1 /* 2 * device quirks for PCI devices 3 * 4 * Copyright Red Hat, Inc. 2012-2015 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/error-report.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/range.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <sys/ioctl.h> 20 #include "hw/nvram/fw_cfg.h" 21 #include "pci.h" 22 #include "trace.h" 23 24 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */ 25 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device) 26 { 27 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) && 28 (device == PCI_ANY_ID || device == vdev->device_id); 29 } 30 31 static bool vfio_is_vga(VFIOPCIDevice *vdev) 32 { 33 PCIDevice *pdev = &vdev->pdev; 34 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 35 36 return class == PCI_CLASS_DISPLAY_VGA; 37 } 38 39 /* 40 * List of device ids/vendor ids for which to disable 41 * option rom loading. This avoids the guest hangs during rom 42 * execution as noticed with the BCM 57810 card for lack of a 43 * more better way to handle such issues. 44 * The user can still override by specifying a romfile or 45 * rombar=1. 46 * Please see https://bugs.launchpad.net/qemu/+bug/1284874 47 * for an analysis of the 57810 card hang. When adding 48 * a new vendor id/device id combination below, please also add 49 * your card/environment details and information that could 50 * help in debugging to the bug tracking this issue 51 */ 52 static const struct { 53 uint32_t vendor; 54 uint32_t device; 55 } romblacklist[] = { 56 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ 57 }; 58 59 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) 60 { 61 int i; 62 63 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) { 64 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) { 65 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name, 66 romblacklist[i].vendor, 67 romblacklist[i].device); 68 return true; 69 } 70 } 71 return false; 72 } 73 74 /* 75 * Device specific region quirks (mostly backdoors to PCI config space) 76 */ 77 78 /* 79 * The generic window quirks operate on an address and data register, 80 * vfio_generic_window_address_quirk handles the address register and 81 * vfio_generic_window_data_quirk handles the data register. These ops 82 * pass reads and writes through to hardware until a value matching the 83 * stored address match/mask is written. When this occurs, the data 84 * register access emulated PCI config space for the device rather than 85 * passing through accesses. This enables devices where PCI config space 86 * is accessible behind a window register to maintain the virtualization 87 * provided through vfio. 88 */ 89 typedef struct VFIOConfigWindowMatch { 90 uint32_t match; 91 uint32_t mask; 92 } VFIOConfigWindowMatch; 93 94 typedef struct VFIOConfigWindowQuirk { 95 struct VFIOPCIDevice *vdev; 96 97 uint32_t address_val; 98 99 uint32_t address_offset; 100 uint32_t data_offset; 101 102 bool window_enabled; 103 uint8_t bar; 104 105 MemoryRegion *addr_mem; 106 MemoryRegion *data_mem; 107 108 uint32_t nr_matches; 109 VFIOConfigWindowMatch matches[]; 110 } VFIOConfigWindowQuirk; 111 112 static uint64_t vfio_generic_window_quirk_address_read(void *opaque, 113 hwaddr addr, 114 unsigned size) 115 { 116 VFIOConfigWindowQuirk *window = opaque; 117 VFIOPCIDevice *vdev = window->vdev; 118 119 return vfio_region_read(&vdev->bars[window->bar].region, 120 addr + window->address_offset, size); 121 } 122 123 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, 124 uint64_t data, 125 unsigned size) 126 { 127 VFIOConfigWindowQuirk *window = opaque; 128 VFIOPCIDevice *vdev = window->vdev; 129 int i; 130 131 window->window_enabled = false; 132 133 vfio_region_write(&vdev->bars[window->bar].region, 134 addr + window->address_offset, data, size); 135 136 for (i = 0; i < window->nr_matches; i++) { 137 if ((data & ~window->matches[i].mask) == window->matches[i].match) { 138 window->window_enabled = true; 139 window->address_val = data & window->matches[i].mask; 140 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, 141 memory_region_name(window->addr_mem), data); 142 break; 143 } 144 } 145 } 146 147 static const MemoryRegionOps vfio_generic_window_address_quirk = { 148 .read = vfio_generic_window_quirk_address_read, 149 .write = vfio_generic_window_quirk_address_write, 150 .endianness = DEVICE_LITTLE_ENDIAN, 151 }; 152 153 static uint64_t vfio_generic_window_quirk_data_read(void *opaque, 154 hwaddr addr, unsigned size) 155 { 156 VFIOConfigWindowQuirk *window = opaque; 157 VFIOPCIDevice *vdev = window->vdev; 158 uint64_t data; 159 160 /* Always read data reg, discard if window enabled */ 161 data = vfio_region_read(&vdev->bars[window->bar].region, 162 addr + window->data_offset, size); 163 164 if (window->window_enabled) { 165 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); 166 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, 167 memory_region_name(window->data_mem), data); 168 } 169 170 return data; 171 } 172 173 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, 174 uint64_t data, unsigned size) 175 { 176 VFIOConfigWindowQuirk *window = opaque; 177 VFIOPCIDevice *vdev = window->vdev; 178 179 if (window->window_enabled) { 180 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); 181 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, 182 memory_region_name(window->data_mem), data); 183 return; 184 } 185 186 vfio_region_write(&vdev->bars[window->bar].region, 187 addr + window->data_offset, data, size); 188 } 189 190 static const MemoryRegionOps vfio_generic_window_data_quirk = { 191 .read = vfio_generic_window_quirk_data_read, 192 .write = vfio_generic_window_quirk_data_write, 193 .endianness = DEVICE_LITTLE_ENDIAN, 194 }; 195 196 /* 197 * The generic mirror quirk handles devices which expose PCI config space 198 * through a region within a BAR. When enabled, reads and writes are 199 * redirected through to emulated PCI config space. XXX if PCI config space 200 * used memory regions, this could just be an alias. 201 */ 202 typedef struct VFIOConfigMirrorQuirk { 203 struct VFIOPCIDevice *vdev; 204 uint32_t offset; 205 uint8_t bar; 206 MemoryRegion *mem; 207 uint8_t data[]; 208 } VFIOConfigMirrorQuirk; 209 210 static uint64_t vfio_generic_quirk_mirror_read(void *opaque, 211 hwaddr addr, unsigned size) 212 { 213 VFIOConfigMirrorQuirk *mirror = opaque; 214 VFIOPCIDevice *vdev = mirror->vdev; 215 uint64_t data; 216 217 /* Read and discard in case the hardware cares */ 218 (void)vfio_region_read(&vdev->bars[mirror->bar].region, 219 addr + mirror->offset, size); 220 221 data = vfio_pci_read_config(&vdev->pdev, addr, size); 222 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, 223 memory_region_name(mirror->mem), 224 addr, data); 225 return data; 226 } 227 228 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, 229 uint64_t data, unsigned size) 230 { 231 VFIOConfigMirrorQuirk *mirror = opaque; 232 VFIOPCIDevice *vdev = mirror->vdev; 233 234 vfio_pci_write_config(&vdev->pdev, addr, data, size); 235 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, 236 memory_region_name(mirror->mem), 237 addr, data); 238 } 239 240 static const MemoryRegionOps vfio_generic_mirror_quirk = { 241 .read = vfio_generic_quirk_mirror_read, 242 .write = vfio_generic_quirk_mirror_write, 243 .endianness = DEVICE_LITTLE_ENDIAN, 244 }; 245 246 /* Is range1 fully contained within range2? */ 247 static bool vfio_range_contained(uint64_t first1, uint64_t len1, 248 uint64_t first2, uint64_t len2) { 249 return (first1 >= first2 && first1 + len1 <= first2 + len2); 250 } 251 252 #define PCI_VENDOR_ID_ATI 0x1002 253 254 /* 255 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR 256 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always 257 * BAR4 (older cards like the X550 used BAR1, but we don't care to support 258 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the 259 * I/O port BAR address. Originally this was coded to return the virtual BAR 260 * address only if the physical register read returns the actual BAR address, 261 * but users have reported greater success if we return the virtual address 262 * unconditionally. 