1 /* 2 * IGD device quirks 3 * 4 * Copyright Red Hat, Inc. 2016 5 * 6 * Authors: 7 * Alex Williamson <alex.williamson@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu/units.h" 15 #include "qemu/error-report.h" 16 #include "qapi/error.h" 17 #include "hw/hw.h" 18 #include "hw/nvram/fw_cfg.h" 19 #include "pci.h" 20 #include "trace.h" 21 22 /* 23 * Intel IGD support 24 * 25 * Obviously IGD is not a discrete device, this is evidenced not only by it 26 * being integrated into the CPU, but by the various chipset and BIOS 27 * dependencies that it brings along with it. Intel is trying to move away 28 * from this and Broadwell and newer devices can run in what Intel calls 29 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing 30 * more is required beyond assigning the IGD device to a VM. There are 31 * however support limitations to this mode. It only supports IGD as a 32 * secondary graphics device in the VM and it doesn't officially support any 33 * physical outputs. 34 * 35 * The code here attempts to enable what we'll call legacy mode assignment, 36 * IGD retains most of the capabilities we expect for it to have on bare 37 * metal. To enable this mode, the IGD device must be assigned to the VM 38 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA 39 * support, we must have VM BIOS support for reserving and populating some 40 * of the required tables, and we need to tweak the chipset with revisions 41 * and IDs and an LPC/ISA bridge device. The intention is to make all of 42 * this happen automatically by installing the device at the correct VM PCI 43 * bus address. If any of the conditions are not met, we cross our fingers 44 * and hope the user knows better. 45 * 46 * NB - It is possible to enable physical outputs in UPT mode by supplying 47 * an OpRegion table. We don't do this by default because the guest driver 48 * behaves differently if an OpRegion is provided and no monitor is attached 49 * vs no OpRegion and a monitor being attached or not. Effectively, if a 50 * headless setup is desired, the OpRegion gets in the way of that. 51 */ 52 53 /* 54 * This presumes the device is already known to be an Intel VGA device, so we 55 * take liberties in which device ID bits match which generation. This should 56 * not be taken as an indication that all the devices are supported, or even 57 * supportable, some of them don't even support VT-d. 58 * See linux:include/drm/i915_pciids.h for IDs. 59 */ 60 static int igd_gen(VFIOPCIDevice *vdev) 61 { 62 if ((vdev->device_id & 0xfff) == 0xa84) { 63 return 8; /* Broxton */ 64 } 65 66 switch (vdev->device_id & 0xff00) { 67 /* Old, untested, unavailable, unknown */ 68 case 0x0000: 69 case 0x2500: 70 case 0x2700: 71 case 0x2900: 72 case 0x2a00: 73 case 0x2e00: 74 case 0x3500: 75 case 0xa000: 76 return -1; 77 /* SandyBridge, IvyBridge, ValleyView, Haswell */ 78 case 0x0100: 79 case 0x0400: 80 case 0x0a00: 81 case 0x0c00: 82 case 0x0d00: 83 case 0x0f00: 84 return 6; 85 /* BroadWell, CherryView, SkyLake, KabyLake */ 86 case 0x1600: 87 case 0x1900: 88 case 0x2200: 89 case 0x5900: 90 return 8; 91 /* ElkhartLake */ 92 case 0x4500: 93 return 11; 94 /* TigerLake */ 95 case 0x9A00: 96 return 12; 97 } 98 99 /* 100 * Unfortunately, Intel changes it's specification quite often. This makes 101 * it impossible to use a suitable default value for unknown devices. 102 */ 103 return -1; 104 } 105 106 typedef struct VFIOIGDQuirk { 107 struct VFIOPCIDevice *vdev; 108 uint32_t index; 109 uint64_t bdsm; 110 } VFIOIGDQuirk; 111 112 #define IGD_GMCH 0x50 /* Graphics Control Register */ 113 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */ 114 #define IGD_BDSM_GEN11 0xc0 /* Base Data of Stolen Memory of gen 11 and later */ 115 116 117 /* 118 * The rather short list of registers that we copy from the host devices. 119 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the 120 * host bridge values may or may not be needed depending on the guest OS. 121 * Since we're only munging revision and subsystem values on the host bridge, 122 * we don't require our own device. The LPC/ISA bridge needs to be our very 123 * own though. 