }
909 
910     return data;
911 }
912 
913 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
914                                           uint64_t data, unsigned size)
915 {
916     VFIOrtl8168Quirk *rtl = opaque;
917     VFIOPCIDevice *vdev = rtl->vdev;
918 
919     rtl->data = (uint32_t)data;
920 
921     vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
922 }
923 
924 static const MemoryRegionOps vfio_rtl_data_quirk = {
925     .read = vfio_rtl8168_quirk_data_read,
926     .write = vfio_rtl8168_quirk_data_write,
927     .valid = {
928         .min_access_size = 4,
929         .max_access_size = 4,
930         .unaligned = false,
931     },
932     .endianness = DEVICE_LITTLE_ENDIAN,
933 };
934 
935 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
936 {
937     VFIOQuirk *quirk;
938     VFIOrtl8168Quirk *rtl;
939 
940     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
941         return;
942     }
943 
944     quirk = g_malloc0(sizeof(*quirk));
945     quirk->mem = g_new0(MemoryRegion, 2);
946     quirk->nr_mem = 2;
947     quirk->data = rtl = g_malloc0(sizeof(*rtl));
948     rtl->vdev = vdev;
949 
950     memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
951                           &vfio_rtl_address_quirk, rtl,
952                           "vfio-rtl8168-window-address-quirk", 4);
953     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
954                                         0x74, &quirk->mem[0], 1);
955 
956     memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
957                           &vfio_rtl_data_quirk, rtl,
958                           "vfio-rtl8168-window-data-quirk", 4);
959     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
960                                         0x70, &quirk->mem[1], 1);
961 
962     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
963 
964     trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
965 }
966 
967 /*
968  * Intel IGD support
969  *
970  * Obviously IGD is not a discrete device, this is evidenced not only by it
971  * being integrated into the CPU, but by the various chipset and BIOS
972  * dependencies that it brings along with it.  Intel is trying to move away
973  * from this and Broadwell and newer devices can run in what Intel calls
974  * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
975  * more is required beyond assigning the IGD device to a VM.  There are
976  * however support limitations to this mode.  It only supports IGD as a
977  * secondary graphics device in the VM and it doesn't officially support any
978  * physical outputs.
979  *
980  * The code here attempts to enable what we'll call legacy mode assignment,
981  * IGD retains most of the capabilities we expect for it to have on bare
982  * metal.  To enable this mode, the IGD device must be assigned to the VM
983  * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
984  * support, we must have VM BIOS support for reserving and populating some
985  * of the required tables, and we need to tweak the chipset with revisions
986  * and IDs and an LPC/ISA bridge device.  The intention is to make all of
987  * this happen automatically by installing the device at the correct VM PCI
988  * bus address.  If any of the conditions are not met, we cross our fingers
989  * and hope the user knows better.
990  *
991  * NB - It is possible to enable physical outputs in UPT mode by supplying
992  * an OpRegion table.  We don't do this by default because the guest driver
993  * behaves differently if an OpRegion is provided and no monitor is attached
994  * vs no OpRegion and a monitor being attached or not.  Effectively, if a
995  * headless setup is desired, the OpRegion gets in the way of that.
996  */
997 
998 /*
999  * This presumes the device is already known to be an Intel VGA device, so we
1000  * take liberties in which device ID bits match which generation.  This should
1001  * not be taken as an indication that all the devices are supported, or even
1002  * supportable, some of them don't even support VT-d.
1003  * See linux:include/drm/i915_pciids.h for IDs.