263 */ 264 static uint64_t vfio_ati_3c3_quirk_read(void *opaque, 265 hwaddr addr, unsigned size) 266 { 267 VFIOPCIDevice *vdev = opaque; 268 uint64_t data = vfio_pci_read_config(&vdev->pdev, 269 PCI_BASE_ADDRESS_4 + 1, size); 270 271 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); 272 273 return data; 274 } 275 276 static const MemoryRegionOps vfio_ati_3c3_quirk = { 277 .read = vfio_ati_3c3_quirk_read, 278 .endianness = DEVICE_LITTLE_ENDIAN, 279 }; 280 281 static VFIOQuirk *vfio_quirk_alloc(int nr_mem) 282 { 283 VFIOQuirk *quirk = g_new0(VFIOQuirk, 1); 284 QLIST_INIT(&quirk->ioeventfds); 285 quirk->mem = g_new0(MemoryRegion, nr_mem); 286 quirk->nr_mem = nr_mem; 287 288 return quirk; 289 } 290 291 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd) 292 { 293 QLIST_REMOVE(ioeventfd, next); 294 memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, 295 true, ioeventfd->data, &ioeventfd->e); 296 297 if (ioeventfd->vfio) { 298 struct vfio_device_ioeventfd vfio_ioeventfd; 299 300 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); 301 vfio_ioeventfd.flags = ioeventfd->size; 302 vfio_ioeventfd.data = ioeventfd->data; 303 vfio_ioeventfd.offset = ioeventfd->region->fd_offset + 304 ioeventfd->region_addr; 305 vfio_ioeventfd.fd = -1; 306 307 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) { 308 error_report("Failed to remove vfio ioeventfd for %s+0x%" 309 HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)", 310 memory_region_name(ioeventfd->mr), ioeventfd->addr, 311 ioeventfd->size, ioeventfd->data); 312 } 313 } else { 314 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), 315 NULL, NULL, NULL); 316 } 317 318 event_notifier_cleanup(&ioeventfd->e); 319 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr), 320 (uint64_t)ioeventfd->addr, ioeventfd->size, 321 ioeventfd->data); 322 g_free(ioeventfd); 323 } 324 325 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk) 326 { 327 VFIOIOEventFD *ioeventfd, *tmp; 328 329 QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) { 330 if (ioeventfd->dynamic) { 331 vfio_ioeventfd_exit(vdev, ioeventfd); 332 } 333 } 334 } 335 336 static void vfio_ioeventfd_handler(void *opaque) 337 { 338 VFIOIOEventFD *ioeventfd = opaque; 339 340 if (event_notifier_test_and_clear(&ioeventfd->e)) { 341 vfio_region_write(ioeventfd->region, ioeventfd->region_addr, 342 ioeventfd->data, ioeventfd->size); 343 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr), 344 (uint64_t)ioeventfd->addr, ioeventfd->size, 345 ioeventfd->data); 346 } 347 } 348 349 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev, 350 MemoryRegion *mr, hwaddr addr, 351 unsigned size, uint64_t data, 352 VFIORegion *region, 353 hwaddr region_addr, bool dynamic) 354 { 355 VFIOIOEventFD *ioeventfd; 356 357 if (vdev->no_kvm_ioeventfd) { 358 return NULL; 359 } 360 361 ioeventfd = g_malloc0(sizeof(*ioeventfd)); 362 363 if (event_notifier_init(&ioeventfd->e, 0)) { 364 g_free(ioeventfd); 365 return NULL; 366 } 367 368 /* 369 * MemoryRegion and relative offset, plus additional ioeventfd setup 370 * parameters for configuring and later tearing down KVM ioeventfd. 371 */ 372 ioeventfd->mr = mr; 373 ioeventfd->addr = addr; 374 ioeventfd->size = size; 375 ioeventfd->data = data; 376 ioeventfd->dynamic = dynamic; 377 /* 378 * VFIORegion and relative offset for implementing the userspace 379 * handler. data & size fields shared for both uses. 380 */ 381 ioeventfd->region = region; 382 ioeventfd->region_addr = region_addr; 383 384 if (!vdev->no_vfio_ioeventfd) { 385 struct vfio_device_ioeventfd vfio_ioeventfd; 386 387 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); 388 vfio_ioeventfd.flags = ioeventfd->size; 389 vfio_ioeventfd.data = ioeventfd->data; 390 vfio_ioeventfd.offset = ioeventfd->region->fd_offset + 391 ioeventfd->region_addr; 392 vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e); 393 394 ioeventfd->vfio = !ioctl(vdev->vbasedev.fd, 395 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd); 396 } 397 398 if (!ioeventfd->vfio) { 399 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), 400 vfio_ioeventfd_handler, NULL, ioeventfd); 401 } 402 403 memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, 404 true, ioeventfd->data, &ioeventfd->e); 405 trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr, 406 size, data, ioeventfd->vfio); 407 408 return ioeventfd; 409 } 410 411 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) 412 { 413 VFIOQuirk *quirk; 414 415 /* 416 * As long as the BAR is >= 256 bytes it will be aligned such that the 417 * lower byte is always zero. Filter out anything else, if it exists. 418 */ 419 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 420 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { 421 return; 422 } 423 424 quirk = vfio_quirk_alloc(1); 425 426 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, 427 "vfio-ati-3c3-quirk", 1); 428 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 429 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); 430 431 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 432 quirk, next); 433 434 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); 435 } 436 437 /* 438 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI 439 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access 440 * the MMIO space directly, but a window to this space is provided through 441 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the 442 * data register. When the address is programmed to a range of 0x4000-0x4fff 443 * PCI configuration space is available. Experimentation seems to indicate 444 * that read-only may be provided by hardware. 445 */ 446 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) 447 { 448 VFIOQuirk *quirk; 449 VFIOConfigWindowQuirk *window; 450 451 /* This windows doesn't seem to be used except by legacy VGA code */ 452 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 453 !vdev->vga || nr != 4) { 454 return; 455 } 456 457 quirk = vfio_quirk_alloc(2); 458 window = quirk->data = g_malloc0(sizeof(*window) + 459 sizeof(VFIOConfigWindowMatch)); 460 window->vdev = vdev; 461 window->address_offset = 0; 462 window->data_offset = 4; 463 window->nr_matches = 1; 464 window->matches[0].match = 0x4000; 465 window->matches[0].mask = vdev->config_size - 1; 466 window->bar = nr; 467 window->addr_mem = &quirk->mem[0]; 468 window->data_mem = &quirk->mem[1]; 469 470 memory_region_init_io(window->addr_mem, OBJECT(vdev), 471 &vfio_generic_window_address_quirk, window, 472 "vfio-ati-bar4-window-address-quirk", 4); 473 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 474 window->address_offset, 475 window->addr_mem, 1); 476 477 memory_region_init_io(window->data_mem, OBJECT(vdev), 478 &vfio_generic_window_data_quirk, window, 479 "vfio-ati-bar4-window-data-quirk", 4); 480 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 481 window->data_offset, 482 window->data_mem, 1); 483 484 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 485 486 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); 487 } 488 489 /* 490 * Trap the BAR2 MMIO mirror to config space as well. 491 */ 492 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) 493 { 494 VFIOQuirk *quirk; 495 VFIOConfigMirrorQuirk *mirror; 496 497 /* Only enable on newer devices where BAR2 is 64bit */ 498 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || 499 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { 500 return; 501 } 502 503 quirk = vfio_quirk_alloc(1); 504 mirror = quirk->data = g_malloc0(sizeof(*mirror)); 505 mirror->mem = quirk->mem; 506 mirror->vdev = vdev; 507 mirror->offset = 0x4000; 508 mirror->bar = nr; 509 510 memory_region_init_io(mirror->mem, OBJECT(vdev), 511 &vfio_generic_mirror_quirk, mirror, 512 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); 513 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 514 mirror->offset, mirror->mem, 1); 515 516 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 517 518 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); 519 } 520 521 /* 522 * Older ATI/AMD cards like the X550 have a similar window to that above. 523 * I/O port BAR1 provides a window to a mirror of PCI config space located 524 * in BAR2 at offset 0xf00. We don't care to support such older cards, but 525 * note it for future reference. 526 */ 527 528 #define PCI_VENDOR_ID_NVIDIA 0x10de 529 530 /* 531 * Nvidia has several different methods to get to config space, the 532 * nouveu project has several of these documented here: 533 * https://github.com/pathscale/envytools/tree/master/hwdocs 534 * 535 * The first quirk is actually not documented in envytools and is found 536 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an 537 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access 538 * the mirror of PCI config space found at BAR0 offset 0x1800. The access 539 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is 540 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 541 * is written for a write to 0x3d4. The BAR0 offset is then accessible 542 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards 543 * that use the I/O port BAR5 window but it doesn't hurt to leave it. 544 */ 545 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; 546 static const char *nv3d0_states[] = { "NONE", "SELECT", 547 "WINDOW", "READ", "WRITE" }; 548 549 typedef struct VFIONvidia3d0Quirk { 550 VFIOPCIDevice *vdev; 551 VFIONvidia3d0State state; 552 uint32_t offset; 553 } VFIONvidia3d0Quirk; 554 555 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, 556 hwaddr addr, unsigned size) 557 { 558 VFIONvidia3d0Quirk *quirk = opaque; 559 VFIOPCIDevice *vdev = quirk->vdev; 560 561 quirk->state = NONE; 562 563 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 564 addr + 0x14, size); 565 } 566 567 