124 */ 125 typedef struct { 126 uint8_t offset; 127 uint8_t len; 128 } IGDHostInfo; 129 130 static const IGDHostInfo igd_host_bridge_infos[] = { 131 {PCI_REVISION_ID, 2}, 132 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 133 {PCI_SUBSYSTEM_ID, 2}, 134 }; 135 136 static const IGDHostInfo igd_lpc_bridge_infos[] = { 137 {PCI_VENDOR_ID, 2}, 138 {PCI_DEVICE_ID, 2}, 139 {PCI_REVISION_ID, 2}, 140 {PCI_SUBSYSTEM_VENDOR_ID, 2}, 141 {PCI_SUBSYSTEM_ID, 2}, 142 }; 143 144 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev, 145 struct vfio_region_info *info, 146 const IGDHostInfo *list, int len) 147 { 148 int i, ret; 149 150 for (i = 0; i < len; i++) { 151 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset, 152 list[i].len, info->offset + list[i].offset); 153 if (ret != list[i].len) { 154 error_report("IGD copy failed: %m"); 155 return -errno; 156 } 157 } 158 159 return 0; 160 } 161 162 /* 163 * Stuff a few values into the host bridge. 164 */ 165 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev, 166 struct vfio_region_info *info) 167 { 168 PCIBus *bus; 169 PCIDevice *host_bridge; 170 int ret; 171 172 bus = pci_device_root_bus(&vdev->pdev); 173 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0)); 174 175 if (!host_bridge) { 176 error_report("Can't find host bridge"); 177 return -ENODEV; 178 } 179 180 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos, 181 ARRAY_SIZE(igd_host_bridge_infos)); 182 if (!ret) { 183 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name); 184 } 185 186 return ret; 187 } 188 189 /* 190 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write 191 * arbitrary values into just any bridge, so we must create our own. We try 192 * to handle if the user has created it for us, which they might want to do 193 * to enable multifunction so we don't occupy the whole PCI slot. 194 */ 195 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp) 196 { 197 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) { 198 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0"); 199 } 200 } 201 202 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data) 203 { 204 DeviceClass *dc = DEVICE_CLASS(klass); 205 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 206 207 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 208 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment"; 209 dc->hotpluggable = false; 210 k->realize = vfio_pci_igd_lpc_bridge_realize; 211 k->class_id = PCI_CLASS_BRIDGE_ISA; 212 } 213 214 static const TypeInfo vfio_pci_igd_lpc_bridge_info = { 215 .name = "vfio-pci-igd-lpc-bridge", 216 .parent = TYPE_PCI_DEVICE, 217 .class_init = vfio_pci_igd_lpc_bridge_class_init, 218 .interfaces = (InterfaceInfo[]) { 219 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 220 { }, 221 }, 222 }; 223 224 static void vfio_pci_igd_register_types(void) 225 { 226 type_register_static(&vfio_pci_igd_lpc_bridge_info); 227 } 228 229 type_init(vfio_pci_igd_register_types) 230 231 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev, 232 struct vfio_region_info *info) 233 { 234 PCIDevice *lpc_bridge; 235 int ret; 236 237 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 238 0, PCI_DEVFN(0x1f, 0)); 239 if (!lpc_bridge) { 240 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev), 241 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge"); 242 } 243 244 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos, 245 ARRAY_SIZE(igd_lpc_bridge_infos)); 246 if (!ret) { 247 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name); 248 } 249 250 return ret; 251 } 252 253 /* 254 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE 255 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore 256 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index 257 * for programming the GTT. 258 * 259 * See linux:include/drm/i915_drm.h for shift and mask values. 