1004  */
1005 static int igd_gen(VFIOPCIDevice *vdev)
1006 {
1007     if ((vdev->device_id & 0xfff) == 0xa84) {
1008         return 8; /* Broxton */
1009     }
1010 
1011     switch (vdev->device_id & 0xff00) {
1012     /* Old, untested, unavailable, unknown */
1013     case 0x0000:
1014     case 0x2500:
1015     case 0x2700:
1016     case 0x2900:
1017     case 0x2a00:
1018     case 0x2e00:
1019     case 0x3500:
1020     case 0xa000:
1021         return -1;
1022     /* SandyBridge, IvyBridge, ValleyView, Haswell */
1023     case 0x0100:
1024     case 0x0400:
1025     case 0x0a00:
1026     case 0x0c00:
1027     case 0x0d00:
1028     case 0x0f00:
1029         return 6;
1030     /* BroadWell, CherryView, SkyLake, KabyLake */
1031     case 0x1600:
1032     case 0x1900:
1033     case 0x2200:
1034     case 0x5900:
1035         return 8;
1036     }
1037 
1038     return 8; /* Assume newer is compatible */
1039 }
1040 
1041 typedef struct VFIOIGDQuirk {
1042     struct VFIOPCIDevice *vdev;
1043     uint32_t index;
1044     uint32_t bdsm;
1045 } VFIOIGDQuirk;
1046 
1047 #define IGD_GMCH 0x50 /* Graphics Control Register */
1048 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1049 #define IGD_ASLS 0xfc /* ASL Storage Register */
1050 
1051 /*
1052  * The OpRegion includes the Video BIOS Table, which seems important for
1053  * telling the driver what sort of outputs it has.  Without this, the device
1054  * may work in the guest, but we may not get output.  This also requires BIOS
1055  * support to reserve and populate a section of guest memory sufficient for
1056  * the table and to write the base address of that memory to the ASLS register
1057  * of the IGD device.
1058  */
1059 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1060                                struct vfio_region_info *info, Error **errp)
1061 {
1062     int ret;
1063 
1064     vdev->igd_opregion = g_malloc0(info->size);
1065     ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1066                 info->size, info->offset);
1067     if (ret != info->size) {
1068         error_setg(errp, "failed to read IGD OpRegion");
1069         g_free(vdev->igd_opregion);
1070         vdev->igd_opregion = NULL;
1071         return -EINVAL;
1072     }
1073 
1074     /*
1075      * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1076      * allocate 32bit reserved memory for, copy these contents into, and write
1077      * the reserved memory base address to the device ASLS register at 0xFC.
1078      * Alignment of this reserved region seems flexible, but using a 4k page
1079      * alignment seems to work well.  This interface assumes a single IGD
1080      * device, which may be at VM address 00:02.0 in legacy mode or another
1081      * address in UPT mode.
1082      *
1083      * NB, there may be future use cases discovered where the VM should have
1084      * direct interaction with the host OpRegion, in which case the write to
1085      * the ASLS register would trigger MemoryRegion setup to enable that.
1086      */
1087     fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1088                     vdev->igd_opregion, info->size);
1089 
1090     trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1091 
1092     pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1093     pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1094     pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1095 
1096     return 0;
1097 }
1098 
1099 /*
1100  * The rather short list of registers that we copy from the host devices.
1101  * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1102  * host bridge values may or may not be needed depending on the guest OS.
1103  * Since we're only munging revision and subsystem values on the host bridge,
1104  * we don't require our own device.  The LPC/ISA bridge needs to be our very
1105  * own though.
1106  */
1107 typedef struct {
1108     uint8_t offset;
1109     uint8_t len;
1110 } IGDHostInfo;
1111 
1112 static const IGDHostInfo igd_host_bridge_infos[] = {
1113     {PCI_REVISION_ID,         2},
1114     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1115     {PCI_SUBSYSTEM_ID,        2},
1116 };
1117 
1118 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1119     {PCI_VENDOR_ID,           2},
1120     {PCI_DEVICE_ID,           2},
1121     {PCI_REVISION_ID,         2},
1122     {PCI_SUBSYSTEM_VENDOR_ID, 2},
1123     {PCI_SUBSYSTEM_ID,        2},
1124 };
1125 
1126 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1127                              struct vfio_region_info *info,
1128                              const IGDHostInfo *list, int len)
1129 {
1130     int i, ret;
1131 
1132     for (i = 0; i < len; i++) {
1133         ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1134                     list[i].len, info->offset + list[i].offset);
1135         if (ret != list[i].len) {
1136             error_report("IGD copy failed: %m");
1137             return -errno;
1138         }
1139     }
1140 
1141     return 0;
1142 }
1143 
1144 /*
1145  * Stuff a few values into the host bridge.