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, 568 uint64_t data, unsigned size) 569 { 570 VFIONvidia3d0Quirk *quirk = opaque; 571 VFIOPCIDevice *vdev = quirk->vdev; 572 VFIONvidia3d0State old_state = quirk->state; 573 574 quirk->state = NONE; 575 576 switch (data) { 577 case 0x338: 578 if (old_state == NONE) { 579 quirk->state = SELECT; 580 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 581 nv3d0_states[quirk->state]); 582 } 583 break; 584 case 0x538: 585 if (old_state == WINDOW) { 586 quirk->state = READ; 587 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 588 nv3d0_states[quirk->state]); 589 } 590 break; 591 case 0x738: 592 if (old_state == WINDOW) { 593 quirk->state = WRITE; 594 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 595 nv3d0_states[quirk->state]); 596 } 597 break; 598 } 599 600 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 601 addr + 0x14, data, size); 602 } 603 604 static const MemoryRegionOps vfio_nvidia_3d4_quirk = { 605 .read = vfio_nvidia_3d4_quirk_read, 606 .write = vfio_nvidia_3d4_quirk_write, 607 .endianness = DEVICE_LITTLE_ENDIAN, 608 }; 609 610 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, 611 hwaddr addr, unsigned size) 612 { 613 VFIONvidia3d0Quirk *quirk = opaque; 614 VFIOPCIDevice *vdev = quirk->vdev; 615 VFIONvidia3d0State old_state = quirk->state; 616 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 617 addr + 0x10, size); 618 619 quirk->state = NONE; 620 621 if (old_state == READ && 622 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 623 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 624 625 data = vfio_pci_read_config(&vdev->pdev, offset, size); 626 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, 627 offset, size, data); 628 } 629 630 return data; 631 } 632 633 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, 634 uint64_t data, unsigned size) 635 { 636 VFIONvidia3d0Quirk *quirk = opaque; 637 VFIOPCIDevice *vdev = quirk->vdev; 638 VFIONvidia3d0State old_state = quirk->state; 639 640 quirk->state = NONE; 641 642 if (old_state == SELECT) { 643 quirk->offset = (uint32_t)data; 644 quirk->state = WINDOW; 645 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, 646 nv3d0_states[quirk->state]); 647 } else if (old_state == WRITE) { 648 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { 649 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); 650 651 vfio_pci_write_config(&vdev->pdev, offset, data, size); 652 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, 653 offset, data, size); 654 return; 655 } 656 } 657 658 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], 659 addr + 0x10, data, size); 660 } 661 662 static const MemoryRegionOps vfio_nvidia_3d0_quirk = { 663 .read = vfio_nvidia_3d0_quirk_read, 664 .write = vfio_nvidia_3d0_quirk_write, 665 .endianness = DEVICE_LITTLE_ENDIAN, 666 }; 667 668 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) 669 { 670 VFIOQuirk *quirk; 671 VFIONvidia3d0Quirk *data; 672 673 if (vdev->no_geforce_quirks || 674 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 675 !vdev->bars[1].region.size) { 676 return; 677 } 678 679 quirk = vfio_quirk_alloc(2); 680 quirk->data = data = g_malloc0(sizeof(*data)); 681 data->vdev = vdev; 682 683 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, 684 data, "vfio-nvidia-3d4-quirk", 2); 685 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 686 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); 687 688 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, 689 data, "vfio-nvidia-3d0-quirk", 2); 690 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, 691 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); 692 693 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, 694 quirk, next); 695 696 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); 697 } 698 699 /* 700 * The second quirk is documented in envytools. The I/O port BAR5 is just 701 * a set of address/data ports to the MMIO BARs. The BAR we care about is 702 * again BAR0. This backdoor is apparently a bit newer than the one above 703 * so we need to not only trap 256 bytes @0x1800, but all of PCI config 704 * space, including extended space is available at the 4k @0x88000. 705 */ 706 typedef struct VFIONvidiaBAR5Quirk { 707 uint32_t master; 708 uint32_t enable; 709 MemoryRegion *addr_mem; 710 MemoryRegion *data_mem; 711 bool enabled; 712 VFIOConfigWindowQuirk window; /* last for match data */ 713 } VFIONvidiaBAR5Quirk; 714 715 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) 716 { 717 VFIOPCIDevice *vdev = bar5->window.vdev; 718 719 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { 720 return; 721 } 722 723 bar5->enabled = !bar5->enabled; 724 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, 725 bar5->enabled ? "Enable" : "Disable"); 726 memory_region_set_enabled(bar5->addr_mem, bar5->enabled); 727 memory_region_set_enabled(bar5->data_mem, bar5->enabled); 728 } 729 730 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, 731 hwaddr addr, unsigned size) 732 { 733 VFIONvidiaBAR5Quirk *bar5 = opaque; 734 VFIOPCIDevice *vdev = bar5->window.vdev; 735 736 return vfio_region_read(&vdev->bars[5].region, addr, size); 737 } 738 739 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, 740 uint64_t data, unsigned size) 741 { 742 VFIONvidiaBAR5Quirk *bar5 = opaque; 743 VFIOPCIDevice *vdev = bar5->window.vdev; 744 745 vfio_region_write(&vdev->bars[5].region, addr, data, size); 746 747 bar5->master = data; 748 vfio_nvidia_bar5_enable(bar5); 749 } 750 751 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { 752 .read = vfio_nvidia_bar5_quirk_master_read, 753 .write = vfio_nvidia_bar5_quirk_master_write, 754 .endianness = DEVICE_LITTLE_ENDIAN, 755 }; 756 757 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, 758 hwaddr addr, unsigned size) 759 { 760 VFIONvidiaBAR5Quirk *bar5 = opaque; 761 VFIOPCIDevice *vdev = bar5->window.vdev; 762 763 return vfio_region_read(&vdev->bars[5].region, addr + 4, size); 764 } 765 766 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, 767 uint64_t data, unsigned size) 768 { 769 VFIONvidiaBAR5Quirk *bar5 = opaque; 770 VFIOPCIDevice *vdev = bar5->window.vdev; 771 772 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); 773 774 bar5->enable = data; 775 vfio_nvidia_bar5_enable(bar5); 776 } 777 778 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { 779 .read = vfio_nvidia_bar5_quirk_enable_read, 780 .write = vfio_nvidia_bar5_quirk_enable_write, 781 .endianness = DEVICE_LITTLE_ENDIAN, 782 }; 783 784 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) 785 { 786 VFIOQuirk *quirk; 787 VFIONvidiaBAR5Quirk *bar5; 788 VFIOConfigWindowQuirk *window; 789 790 if (vdev->no_geforce_quirks || 791 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 792 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) { 793 return; 794 } 795 796 quirk = vfio_quirk_alloc(4); 797 bar5 = quirk->data = g_malloc0(sizeof(*bar5) + 798 (sizeof(VFIOConfigWindowMatch) * 2)); 799 window = &bar5->window; 800 801 window->vdev = vdev; 802 window->address_offset = 0x8; 803 window->data_offset = 0xc; 804 window->nr_matches = 2; 805 window->matches[0].match = 0x1800; 806 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; 807 window->matches[1].match = 0x88000; 808 window->matches[1].mask = vdev->config_size - 1; 809 window->bar = nr; 810 window->addr_mem = bar5->addr_mem = &quirk->mem[0]; 811 window->data_mem = bar5->data_mem = &quirk->mem[1]; 812 813 memory_region_init_io(window->addr_mem, OBJECT(vdev), 814 &vfio_generic_window_address_quirk, window, 815 "vfio-nvidia-bar5-window-address-quirk", 4); 816 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 817 window->address_offset, 818 window->addr_mem, 1); 819 memory_region_set_enabled(window->addr_mem, false); 820 821 memory_region_init_io(window->data_mem, OBJECT(vdev), 822 &vfio_generic_window_data_quirk, window, 823 "vfio-nvidia-bar5-window-data-quirk", 4); 824 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 825 window->data_offset, 826 window->data_mem, 1); 827 memory_region_set_enabled(window->data_mem, false); 828 829 memory_region_init_io(&quirk->mem[2], OBJECT(vdev), 830 &vfio_nvidia_bar5_quirk_master, bar5, 831 "vfio-nvidia-bar5-master-quirk", 4); 832 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 833 0, &quirk->mem[2], 1); 834 835 memory_region_init_io(&quirk->mem[3], OBJECT(vdev), 836 &vfio_nvidia_bar5_quirk_enable, bar5, 837 "vfio-nvidia-bar5-enable-quirk", 4); 838 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 839 4, &quirk->mem[3], 1); 840 841 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 842 843 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); 844 } 845 846 typedef struct LastDataSet { 847 VFIOQuirk *quirk; 848 hwaddr addr; 849 uint64_t data; 850 unsigned size; 851 int hits; 852 int added; 853 } LastDataSet; 854 855 #define MAX_DYN_IOEVENTFD 10 856 #define HITS_FOR_IOEVENTFD 10 857 858 /* 859 * Finally, BAR0 itself. We want to redirect any accesses to either 860 * 0x1800 or 0x88000 through the PCI config space access functions. 