1146  */
1147 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1148                                   struct vfio_region_info *info)
1149 {
1150     PCIBus *bus;
1151     PCIDevice *host_bridge;
1152     int ret;
1153 
1154     bus = pci_device_root_bus(&vdev->pdev);
1155     host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1156 
1157     if (!host_bridge) {
1158         error_report("Can't find host bridge");
1159         return -ENODEV;
1160     }
1161 
1162     ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1163                             ARRAY_SIZE(igd_host_bridge_infos));
1164     if (!ret) {
1165         trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1166     }
1167 
1168     return ret;
1169 }
1170 
1171 /*
1172  * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1173  * arbitrary values into just any bridge, so we must create our own.  We try
1174  * to handle if the user has created it for us, which they might want to do
1175  * to enable multifunction so we don't occupy the whole PCI slot.
1176  */
1177 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1178 {
1179     if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1180         error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1181     }
1182 }
1183 
1184 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1185 {
1186     DeviceClass *dc = DEVICE_CLASS(klass);
1187     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1188 
1189     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1190     dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1191     dc->hotpluggable = false;
1192     k->realize = vfio_pci_igd_lpc_bridge_realize;
1193     k->class_id = PCI_CLASS_BRIDGE_ISA;
1194 }
1195 
1196 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1197     .name = "vfio-pci-igd-lpc-bridge",
1198     .parent = TYPE_PCI_DEVICE,
1199     .class_init = vfio_pci_igd_lpc_bridge_class_init,
1200 };
1201 
1202 static void vfio_pci_igd_register_types(void)
1203 {
1204     type_register_static(&vfio_pci_igd_lpc_bridge_info);
1205 }
1206 
1207 type_init(vfio_pci_igd_register_types)
1208 
1209 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1210                                  struct vfio_region_info *info)
1211 {
1212     PCIDevice *lpc_bridge;
1213     int ret;
1214 
1215     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1216                                  0, PCI_DEVFN(0x1f, 0));
1217     if (!lpc_bridge) {
1218         lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1219                                  PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1220     }
1221 
1222     ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1223                             ARRAY_SIZE(igd_lpc_bridge_infos));
1224     if (!ret) {
1225         trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1226     }
1227 
1228     return ret;
1229 }
1230 
1231 /*
1232  * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1233  * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1234  * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1235  * for programming the GTT.
1236  *
1237  * See linux:include/drm/i915_drm.h for shift and mask values.
1238  */
1239 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1240 {
1241     uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1242     int ggms, gen = igd_gen(vdev);
1243 
1244     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1245     ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1246     if (gen > 6) {
1247         ggms = 1 << ggms;
1248     }
1249 
1250     ggms *= 1024 * 1024;
1251 
1252     return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8);
1253 }
1254 
1255 /*
1256  * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1257  * Somehow the host stolen memory range is used for this, but how the ROM gets
1258  * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1259  * reprograms the GTT through the IOBAR where we can trap it and transpose the
1260  * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1261  * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1262  * IOBAR address and data registers to detect a write sequence targeting the
1263  * GTTADR.  This code is developed by observed behavior and doesn't have a
1264  * direct spec reference, unfortunately.
1265  */
1266 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1267                                          hwaddr addr, unsigned size)
1268 {
1269     VFIOIGDQuirk *igd = opaque;
1270     VFIOPCIDevice *vdev = igd->vdev;
1271 
1272     igd->index = ~0;
1273 
1274     return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1275 }
1276 
1277 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1278                                       uint64_t data, unsigned size)
1279 {
1280     VFIOIGDQuirk *igd = opaque;
1281     VFIOPCIDevice *vdev = igd->vdev;
1282     uint64_t val = data;
1283     int gen = igd_gen(vdev);
1284 
1285     /*
1286      * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1287      * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1288      * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1289      * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1290      * to a 4k page, which we translate to a page from the VM allocated region,
1291      * pointed to by the BDSM register.  If this is not set, we fail.
1292      *
1293      * We trap writes to the full configured GTT size, but we typically only
1294      * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1295      * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1296      * write of that last entry does work, but is hopefully unnecessary since
1297      * we clear the previous GTT on initialization.
1298      */
1299     if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1300         if (gen < 8 || (igd->index % 8 == 1)) {
1301             uint32_t base;
1302 
1303             base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1304             if (!base) {
1305                 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1306                          "BIOS reserved stolen memory.  Unsupported BIOS?");
1307             }
1308 
1309             val = data - igd->bdsm + base;
1310         } else {
1311             val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1312         }
1313 
1314         trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1315                                       igd->index, data, val);
1316     }
1317 
1318     vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1319 
1320     igd->index = ~0;
1321 }
1322 
1323 static const MemoryRegionOps vfio_igd_data_quirk = {
1324     .read = vfio_igd_quirk_data_read,
1325     .write = vfio_igd_quirk_data_write,
1326     .endianness = DEVICE_LITTLE_ENDIAN,
1327 };
1328 
1329 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1330                                           hwaddr addr, unsigned size)
1331 {
1332     VFIOIGDQuirk *igd = opaque;
1333     VFIOPCIDevice *vdev = igd->vdev;
1334 
1335     igd->index = ~0;
1336 
1337     return vfio_region_read(&vdev->bars[4].region, addr, size);
1338 }
1339 
1340 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1341                                        uint64_t data, unsigned size)
1342 {
1343     VFIOIGDQuirk *igd = opaque;
1344     VFIOPCIDevice *vdev = igd->vdev;
1345 
1346     igd->index = data;
1347 
1348     vfio_region_write(&vdev->bars[4].region, addr, data, size);
1349 }
1350 
1351 static const MemoryRegionOps vfio_igd_index_quirk = {
1352     .read = vfio_igd_quirk_index_read,
1353     .write = vfio_igd_quirk_index_write,
1354     .endianness = DEVICE_LITTLE_ENDIAN,
1355 };
1356 
1357 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1358 {
1359     struct vfio_region_info *rom = NULL, *opregion = NULL,
1360                             *host = NULL, *lpc = NULL;
1361     VFIOQuirk *quirk;
1362     VFIOIGDQuirk *igd;
1363     PCIDevice *lpc_bridge;
1364     int i, ret, ggms_mb, gms_mb = 0, gen;
1365     uint64_t *bdsm_size;
1366     uint32_t gmch;
1367     uint16_t cmd_orig, cmd;
1368     Error *err = NULL;
1369 
1370     /*
1371      * This must be an Intel VGA device at address 00:02.0 for us to even
1372      * consider enabling legacy mode.  The vBIOS has dependencies on the
1373      * PCI bus address.
1374      */
1375     if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1376         !vfio_is_vga(vdev) || nr != 4 ||
1377         &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1378                                        0, PCI_DEVFN(0x2, 0))) {
1379         return;
1380     }
1381 
1382     /*
1383      * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1384      * can stuff host values into, so if there's already one there and it's not
1385      * one we can hack on, legacy mode is no-go.  Sorry Q35.
1386      */
1387     lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1388                                  0, PCI_DEVFN(0x1f, 0));
1389     if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1390                                            "vfio-pci-igd-lpc-bridge")) {
1391         error_report("IGD device %s cannot support legacy mode due to existing "
1392                      "devices at address 1f.0", vdev->vbasedev.name);
1393         return;
1394     }
1395 
1396     /*
1397      * IGD is not a standard, they like to change their specs often.  We
1398      * only attempt to support back to SandBridge and we hope that newer
1399      * devices maintain compatibility with generation 8.
1400      */
1401     gen = igd_gen(vdev);
1402     if (gen != 6 && gen != 8) {
1403         error_report("IGD device %s is unsupported in legacy mode, "
1404                      "try SandyBridge or newer", vdev->vbasedev.name);
1405         return;
1406     }
1407 
1408     /*
1409      * Most of what we're doing here is to enable the ROM to run, so if
1410      * there's no ROM, there's no point in setting up this quirk.
1411      * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1412      */
1413     ret = vfio_get_region_info(&vdev->vbasedev,
1414                                VFIO_PCI_ROM_REGION_INDEX, &rom);
1415     if ((ret || !rom->size) && !vdev->pdev.romfile) {
1416         error_report("IGD device %s has no ROM, legacy mode disabled",
1417                      vdev->vbasedev.name);
1418         goto out;
1419     }
1420 
1421     /*
1422      * Ignore the hotplug corner case, mark the ROM failed, we can't
1423      * create the devices we need for legacy mode in the hotplug scenario.