861 */ 862 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, 863 uint64_t data, unsigned size) 864 { 865 VFIOConfigMirrorQuirk *mirror = opaque; 866 VFIOPCIDevice *vdev = mirror->vdev; 867 PCIDevice *pdev = &vdev->pdev; 868 LastDataSet *last = (LastDataSet *)&mirror->data; 869 870 vfio_generic_quirk_mirror_write(opaque, addr, data, size); 871 872 /* 873 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the 874 * MSI capability ID register. Both the ID and next register are 875 * read-only, so we allow writes covering either of those to real hw. 876 */ 877 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && 878 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { 879 vfio_region_write(&vdev->bars[mirror->bar].region, 880 addr + mirror->offset, data, size); 881 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); 882 } 883 884 /* 885 * Automatically add an ioeventfd to handle any repeated write with the 886 * same data and size above the standard PCI config space header. This is 887 * primarily expected to accelerate the MSI-ACK behavior, such as noted 888 * above. Current hardware/drivers should trigger an ioeventfd at config 889 * offset 0x704 (region offset 0x88704), with data 0x0, size 4. 890 * 891 * The criteria of 10 successive hits is arbitrary but reliably adds the 892 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd, 893 * the remaining ones have a greater chance of being seen successively. 894 * To avoid the pathological case of burning up all of QEMU's open file 895 * handles, arbitrarily limit this algorithm from adding no more than 10 896 * ioeventfds, print an error if we would have added an 11th, and then 897 * stop counting. 898 */ 899 if (!vdev->no_kvm_ioeventfd && 900 addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) { 901 if (addr != last->addr || data != last->data || size != last->size) { 902 last->addr = addr; 903 last->data = data; 904 last->size = size; 905 last->hits = 1; 906 } else if (++last->hits >= HITS_FOR_IOEVENTFD) { 907 if (last->added < MAX_DYN_IOEVENTFD) { 908 VFIOIOEventFD *ioeventfd; 909 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size, 910 data, &vdev->bars[mirror->bar].region, 911 mirror->offset + addr, true); 912 if (ioeventfd) { 913 VFIOQuirk *quirk = last->quirk; 914 915 QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next); 916 last->added++; 917 } 918 } else { 919 last->added++; 920 warn_report("NVIDIA ioeventfd queue full for %s, unable to " 921 "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", " 922 "size %u", vdev->vbasedev.name, addr, data, size); 923 } 924 } 925 } 926 } 927 928 static const MemoryRegionOps vfio_nvidia_mirror_quirk = { 929 .read = vfio_generic_quirk_mirror_read, 930 .write = vfio_nvidia_quirk_mirror_write, 931 .endianness = DEVICE_LITTLE_ENDIAN, 932 }; 933 934 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk) 935 { 936 VFIOConfigMirrorQuirk *mirror = quirk->data; 937 LastDataSet *last = (LastDataSet *)&mirror->data; 938 939 last->addr = last->data = last->size = last->hits = last->added = 0; 940 941 vfio_drop_dynamic_eventfds(vdev, quirk); 942 } 943 944 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) 945 { 946 VFIOQuirk *quirk; 947 VFIOConfigMirrorQuirk *mirror; 948 LastDataSet *last; 949 950 if (vdev->no_geforce_quirks || 951 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || 952 !vfio_is_vga(vdev) || nr != 0) { 953 return; 954 } 955 956 quirk = vfio_quirk_alloc(1); 957 quirk->reset = vfio_nvidia_bar0_quirk_reset; 958 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); 959 mirror->mem = quirk->mem; 960 mirror->vdev = vdev; 961 mirror->offset = 0x88000; 962 mirror->bar = nr; 963 last = (LastDataSet *)&mirror->data; 964 last->quirk = quirk; 965 966 memory_region_init_io(mirror->mem, OBJECT(vdev), 967 &vfio_nvidia_mirror_quirk, mirror, 968 "vfio-nvidia-bar0-88000-mirror-quirk", 969 vdev->config_size); 970 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 971 mirror->offset, mirror->mem, 1); 972 973 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 974 975 /* The 0x1800 offset mirror only seems to get used by legacy VGA */ 976 if (vdev->vga) { 977 quirk = vfio_quirk_alloc(1); 978 quirk->reset = vfio_nvidia_bar0_quirk_reset; 979 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); 980 mirror->mem = quirk->mem; 981 mirror->vdev = vdev; 982 mirror->offset = 0x1800; 983 mirror->bar = nr; 984 last = (LastDataSet *)&mirror->data; 985 last->quirk = quirk; 986 987 memory_region_init_io(mirror->mem, OBJECT(vdev), 988 &vfio_nvidia_mirror_quirk, mirror, 989 "vfio-nvidia-bar0-1800-mirror-quirk", 990 PCI_CONFIG_SPACE_SIZE); 991 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 992 mirror->offset, mirror->mem, 1); 993 994 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 995 } 996 997 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); 998 } 999 1000 /* 1001 * TODO - Some Nvidia devices provide config access to their companion HDA 1002 * device and even to their parent bridge via these config space mirrors. 1003 * Add quirks for those regions. 1004 */ 1005 1006 #define PCI_VENDOR_ID_REALTEK 0x10ec 1007 1008 /* 1009 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 1010 * offset 0x70 there is a dword data register, offset 0x74 is a dword address 1011 * register. According to the Linux r8169 driver, the MSI-X table is addressed 1012 * when the "type" portion of the address register is set to 0x1. This appears 1013 * to be bits 16:30. Bit 31 is both a write indicator and some sort of 1014 * "address latched" indicator. Bits 12:15 are a mask field, which we can 1015 * ignore because the MSI-X table should always be accessed as a dword (full 1016 * mask). Bits 0:11 is offset within the type. 1017 * 1018 * Example trace: 1019 * 1020 * Read from MSI-X table offset 0 1021 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr 1022 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch 1023 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data 1024 * 1025 * Write 0xfee00000 to MSI-X table offset 0 1026 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data 1027 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write 1028 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete 1029 */ 1030 typedef struct VFIOrtl8168Quirk { 1031 VFIOPCIDevice *vdev; 1032 uint32_t addr; 1033 uint32_t data; 1034 bool enabled; 1035 } VFIOrtl8168Quirk; 1036 1037 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, 1038 hwaddr addr, unsigned size) 1039 { 1040 VFIOrtl8168Quirk *rtl = opaque; 1041 VFIOPCIDevice *vdev = rtl->vdev; 1042 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); 1043 1044 if (rtl->enabled) { 1045 data = rtl->addr ^ 0x80000000U; /* latch/complete */ 1046 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); 1047 } 1048 1049 return data; 1050 } 1051 1052 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, 1053 uint64_t data, unsigned size) 1054 { 1055 VFIOrtl8168Quirk *rtl = opaque; 1056 VFIOPCIDevice *vdev = rtl->vdev; 1057 1058 rtl->enabled = false; 1059 1060 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ 1061 rtl->enabled = true; 1062 rtl->addr = (uint32_t)data; 1063 1064 if (data & 0x80000000U) { /* Do write */ 1065 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { 1066 hwaddr offset = data & 0xfff; 1067 uint64_t val = rtl->data; 1068 1069 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, 1070 (uint16_t)offset, val); 1071 1072 /* Write to the proper guest MSI-X table instead */ 1073 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, 1074 offset, val, size, 1075 MEMTXATTRS_UNSPECIFIED); 1076 } 1077 return; /* Do not write guest MSI-X data to hardware */ 1078 } 1079 } 1080 1081 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); 1082 } 1083 1084 static const MemoryRegionOps vfio_rtl_address_quirk = { 1085 .read = vfio_rtl8168_quirk_address_read, 1086 .write = vfio_rtl8168_quirk_address_write, 1087 .valid = { 1088 .min_access_size = 4, 1089 .max_access_size = 4, 1090 .unaligned = false, 1091 }, 1092 .endianness = DEVICE_LITTLE_ENDIAN, 1093 }; 1094 1095 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, 1096 hwaddr addr, unsigned size) 1097 { 1098 VFIOrtl8168Quirk *rtl = opaque; 1099 VFIOPCIDevice *vdev = rtl->vdev; 1100 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); 1101 1102 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { 1103 hwaddr offset = rtl->addr & 0xfff; 1104 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, 1105 &data, size, MEMTXATTRS_UNSPECIFIED); 1106 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); 1107 } 1108 1109 return data; 1110 } 1111 1112 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, 1113 uint64_t data, unsigned size) 1114 { 1115 VFIOrtl8168Quirk *rtl = opaque; 1116 VFIOPCIDevice *vdev = rtl->vdev; 1117 1118 rtl->data = (uint32_t)data; 1119 1120 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); 1121 } 1122 1123 static const MemoryRegionOps vfio_rtl_data_quirk = { 1124 .read = vfio_rtl8168_quirk_data_read, 1125 .write = vfio_rtl8168_quirk_data_write, 1126 .valid = { 1127 .min_access_size = 4, 1128 .max_access_size = 4, 1129 .unaligned = false, 1130 }, 1131 .endianness = DEVICE_LITTLE_ENDIAN, 1132 }; 1133 1134 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) 1135 { 1136 VFIOQuirk *quirk; 1137 VFIOrtl8168Quirk *rtl; 1138 1139 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { 1140 return; 1141 } 1142 1143 quirk = vfio_quirk_alloc(2); 1144 quirk->data = rtl = g_malloc0(sizeof(*rtl)); 1145 rtl->vdev = vdev; 1146 1147 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), 1148 &vfio_rtl_address_quirk, rtl, 1149 "vfio-rtl8168-window-address-quirk", 4); 1150 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1151 0x74, &quirk->mem[0], 1); 1152 1153 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), 1154 &vfio_rtl_data_quirk, rtl, 1155 "vfio-rtl8168-window-data-quirk", 4); 1156 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1157 0x70, &quirk->mem[1], 1); 1158 1159 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1160 1161 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); 1162 } 1163 1164 /* 1165 * Intel IGD support 1166 * 1167 * Obviously IGD is not a discrete device, this is evidenced not only by it 1168 * being integrated into the CPU, but by the various chipset and BIOS 1169 * dependencies that it brings along with it. Intel is trying to move away 1170 * from this and Broadwell and newer devices can run in what Intel calls 1171 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing 1172 * more is required beyond assigning the IGD device to a VM. There are 1173 * however support limitations to this mode. It only supports IGD as a 1174 * secondary graphics device in the VM and it doesn't officially support any 1175 * physical outputs. 1176 * 1177 * The code here attempts to enable what we'll call legacy mode assignment, 1178 * IGD retains most of the capabilities we expect for it to have on bare 1179 * metal. To enable this mode, the IGD device must be assigned to the VM 1180 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA 1181 * support, we must have VM BIOS support for reserving and populating some 1182 * of the required tables, and we need to tweak the chipset with revisions 1183 * and IDs and an LPC/ISA bridge device. The intention is to make all of 1184 * this happen automatically by installing the device at the correct VM PCI 1185 * bus address. If any of the conditions are not met, we cross our fingers 1186 * and hope the user knows better. 1187 * 1188 * NB - It is possible to enable physical outputs in UPT mode by supplying 1189 * an OpRegion table. We don't do this by default because the guest driver 1190 * behaves differently if an OpRegion is provided and no monitor is attached 1191 * vs no OpRegion and a monitor being attached or not. Effectively, if a 1192 * headless setup is desired, the OpRegion gets in the way of that. 1193 */ 1194 1195 /* 1196 * This presumes the device is already known to be an Intel VGA device, so we 1197 * take liberties in which device ID bits match which generation. This should 1198 * not be taken as an indication that all the devices are supported, or even 1199 * supportable, some of them don't even support VT-d. 1200 * See linux:include/drm/i915_pciids.h for IDs. 1201 */ 1202 static int igd_gen(VFIOPCIDevice *vdev) 1203 { 1204 if ((vdev->device_id & 0xfff) == 0xa84) { 1205 return 8; /* Broxton */ 1206 } 1207 1208 switch (vdev->device_id & 0xff00) { 1209 /* Old, untested, unavailable, unknown */ 1210 case 0x0000: 1211 case 0x2500: 1212 case 0x2700: 1213 case 0x2900: 1214 case 0x2a00: 1215 case 0x2e00: 1216 case 0x3500: 1217 case 0xa000: 1218 return -1; 1219 /* SandyBridge, IvyBridge, ValleyView, Haswell */ 1220 case 0x0100: 1221 case 0x0400: 1222 case 0x0a00: 1223 case 0x0c00: 1224 case 0x0d00: 1225 case 0x0f00: 1226 return 6; 1227 /* BroadWell, CherryView, SkyLake, KabyLake */ 1228 case 0x1600: 1229 case 0x1900: 1230 case 0x2200: 1231 case 0x5900: 1232 return 8; 1233 } 1234 1235 return 8; /* Assume newer is compatible */ 1236 } 1237 1238 typedef struct VFIOIGDQuirk { 1239 struct VFIOPCIDevice *vdev; 1240 uint32_t index; 1241 uint32_t bdsm; 1242 } VFIOIGDQuirk; 1243 1244 #define IGD_GMCH 0x50 /* Graphics Control Register */ 1245 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */ 1246 #define IGD_ASLS 0xfc /* ASL Storage Register */ 1247 1248 /* 1249 * The OpRegion includes the Video BIOS Table, which seems important for 1250 * telling the driver what sort of outputs it has. Without this, the device 1251 * may work in the guest, but we may not get output. This also requires BIOS 1252 * support to reserve and populate a section of guest memory sufficient for 1253 * the table and to write the base address of that memory to the ASLS register 1254 * of the IGD device. 1255 */ 1256 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev, 1257 struct vfio_region_info *info, Error **errp) 1258 { 1259 int ret; 1260 1261 vdev->igd_opregion = g_malloc0(info->size); 1262 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion, 1263 info->size, info->offset); 1264 if (ret != info->size) { 1265 error_setg(errp, "failed to read IGD OpRegion"); 1266 g_free(vdev->igd_opregion); 1267 vdev->igd_opregion = NULL; 1268 return -EINVAL; 1269 } 1270 1271 /* 1272 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to 1273 * allocate 32bit reserved memory for, copy these contents into, and write 1274 * the reserved memory base address to the device ASLS register at 0xFC. 1275 * Alignment of this reserved region seems flexible, but using a 4k page 1276 * alignment seems to work well. This interface assumes a single IGD 1277 * device, which may be at VM address 00:02.0 in legacy mode or another 1278 * address in UPT mode. 1279 * 1280 * NB, there may be future use cases discovered where the VM should have 1281 * direct interaction with the host OpRegion, in which case the write to 1282 * the ASLS register would trigger MemoryRegion setup to enable that. 1283 */ 1284 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion", 1285 vdev->igd_opregion, info->size); 1286 1287 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name); 1288 1289 pci_set_long(vdev->pdev.config + IGD_ASLS, 0); 1290 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0); 1291 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0); 1292 1293 return 0; 1294 } 1295 1296 /* 1297 * The rather short list of registers that we copy from the host devices. 1298 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the 1299 * host bridge values may or may not be needed depending on the guest OS. 1300 * Since we're only munging revision and subsystem values on the host bridge, 1301 * we don't require our own device. The LPC/ISA bridge needs to be our very 1302 * own though. 1303 */ 1304 typedef struct { 1305 uint8_t offset; 1306 uint8_t len; 1307 } IGDHostInfo; 1308 1309 static const IGDHostInfo igd_host_bridge_infos[] = { 1310 {PCI_REVISION_ID, 2}, 1311 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1312 {PCI_SUBSYSTEM_ID, 2}, 1313 }; 1314 1315 static const IGDHostInfo igd_lpc_bridge_infos[] = { 1316 {PCI_VENDOR_ID, 2}, 1317 {PCI_DEVICE_ID, 2}, 1318 {PCI_REVISION_ID, 2}, 1319 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 1320 {PCI_SUBSYSTEM_ID, 2}, 1321 }; 1322 1323 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev, 1324 struct vfio_region_info *info, 1325 const IGDHostInfo *list, int len) 1326 { 1327 int i, ret; 1328 1329 for (i = 0; i < len; i++) { 1330 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset, 1331 list[i].len, info->offset + list[i].offset); 1332 if (ret != list[i].len) { 1333 error_report("IGD copy failed: %m"); 1334 return -errno; 1335 } 1336 } 1337 1338 return 0; 1339 } 1340 1341 /* 1342 * Stuff a few values into the host bridge. 