1424      */
1425     if (vdev->pdev.qdev.hotplugged) {
1426         error_report("IGD device %s hotplugged, ROM disabled, "
1427                      "legacy mode disabled", vdev->vbasedev.name);
1428         vdev->rom_read_failed = true;
1429         goto out;
1430     }
1431 
1432     /*
1433      * Check whether we have all the vfio device specific regions to
1434      * support legacy mode (added in Linux v4.6).  If not, bail.
1435      */
1436     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1437                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1438                         VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1439     if (ret) {
1440         error_report("IGD device %s does not support OpRegion access,"
1441                      "legacy mode disabled", vdev->vbasedev.name);
1442         goto out;
1443     }
1444 
1445     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1446                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1447                         VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1448     if (ret) {
1449         error_report("IGD device %s does not support host bridge access,"
1450                      "legacy mode disabled", vdev->vbasedev.name);
1451         goto out;
1452     }
1453 
1454     ret = vfio_get_dev_region_info(&vdev->vbasedev,
1455                         VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1456                         VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1457     if (ret) {
1458         error_report("IGD device %s does not support LPC bridge access,"
1459                      "legacy mode disabled", vdev->vbasedev.name);
1460         goto out;
1461     }
1462 
1463     gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1464 
1465     /*
1466      * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1467      * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1468      * but also no point in us enabling VGA if disabled in hardware.
1469      */
1470     if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1471         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1472         error_report("IGD device %s failed to enable VGA access, "
1473                      "legacy mode disabled", vdev->vbasedev.name);
1474         goto out;
1475     }
1476 
1477     /* Create our LPC/ISA bridge */
1478     ret = vfio_pci_igd_lpc_init(vdev, lpc);
1479     if (ret) {
1480         error_report("IGD device %s failed to create LPC bridge, "
1481                      "legacy mode disabled", vdev->vbasedev.name);
1482         goto out;
1483     }
1484 
1485     /* Stuff some host values into the VM PCI host bridge */
1486     ret = vfio_pci_igd_host_init(vdev, host);
1487     if (ret) {
1488         error_report("IGD device %s failed to modify host bridge, "
1489                      "legacy mode disabled", vdev->vbasedev.name);
1490         goto out;
1491     }
1492 
1493     /* Setup OpRegion access */
1494     ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1495     if (ret) {
1496         error_append_hint(&err, "IGD legacy mode disabled\n");
1497         error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1498         goto out;
1499     }
1500 
1501     /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1502     quirk = g_malloc0(sizeof(*quirk));
1503     quirk->mem = g_new0(MemoryRegion, 2);
1504     quirk->nr_mem = 2;
1505     igd = quirk->data = g_malloc0(sizeof(*igd));
1506     igd->vdev = vdev;
1507     igd->index = ~0;
1508     igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1509     igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */
1510 
1511     memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1512                           igd, "vfio-igd-index-quirk", 4);
1513     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1514                                         0, &quirk->mem[0], 1);
1515 
1516     memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1517                           igd, "vfio-igd-data-quirk", 4);
1518     memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1519                                         4, &quirk->mem[1], 1);
1520 
1521     QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1522 
1523     /* Determine the size of stolen memory needed for GTT */
1524     ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1525     if (gen > 6) {
1526         ggms_mb = 1 << ggms_mb;
1527     }
1528 
1529     /*
1530      * Assume we have no GMS memory, but allow it to be overrided by device
1531      * option (experimental).  The spec doesn't actually allow zero GMS when
1532      * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1533      * so let's not waste VM memory for it.