1343 */ 1344 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev, 1345 struct vfio_region_info *info) 1346 { 1347 PCIBus *bus; 1348 PCIDevice *host_bridge; 1349 int ret; 1350 1351 bus = pci_device_root_bus(&vdev->pdev); 1352 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0)); 1353 1354 if (!host_bridge) { 1355 error_report("Can't find host bridge"); 1356 return -ENODEV; 1357 } 1358 1359 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos, 1360 ARRAY_SIZE(igd_host_bridge_infos)); 1361 if (!ret) { 1362 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name); 1363 } 1364 1365 return ret; 1366 } 1367 1368 /* 1369 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write 1370 * arbitrary values into just any bridge, so we must create our own. We try 1371 * to handle if the user has created it for us, which they might want to do 1372 * to enable multifunction so we don't occupy the whole PCI slot. 1373 */ 1374 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp) 1375 { 1376 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) { 1377 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0"); 1378 } 1379 } 1380 1381 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data) 1382 { 1383 DeviceClass *dc = DEVICE_CLASS(klass); 1384 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1385 1386 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1387 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment"; 1388 dc->hotpluggable = false; 1389 k->realize = vfio_pci_igd_lpc_bridge_realize; 1390 k->class_id = PCI_CLASS_BRIDGE_ISA; 1391 } 1392 1393 static TypeInfo vfio_pci_igd_lpc_bridge_info = { 1394 .name = "vfio-pci-igd-lpc-bridge", 1395 .parent = TYPE_PCI_DEVICE, 1396 .class_init = vfio_pci_igd_lpc_bridge_class_init, 1397 .interfaces = (InterfaceInfo[]) { 1398 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1399 { }, 1400 }, 1401 }; 1402 1403 static void vfio_pci_igd_register_types(void) 1404 { 1405 type_register_static(&vfio_pci_igd_lpc_bridge_info); 1406 } 1407 1408 type_init(vfio_pci_igd_register_types) 1409 1410 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev, 1411 struct vfio_region_info *info) 1412 { 1413 PCIDevice *lpc_bridge; 1414 int ret; 1415 1416 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1417 0, PCI_DEVFN(0x1f, 0)); 1418 if (!lpc_bridge) { 1419 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev), 1420 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge"); 1421 } 1422 1423 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos, 1424 ARRAY_SIZE(igd_lpc_bridge_infos)); 1425 if (!ret) { 1426 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name); 1427 } 1428 1429 return ret; 1430 } 1431 1432 /* 1433 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE 1434 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore 1435 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index 1436 * for programming the GTT. 1437 * 1438 * See linux:include/drm/i915_drm.h for shift and mask values. 1439 */ 1440 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev) 1441 { 1442 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1443 int ggms, gen = igd_gen(vdev); 1444 1445 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 1446 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1447 if (gen > 6) { 1448 ggms = 1 << ggms; 1449 } 1450 1451 ggms *= 1024 * 1024; 1452 1453 return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8); 1454 } 1455 1456 /* 1457 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes. 1458 * Somehow the host stolen memory range is used for this, but how the ROM gets 1459 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it 1460 * reprograms the GTT through the IOBAR where we can trap it and transpose the 1461 * programming to the VM allocated buffer. That buffer gets reserved by the VM 1462 * firmware via the fw_cfg entry added below. Here we're just monitoring the 1463 * IOBAR address and data registers to detect a write sequence targeting the 1464 * GTTADR. This code is developed by observed behavior and doesn't have a 1465 * direct spec reference, unfortunately. 1466 */ 1467 static uint64_t vfio_igd_quirk_data_read(void *opaque, 1468 hwaddr addr, unsigned size) 1469 { 1470 VFIOIGDQuirk *igd = opaque; 1471 VFIOPCIDevice *vdev = igd->vdev; 1472 1473 igd->index = ~0; 1474 1475 return vfio_region_read(&vdev->bars[4].region, addr + 4, size); 1476 } 1477 1478 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr, 1479 uint64_t data, unsigned size) 1480 { 1481 VFIOIGDQuirk *igd = opaque; 1482 VFIOPCIDevice *vdev = igd->vdev; 1483 uint64_t val = data; 1484 int gen = igd_gen(vdev); 1485 1486 /* 1487 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie. 1488 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE 1489 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so 1490 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points 1491 * to a 4k page, which we translate to a page from the VM allocated region, 1492 * pointed to by the BDSM register. If this is not set, we fail. 1493 * 1494 * We trap writes to the full configured GTT size, but we typically only 1495 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often 1496 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous 1497 * write of that last entry does work, but is hopefully unnecessary since 1498 * we clear the previous GTT on initialization. 1499 */ 1500 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) { 1501 if (gen < 8 || (igd->index % 8 == 1)) { 1502 uint32_t base; 1503 1504 base = pci_get_long(vdev->pdev.config + IGD_BDSM); 1505 if (!base) { 1506 hw_error("vfio-igd: Guest attempted to program IGD GTT before " 1507 "BIOS reserved stolen memory. Unsupported BIOS?"); 1508 } 1509 1510 val = data - igd->bdsm + base; 1511 } else { 1512 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */ 1513 } 1514 1515 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name, 1516 igd->index, data, val); 1517 } 1518 1519 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size); 1520 1521 igd->index = ~0; 1522 } 1523 1524 static const MemoryRegionOps vfio_igd_data_quirk = { 1525 .read = vfio_igd_quirk_data_read, 1526 .write = vfio_igd_quirk_data_write, 1527 .endianness = DEVICE_LITTLE_ENDIAN, 1528 }; 1529 1530 static uint64_t vfio_igd_quirk_index_read(void *opaque, 1531 hwaddr addr, unsigned size) 1532 { 1533 VFIOIGDQuirk *igd = opaque; 1534 VFIOPCIDevice *vdev = igd->vdev; 1535 1536 igd->index = ~0; 1537 1538 return vfio_region_read(&vdev->bars[4].region, addr, size); 1539 } 1540 1541 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr, 1542 uint64_t data, unsigned size) 1543 { 1544 VFIOIGDQuirk *igd = opaque; 1545 VFIOPCIDevice *vdev = igd->vdev; 1546 1547 igd->index = data; 1548 1549 vfio_region_write(&vdev->bars[4].region, addr, data, size); 1550 } 1551 1552 static const MemoryRegionOps vfio_igd_index_quirk = { 1553 .read = vfio_igd_quirk_index_read, 1554 .write = vfio_igd_quirk_index_write, 1555 .endianness = DEVICE_LITTLE_ENDIAN, 1556 }; 1557 1558 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) 1559 { 1560 struct vfio_region_info *rom = NULL, *opregion = NULL, 1561 *host = NULL, *lpc = NULL; 1562 VFIOQuirk *quirk; 1563 VFIOIGDQuirk *igd; 1564 PCIDevice *lpc_bridge; 1565 int i, ret, ggms_mb, gms_mb = 0, gen; 1566 uint64_t *bdsm_size; 1567 uint32_t gmch; 1568 uint16_t cmd_orig, cmd; 1569 Error *err = NULL; 1570 1571 /* 1572 * This must be an Intel VGA device at address 00:02.0 for us to even 1573 * consider enabling legacy mode. The vBIOS has dependencies on the 1574 * PCI bus address. 1575 */ 1576 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || 1577 !vfio_is_vga(vdev) || nr != 4 || 1578 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 1579 0, PCI_DEVFN(0x2, 0))) { 1580 return; 1581 } 1582 1583 /* 1584 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we 1585 * can stuff host values into, so if there's already one there and it's not 1586 * one we can hack on, legacy mode is no-go. Sorry Q35. 1587 */ 1588 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 1589 0, PCI_DEVFN(0x1f, 0)); 1590 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), 1591 "vfio-pci-igd-lpc-bridge")) { 1592 error_report("IGD device %s cannot support legacy mode due to existing " 1593 "devices at address 1f.0", vdev->vbasedev.name); 1594 return; 1595 } 1596 1597 /* 1598 * IGD is not a standard, they like to change their specs often. We 1599 * only attempt to support back to SandBridge and we hope that newer 1600 * devices maintain compatibility with generation 8. 1601 */ 1602 gen = igd_gen(vdev); 1603 if (gen != 6 && gen != 8) { 1604 error_report("IGD device %s is unsupported in legacy mode, " 1605 "try SandyBridge or newer", vdev->vbasedev.name); 1606 return; 1607 } 1608 1609 /* 1610 * Most of what we're doing here is to enable the ROM to run, so if 1611 * there's no ROM, there's no point in setting up this quirk. 1612 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. 1613 */ 1614 ret = vfio_get_region_info(&vdev->vbasedev, 1615 VFIO_PCI_ROM_REGION_INDEX, &rom); 1616 if ((ret || !rom->size) && !vdev->pdev.romfile) { 1617 error_report("IGD device %s has no ROM, legacy mode disabled", 1618 vdev->vbasedev.name); 1619 goto out; 1620 } 1621 1622 /* 1623 * Ignore the hotplug corner case, mark the ROM failed, we can't 1624 * create the devices we need for legacy mode in the hotplug scenario. 1625 */ 1626 if (vdev->pdev.qdev.hotplugged) { 1627 error_report("IGD device %s hotplugged, ROM disabled, " 1628 "legacy mode disabled", vdev->vbasedev.name); 1629 vdev->rom_read_failed = true; 1630 goto out; 1631 } 1632 1633 /* 1634 * Check whether we have all the vfio device specific regions to 1635 * support legacy mode (added in Linux v4.6). If not, bail. 1636 */ 1637 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1638 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1639 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); 1640 if (ret) { 1641 error_report("IGD device %s does not support OpRegion access," 1642 "legacy mode disabled", vdev->vbasedev.name); 1643 goto out; 1644 } 1645 1646 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1647 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1648 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); 1649 if (ret) { 1650 error_report("IGD device %s does not support host bridge access," 1651 "legacy mode disabled", vdev->vbasedev.name); 1652 goto out; 1653 } 1654 1655 ret = vfio_get_dev_region_info(&vdev->vbasedev, 1656 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 1657 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); 1658 if (ret) { 1659 error_report("IGD device %s does not support LPC bridge access," 1660 "legacy mode disabled", vdev->vbasedev.name); 1661 goto out; 1662 } 1663 1664 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); 1665 1666 /* 1667 * If IGD VGA Disable is clear (expected) and VGA is not already enabled, 1668 * try to enable it. Probably shouldn't be using legacy mode without VGA, 1669 * but also no point in us enabling VGA if disabled in hardware. 1670 */ 1671 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) { 1672 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); 1673 error_report("IGD device %s failed to enable VGA access, " 1674 "legacy mode disabled", vdev->vbasedev.name); 1675 goto out; 1676 } 1677 1678 /* Create our LPC/ISA bridge */ 1679 ret = vfio_pci_igd_lpc_init(vdev, lpc); 1680 if (ret) { 1681 error_report("IGD device %s failed to create LPC bridge, " 1682 "legacy mode disabled", vdev->vbasedev.name); 1683 goto out; 1684 } 1685 1686 /* Stuff some host values into the VM PCI host bridge */ 1687 ret = vfio_pci_igd_host_init(vdev, host); 1688 if (ret) { 1689 error_report("IGD device %s failed to modify host bridge, " 1690 "legacy mode disabled", vdev->vbasedev.name); 1691 goto out; 1692 } 1693 1694 /* Setup OpRegion access */ 1695 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err); 1696 if (ret) { 1697 error_append_hint(&err, "IGD legacy mode disabled\n"); 1698 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); 1699 goto out; 1700 } 1701 1702 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ 1703 quirk = vfio_quirk_alloc(2); 1704 igd = quirk->data = g_malloc0(sizeof(*igd)); 1705 igd->vdev = vdev; 1706 igd->index = ~0; 1707 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4); 1708 igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */ 1709 1710 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, 1711 igd, "vfio-igd-index-quirk", 4); 1712 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1713 0, &quirk->mem[0], 1); 1714 1715 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, 1716 igd, "vfio-igd-data-quirk", 4); 1717 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 1718 4, &quirk->mem[1], 1); 1719 1720 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 1721 1722 /* Determine the size of stolen memory needed for GTT */ 1723 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 1724 if (gen > 6) { 1725 ggms_mb = 1 << ggms_mb; 1726 } 1727 1728 /* 1729 * Assume we have no GMS memory, but allow it to be overrided by device 1730 * option (experimental). The spec doesn't actually allow zero GMS when 1731 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused, 1732 * so let's not waste VM memory for it. 1733 */ 1734 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8)); 1735 1736 if (vdev->igd_gms) { 1737 if (vdev->igd_gms <= 0x10) { 1738 gms_mb = vdev->igd_gms * 32; 1739 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8); 1740 } else { 1741 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms); 1742 vdev->igd_gms = 0; 1743 } 1744 } 1745 1746 /* 1747 * Request reserved memory for stolen memory via fw_cfg. VM firmware 1748 * must allocate a 1MB aligned reserved memory region below 4GB with 1749 * the requested size (in bytes) for use by the Intel PCI class VGA 1750 * device at VM address 00:02.0. The base address of this reserved 1751 * memory region must be written to the device BDSM regsiter at PCI 1752 * config offset 0x5C. 1753 */ 1754 bdsm_size = g_malloc(sizeof(*bdsm_size)); 1755 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024); 1756 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", 1757 bdsm_size, sizeof(*bdsm_size)); 1758 1759 /* GMCH is read-only, emulated */ 1760 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); 1761 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); 1762 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); 1763 1764 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ 1765 pci_set_long(vdev->pdev.config + IGD_BDSM, 0); 1766 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); 1767 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); 1768 1769 /* 1770 * This IOBAR gives us access to GTTADR, which allows us to write to 1771 * the GTT itself. So let's go ahead and write zero to all the GTT 1772 * entries to avoid spurious DMA faults. Be sure I/O access is enabled 1773 * before talking to the device. 1774 */ 1775 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1776 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1777 error_report("IGD device %s - failed to read PCI command register", 1778 vdev->vbasedev.name); 1779 } 1780 1781 cmd = cmd_orig | PCI_COMMAND_IO; 1782 1783 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), 1784 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { 1785 error_report("IGD device %s - failed to write PCI command register", 1786 vdev->vbasedev.name); 1787 } 1788 1789 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { 1790 vfio_region_write(&vdev->bars[4].region, 0, i, 4); 1791 vfio_region_write(&vdev->bars[4].region, 4, 0, 4); 1792 } 1793 1794 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 1795 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 1796 error_report("IGD device %s - failed to restore PCI command register", 1797 vdev->vbasedev.name); 1798 } 1799 1800 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); 1801 1802 out: 1803 g_free(rom); 1804 g_free(opregion); 1805 g_free(host); 1806 g_free(lpc); 1807 } 1808 1809 /* 1810 * Common quirk probe entry points. 1811 */ 1812 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) 1813 { 1814 vfio_vga_probe_ati_3c3_quirk(vdev); 1815 vfio_vga_probe_nvidia_3d0_quirk(vdev); 1816 } 1817 1818 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) 1819 { 1820 VFIOQuirk *quirk; 1821 int i, j; 1822 1823 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1824 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { 1825 for (j = 0; j < quirk->nr_mem; j++) { 1826 memory_region_del_subregion(&vdev->vga->region[i].mem, 1827 &quirk->mem[j]); 1828 } 1829 } 1830 } 1831 } 1832 1833 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) 1834 { 1835 int i, j; 1836 1837 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { 1838 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { 1839 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); 1840 QLIST_REMOVE(quirk, next); 1841 for (j = 0; j < quirk->nr_mem; j++) { 1842 object_unparent(OBJECT(&quirk->mem[j])); 1843 } 1844 g_free(quirk->mem); 1845 g_free(quirk->data); 1846 g_free(quirk); 1847 } 1848 } 1849 } 1850 1851 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) 1852 { 1853 vfio_probe_ati_bar4_quirk(vdev, nr); 1854 vfio_probe_ati_bar2_quirk(vdev, nr); 1855 vfio_probe_nvidia_bar5_quirk(vdev, nr); 1856 vfio_probe_nvidia_bar0_quirk(vdev, nr); 1857 vfio_probe_rtl8168_bar2_quirk(vdev, nr); 1858 vfio_probe_igd_bar4_quirk(vdev, nr); 1859 } 1860 1861 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) 1862 { 1863 VFIOBAR *bar = &vdev->bars[nr]; 1864 VFIOQuirk *quirk; 1865 int i; 1866 1867 QLIST_FOREACH(quirk, &bar->quirks, next) { 1868 while (!QLIST_EMPTY(&quirk->ioeventfds)) { 1869 vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds)); 1870 } 1871 1872 for (i = 0; i < quirk->nr_mem; i++) { 1873 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); 1874 } 1875 } 1876 } 1877 1878 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) 1879 { 1880 VFIOBAR *bar = &vdev->bars[nr]; 1881 int i; 1882 1883 while (!QLIST_EMPTY(&bar->quirks)) { 1884 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); 1885 QLIST_REMOVE(quirk, next); 1886 for (i = 0; i < quirk->nr_mem; i++) { 1887 object_unparent(OBJECT(&quirk->mem[i])); 1888 } 1889 g_free(quirk->mem); 1890 g_free(quirk->data); 1891 g_free(quirk); 1892 } 1893 } 1894 1895 /* 1896 * Reset quirks 1897 */ 1898 void vfio_quirk_reset(VFIOPCIDevice *vdev) 1899 { 1900 int i; 1901 1902 for (i = 0; i < PCI_ROM_SLOT; i++) { 1903 VFIOQuirk *quirk; 1904 VFIOBAR *bar = &vdev->bars[i]; 1905 1906 QLIST_FOREACH(quirk, &bar->quirks, next) { 1907 if (quirk->reset) { 1908 quirk->reset(vdev, quirk); 1909 } 1910 } 1911 } 1912 } 1913 1914 /* 1915 * AMD Radeon PCI config reset, based on Linux: 1916 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() 1917 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset 1918 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() 1919 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() 1920 * IDs: include/drm/drm_pciids.h 1921 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 1922 * 1923 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the 1924 * hardware that should be fixed on future ASICs. The symptom of this is that 1925 * once the accerlated driver loads, Windows guests will bsod on subsequent 1926 * attmpts to load the driver, such as after VM reset or shutdown/restart. To 1927 * work around this, we do an AMD specific PCI config reset, followed by an SMC 1928 * reset. The PCI config reset only works if SMC firmware is running, so we 1929 * have a dependency on the state of the device as to whether this reset will 1930 * be effective. There are still cases where we won't be able to kick the 1931 * device into working, but this greatly improves the usability overall. The 1932 * config reset magic is relatively common on AMD GPUs, but the setup and SMC 1933 * poking is largely ASIC specific. 