1534      */
1535     gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1536 
1537     if (vdev->igd_gms) {
1538         if (vdev->igd_gms <= 0x10) {
1539             gms_mb = vdev->igd_gms * 32;
1540             gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1541         } else {
1542             error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1543             vdev->igd_gms = 0;
1544         }
1545     }
1546 
1547     /*
1548      * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1549      * must allocate a 1MB aligned reserved memory region below 4GB with
1550      * the requested size (in bytes) for use by the Intel PCI class VGA
1551      * device at VM address 00:02.0.  The base address of this reserved
1552      * memory region must be written to the device BDSM regsiter at PCI
1553      * config offset 0x5C.
1554      */
1555     bdsm_size = g_malloc(sizeof(*bdsm_size));
1556     *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024);
1557     fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1558                     bdsm_size, sizeof(*bdsm_size));
1559 
1560     /* GMCH is read-only, emulated */
1561     pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1562     pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1563     pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1564 
1565     /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1566     pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1567     pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1568     pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1569 
1570     /*
1571      * This IOBAR gives us access to GTTADR, which allows us to write to
1572      * the GTT itself.  So let's go ahead and write zero to all the GTT
1573      * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1574      * before talking to the device.
1575      */
1576     if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1577               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1578         error_report("IGD device %s - failed to read PCI command register",
1579                      vdev->vbasedev.name);
1580     }
1581 
1582     cmd = cmd_orig | PCI_COMMAND_IO;
1583 
1584     if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1585                vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1586         error_report("IGD device %s - failed to write PCI command register",
1587                      vdev->vbasedev.name);
1588     }
1589 
1590     for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1591         vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1592         vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1593     }
1594 
1595     if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1596                vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1597         error_report("IGD device %s - failed to restore PCI command register",
1598                      vdev->vbasedev.name);
1599     }
1600 
1601     trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1602 
1603 out:
1604     g_free(rom);
1605     g_free(opregion);
1606     g_free(host);
1607     g_free(lpc);
1608 }
1609 
1610 /*
1611  * Common quirk probe entry points.
1612  */
1613 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1614 {
1615     vfio_vga_probe_ati_3c3_quirk(vdev);
1616     vfio_vga_probe_nvidia_3d0_quirk(vdev);
1617 }
1618 
1619 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1620 {
1621     VFIOQuirk *quirk;
1622     int i, j;
1623 
1624     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1625         QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1626             for (j = 0; j < quirk->nr_mem; j++) {
1627                 memory_region_del_subregion(&vdev->vga->region[i].mem,
1628                                             &quirk->mem[j]);
1629             }
1630         }
1631     }
1632 }
1633 
1634 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1635 {
1636     int i, j;
1637 
1638     for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1639         while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1640             VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1641             QLIST_REMOVE(quirk, next);
1642             for (j = 0; j < quirk->nr_mem; j++) {
1643                 object_unparent(OBJECT(&quirk->mem[j]));
1644             }
1645             g_free(quirk->mem);
1646             g_free(quirk->data);
1647             g_free(quirk);
1648         }
1649     }
1650 }
1651 
1652 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1653 {
1654     vfio_probe_ati_bar4_quirk(vdev, nr);
1655     vfio_probe_ati_bar2_quirk(vdev, nr);
1656     vfio_probe_nvidia_bar5_quirk(vdev, nr);
1657     vfio_probe_nvidia_bar0_quirk(vdev, nr);
1658     vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1659     vfio_probe_igd_bar4_quirk(vdev, nr);
1660 }
1661 
1662 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1663 {
1664     VFIOBAR *bar = &vdev->bars[nr];
1665     VFIOQuirk *quirk;
1666     int i;
1667 
1668     QLIST_FOREACH(quirk, &bar->quirks, next) {
1669         for (i = 0; i < quirk->nr_mem; i++) {
1670             memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1671         }
1672     }
1673 }
1674 
1675 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1676 {
1677     VFIOBAR *bar = &vdev->bars[nr];
1678     int i;
1679 
1680     while (!QLIST_EMPTY(&bar->quirks)) {
1681         VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1682         QLIST_REMOVE(quirk, next);
1683         for (i = 0; i < quirk->nr_mem; i++) {
1684             object_unparent(OBJECT(&quirk->mem[i]));
1685         }
1686         g_free(quirk->mem);
1687         g_free(quirk->data);
1688         g_free(quirk);
1689     }
1690 }
1691 
1692 /*
1693  * Reset quirks
1694  */
1695 
1696 /*
1697  * AMD Radeon PCI config reset, based on Linux:
1698  *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1699  *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1700  *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1701  *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1702  * IDs: include/drm/drm_pciids.h
1703  * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1704  *
1705  * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1706  * hardware that should be fixed on future ASICs.  The symptom of this is that
1707  * once the accerlated driver loads, Windows guests will bsod on subsequent
1708  * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1709  * work around this, we do an AMD specific PCI config reset, followed by an SMC
1710  * reset.  The PCI config reset only works if SMC firmware is running, so we
1711  * have a dependency on the state of the device as to whether this reset will
1712  * be effective.  There are still cases where we won't be able to kick the
1713  * device into working, but this greatly improves the usability overall.  The
1714  * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1715  * poking is largely ASIC specific.