1934 */ 1935 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) 1936 { 1937 uint32_t clk, pc_c; 1938 1939 /* 1940 * Registers 200h and 204h are index and data registers for accessing 1941 * indirect configuration registers within the device. 1942 */ 1943 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 1944 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1945 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); 1946 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1947 1948 return (!(clk & 1) && (0x20100 <= pc_c)); 1949 } 1950 1951 /* 1952 * The scope of a config reset is controlled by a mode bit in the misc register 1953 * and a fuse, exposed as a bit in another register. The fuse is the default 1954 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula 1955 * scope = !(misc ^ fuse), where the resulting scope is defined the same as 1956 * the fuse. A truth table therefore tells us that if misc == fuse, we need 1957 * to flip the value of the bit in the misc register. 1958 */ 1959 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) 1960 { 1961 uint32_t misc, fuse; 1962 bool a, b; 1963 1964 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); 1965 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1966 b = fuse & 64; 1967 1968 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); 1969 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 1970 a = misc & 2; 1971 1972 if (a == b) { 1973 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); 1974 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ 1975 } 1976 } 1977 1978 static int vfio_radeon_reset(VFIOPCIDevice *vdev) 1979 { 1980 PCIDevice *pdev = &vdev->pdev; 1981 int i, ret = 0; 1982 uint32_t data; 1983 1984 /* Defer to a kernel implemented reset */ 1985 if (vdev->vbasedev.reset_works) { 1986 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); 1987 return -ENODEV; 1988 } 1989 1990 /* Enable only memory BAR access */ 1991 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); 1992 1993 /* Reset only works if SMC firmware is loaded and running */ 1994 if (!vfio_radeon_smc_is_running(vdev)) { 1995 ret = -EINVAL; 1996 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); 1997 goto out; 1998 } 1999 2000 /* Make sure only the GFX function is reset */ 2001 vfio_radeon_set_gfx_only_reset(vdev); 2002 2003 /* AMD PCI config reset */ 2004 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); 2005 usleep(100); 2006 2007 /* Read back the memory size to make sure we're out of reset */ 2008 for (i = 0; i < 100000; i++) { 2009 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { 2010 goto reset_smc; 2011 } 2012 usleep(1); 2013 } 2014 2015 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); 2016 2017 reset_smc: 2018 /* Reset SMC */ 2019 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); 2020 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 2021 data |= 1; 2022 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 2023 2024 /* Disable SMC clock */ 2025 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); 2026 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); 2027 data |= 1; 2028 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); 2029 2030 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); 2031 2032 out: 2033 /* Restore PCI command register */ 2034 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); 2035 2036 return ret; 2037 } 2038 2039 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) 2040 { 2041 switch (vdev->vendor_id) { 2042 case 0x1002: 2043 switch (vdev->device_id) { 2044 /* Bonaire */ 2045 case 0x6649: /* Bonaire [FirePro W5100] */ 2046 case 0x6650: 2047 case 0x6651: 2048 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ 2049 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ 2050 case 0x665d: /* Bonaire [Radeon R7 200 Series] */ 2051 /* Hawaii */ 2052 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ 2053 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ 2054 case 0x67A2: 2055 case 0x67A8: 2056 case 0x67A9: 2057 case 0x67AA: 2058 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ 2059 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ 2060 case 0x67B8: 2061 case 0x67B9: 2062 case 0x67BA: 2063 case 0x67BE: 2064 vdev->resetfn = vfio_radeon_reset; 2065 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); 2066 break; 2067 } 2068 break; 2069 } 2070 } 2071 2072 /* 2073 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify 2074 * devices as a member of a clique. Devices within the same clique ID 2075 * are capable of direct P2P. It's the user's responsibility that this 2076 * is correct. The spec says that this may reside at any unused config 2077 * offset, but reserves and recommends hypervisors place this at C8h. 2078 * The spec also states that the hypervisor should place this capability 2079 * at the end of the capability list, thus next is defined as 0h. 2080 * 2081 * +----------------+----------------+----------------+----------------+ 2082 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) | 2083 * +----------------+----------------+----------------+----------------+ 2084 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') | 2085 * +---------------------------------+---------------------------------+ 2086 * 2087 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf 2088 */ 2089 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v, 2090 const char *name, void *opaque, 2091 Error **errp) 2092 { 2093 DeviceState *dev = DEVICE(obj); 2094 Property *prop = opaque; 2095 uint8_t *ptr = qdev_get_prop_ptr(dev, prop); 2096 2097 visit_type_uint8(v, name, ptr, errp); 2098 } 2099 2100 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v, 2101 const char *name, void *opaque, 2102 Error **errp) 2103 { 2104 DeviceState *dev = DEVICE(obj); 2105 Property *prop = opaque; 2106 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop); 2107 Error *local_err = NULL; 2108 2109 if (dev->realized) { 2110 qdev_prop_set_after_realize(dev, name, errp); 2111 return; 2112 } 2113 2114 visit_type_uint8(v, name, &value, &local_err); 2115 if (local_err) { 2116 error_propagate(errp, local_err); 2117 return; 2118 } 2119 2120 if (value & ~0xF) { 2121 error_setg(errp, "Property %s: valid range 0-15", name); 2122 return; 2123 } 2124 2125 *ptr = value; 2126 } 2127 2128 const PropertyInfo qdev_prop_nv_gpudirect_clique = { 2129 .name = "uint4", 2130 .description = "NVIDIA GPUDirect Clique ID (0 - 15)", 2131 .get = get_nv_gpudirect_clique_id, 2132 .set = set_nv_gpudirect_clique_id, 2133 }; 2134 2135 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp) 2136 { 2137 PCIDevice *pdev = &vdev->pdev; 2138 int ret, pos = 0xC8; 2139 2140 if (vdev->nv_gpudirect_clique == 0xFF) { 2141 return 0; 2142 } 2143 2144 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { 2145 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor"); 2146 return -EINVAL; 2147 } 2148 2149 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) != 2150 PCI_BASE_CLASS_DISPLAY) { 2151 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class"); 2152 return -EINVAL; 2153 } 2154 2155 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp); 2156 if (ret < 0) { 2157 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: "); 2158 return ret; 2159 } 2160 2161 memset(vdev->emulated_config_bits + pos, 0xFF, 8); 2162 pos += PCI_CAP_FLAGS; 2163 pci_set_byte(pdev->config + pos++, 8); 2164 pci_set_byte(pdev->config + pos++, 'P'); 2165 pci_set_byte(pdev->config + pos++, '2'); 2166 pci_set_byte(pdev->config + pos++, 'P'); 2167 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3); 2168 pci_set_byte(pdev->config + pos, 0); 2169 2170 return 0; 2171 } 2172 2173 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp) 2174 { 2175 int ret; 2176 2177 ret = vfio_add_nv_gpudirect_cap(vdev, errp); 2178 if (ret) { 2179 return ret; 2180 } 2181 2182 return 0; 2183 } 2184