1716  */
1717 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1718 {
1719     uint32_t clk, pc_c;
1720 
1721     /*
1722      * Registers 200h and 204h are index and data registers for accessing
1723      * indirect configuration registers within the device.
1724      */
1725     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1726     clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1727     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1728     pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1729 
1730     return (!(clk & 1) && (0x20100 <= pc_c));
1731 }
1732 
1733 /*
1734  * The scope of a config reset is controlled by a mode bit in the misc register
1735  * and a fuse, exposed as a bit in another register.  The fuse is the default
1736  * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1737  * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1738  * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1739  * to flip the value of the bit in the misc register.
1740  */
1741 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1742 {
1743     uint32_t misc, fuse;
1744     bool a, b;
1745 
1746     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1747     fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1748     b = fuse & 64;
1749 
1750     vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1751     misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1752     a = misc & 2;
1753 
1754     if (a == b) {
1755         vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1756         vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1757     }
1758 }
1759 
1760 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1761 {
1762     PCIDevice *pdev = &vdev->pdev;
1763     int i, ret = 0;
1764     uint32_t data;
1765 
1766     /* Defer to a kernel implemented reset */
1767     if (vdev->vbasedev.reset_works) {
1768         trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1769         return -ENODEV;
1770     }
1771 
1772     /* Enable only memory BAR access */
1773     vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1774 
1775     /* Reset only works if SMC firmware is loaded and running */
1776     if (!vfio_radeon_smc_is_running(vdev)) {
1777         ret = -EINVAL;
1778         trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1779         goto out;
1780     }
1781 
1782     /* Make sure only the GFX function is reset */
1783     vfio_radeon_set_gfx_only_reset(vdev);
1784 
1785     /* AMD PCI config reset */
1786     vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
1787     usleep(100);
1788 
1789     /* Read back the memory size to make sure we're out of reset */
1790     for (i = 0; i < 100000; i++) {
1791         if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
1792             goto reset_smc;
1793         }
1794         usleep(1);
1795     }
1796 
1797     trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
1798 
1799 reset_smc:
1800     /* Reset SMC */
1801     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
1802     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1803     data |= 1;
1804     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1805 
1806     /* Disable SMC clock */
1807     vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1808     data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1809     data |= 1;
1810     vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1811 
1812     trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
1813 
1814 out:
1815     /* Restore PCI command register */
1816     vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
1817 
1818     return ret;
1819 }
1820 
1821 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
1822 {
1823     switch (vdev->vendor_id) {
1824     case 0x1002:
1825         switch (vdev->device_id) {
1826         /* Bonaire */
1827         case 0x6649: /* Bonaire [FirePro W5100] */
1828         case 0x6650:
1829         case 0x6651:
1830         case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
1831         case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
1832         case 0x665d: /* Bonaire [Radeon R7 200 Series] */
1833         /* Hawaii */
1834         case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
1835         case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
1836         case 0x67A2:
1837         case 0x67A8:
1838         case 0x67A9:
1839         case 0x67AA:
1840         case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
1841         case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
1842         case 0x67B8:
1843         case 0x67B9:
1844         case 0x67BA:
1845         case 0x67BE:
1846             vdev->resetfn = vfio_radeon_reset;
1847             trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
1848             break;
1849         }
1850         break;
1851     }
1852 }
1853