260 */ 261 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev) 262 { 263 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 264 int ggms, gen = igd_gen(vdev); 265 266 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch)); 267 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 268 if (gen > 6) { 269 ggms = 1 << ggms; 270 } 271 272 ggms *= MiB; 273 274 return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8); 275 } 276 277 /* 278 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes. 279 * Somehow the host stolen memory range is used for this, but how the ROM gets 280 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it 281 * reprograms the GTT through the IOBAR where we can trap it and transpose the 282 * programming to the VM allocated buffer. That buffer gets reserved by the VM 283 * firmware via the fw_cfg entry added below. Here we're just monitoring the 284 * IOBAR address and data registers to detect a write sequence targeting the 285 * GTTADR. This code is developed by observed behavior and doesn't have a 286 * direct spec reference, unfortunately. 287 */ 288 static uint64_t vfio_igd_quirk_data_read(void *opaque, 289 hwaddr addr, unsigned size) 290 { 291 VFIOIGDQuirk *igd = opaque; 292 VFIOPCIDevice *vdev = igd->vdev; 293 294 igd->index = ~0; 295 296 return vfio_region_read(&vdev->bars[4].region, addr + 4, size); 297 } 298 299 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr, 300 uint64_t data, unsigned size) 301 { 302 VFIOIGDQuirk *igd = opaque; 303 VFIOPCIDevice *vdev = igd->vdev; 304 uint64_t val = data; 305 int gen = igd_gen(vdev); 306 307 /* 308 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie. 309 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE 310 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so 311 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points 312 * to a 4k page, which we translate to a page from the VM allocated region, 313 * pointed to by the BDSM register. If this is not set, we fail. 314 * 315 * We trap writes to the full configured GTT size, but we typically only 316 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often 317 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous 318 * write of that last entry does work, but is hopefully unnecessary since 319 * we clear the previous GTT on initialization. 320 */ 321 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) { 322 if (gen < 8 || (igd->index % 8 == 1)) { 323 uint64_t base; 324 325 if (gen < 11) { 326 base = pci_get_long(vdev->pdev.config + IGD_BDSM); 327 } else { 328 base = pci_get_quad(vdev->pdev.config + IGD_BDSM_GEN11); 329 } 330 if (!base) { 331 hw_error("vfio-igd: Guest attempted to program IGD GTT before " 332 "BIOS reserved stolen memory. Unsupported BIOS?"); 333 } 334 335 val = data - igd->bdsm + base; 336 } else { 337 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */ 338 } 339 340 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name, 341 igd->index, data, val); 342 } 343 344 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size); 345 346 igd->index = ~0; 347 } 348 349 static const MemoryRegionOps vfio_igd_data_quirk = { 350 .read = vfio_igd_quirk_data_read, 351 .write = vfio_igd_quirk_data_write, 352 .endianness = DEVICE_LITTLE_ENDIAN, 353 }; 354 355 static uint64_t vfio_igd_quirk_index_read(void *opaque, 356 hwaddr addr, unsigned size) 357 { 358 VFIOIGDQuirk *igd = opaque; 359 VFIOPCIDevice *vdev = igd->vdev; 360 361 igd->index = ~0; 362 363 return vfio_region_read(&vdev->bars[4].region, addr, size); 364 } 365 366 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr, 367 uint64_t data, unsigned size) 368 { 369 VFIOIGDQuirk *igd = opaque; 370 VFIOPCIDevice *vdev = igd->vdev; 371 372 igd->index = data; 373 374 vfio_region_write(&vdev->bars[4].region, addr, data, size); 375 } 376 377 static const MemoryRegionOps vfio_igd_index_quirk = { 378 .read = vfio_igd_quirk_index_read, 379 .write = vfio_igd_quirk_index_write, 380 .endianness = DEVICE_LITTLE_ENDIAN, 381 }; 382 383 #define IGD_BDSM_MMIO_OFFSET 0x1080C0 384 385 static uint64_t vfio_igd_quirk_bdsm_read(void *opaque, 386 hwaddr addr, unsigned size) 387 { 388 VFIOPCIDevice *vdev = opaque; 389 uint64_t offset; 390 391 offset = IGD_BDSM_GEN11 + addr; 392 393 switch (size) { 394 case 1: 395 return pci_get_byte(vdev->pdev.config + offset); 396 case 2: 397 return pci_get_word(vdev->pdev.config + offset); 398 case 4: 399 return pci_get_long(vdev->pdev.config + offset); 400 case 8: 401 return pci_get_quad(vdev->pdev.config + offset); 402 default: 403 hw_error("igd: unsupported read size, %u bytes", size); 404 break; 405 } 406 407 return 0; 408 } 409 410 static void vfio_igd_quirk_bdsm_write(void *opaque, hwaddr addr, 411 uint64_t data, unsigned size) 412 { 413 VFIOPCIDevice *vdev = opaque; 414 uint64_t offset; 415 416 offset = IGD_BDSM_GEN11 + addr; 417 418 switch (size) { 419 case 1: 420 pci_set_byte(vdev->pdev.config + offset, data); 421 break; 422 case 2: 423 pci_set_word(vdev->pdev.config + offset, data); 424 break; 425 case 4: 426 pci_set_long(vdev->pdev.config + offset, data); 427 break; 428 case 8: 429 pci_set_quad(vdev->pdev.config + offset, data); 430 break; 431 default: 432 hw_error("igd: unsupported read size, %u bytes", size); 433 break; 434 } 435 } 436 437 static const MemoryRegionOps vfio_igd_bdsm_quirk = { 438 .read = vfio_igd_quirk_bdsm_read, 439 .write = vfio_igd_quirk_bdsm_write, 440 .endianness = DEVICE_LITTLE_ENDIAN, 441 }; 442 443 void vfio_probe_igd_bar0_quirk(VFIOPCIDevice *vdev, int nr) 444 { 445 VFIOQuirk *quirk; 446 int gen; 447 448 /* 449 * This must be an Intel VGA device at address 00:02.0 for us to even 450 * consider enabling legacy mode. Some driver have dependencies on the PCI 451 * bus address. 452 */ 453 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || 454 !vfio_is_vga(vdev) || nr != 0 || 455 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 456 0, PCI_DEVFN(0x2, 0))) { 457 return; 458 } 459 460 /* 461 * Only on IGD devices of gen 11 and above, the BDSM register is mirrored 462 * into MMIO space and read from MMIO space by the Windows driver. 463 */ 464 gen = igd_gen(vdev); 465 if (gen < 11) { 466 return; 467 } 468 469 quirk = vfio_quirk_alloc(1); 470 quirk->data = vdev; 471 472 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_bdsm_quirk, 473 vdev, "vfio-igd-bdsm-quirk", 8); 474 memory_region_add_subregion_overlap(vdev->bars[0].region.mem, 475 IGD_BDSM_MMIO_OFFSET, &quirk->mem[0], 476 1); 477 478 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 479 } 480 481 static int igd_get_stolen_mb(int gen, uint32_t gmch) 482 { 483 int gms; 484 485 if (gen < 8) { 486 gms = (gmch >> 3) & 0x1f; 487 } else { 488 gms = (gmch >> 8) & 0xff; 489 } 490 491 if (gen < 9) { 492 if (gms > 0x10) { 493 error_report("Unsupported IGD GMS value 0x%x", gms); 494 return 0; 495 } 496 return gms * 32; 497 } else { 498 if (gms < 0xf0) 499 return gms * 32; 500 else 501 return gms * 4 + 4; 502 } 503 } 504 505 void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) 506 { 507 g_autofree struct vfio_region_info *rom = NULL; 508 g_autofree struct vfio_region_info *opregion = NULL; 509 g_autofree struct vfio_region_info *host = NULL; 510 g_autofree struct vfio_region_info *lpc = NULL; 511 VFIOQuirk *quirk; 512 VFIOIGDQuirk *igd; 513 PCIDevice *lpc_bridge; 514 int i, ret, ggms_mb, gms_mb = 0, gen; 515 uint64_t *bdsm_size; 516 uint32_t gmch; 517 uint16_t cmd_orig, cmd; 518 Error *err = NULL; 519 520 /* 521 * This must be an Intel VGA device at address 00:02.0 for us to even 522 * consider enabling legacy mode. The vBIOS has dependencies on the 523 * PCI bus address. 524 */ 525 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || 526 !vfio_is_vga(vdev) || nr != 4 || 527 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 528 0, PCI_DEVFN(0x2, 0))) { 529 return; 530 } 531 532 /* 533 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we 534 * can stuff host values into, so if there's already one there and it's not 535 * one we can hack on, legacy mode is no-go. Sorry Q35. 536 */ 537 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 538 0, PCI_DEVFN(0x1f, 0)); 539 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), 540 "vfio-pci-igd-lpc-bridge")) { 541 error_report("IGD device %s cannot support legacy mode due to existing " 542 "devices at address 1f.0", vdev->vbasedev.name); 543 return; 544 } 545 546 /* 547 * IGD is not a standard, they like to change their specs often. We 548 * only attempt to support back to SandBridge and we hope that newer 549 * devices maintain compatibility with generation 8. 550 */ 551 gen = igd_gen(vdev); 552 if (gen == -1) { 553 error_report("IGD device %s is unsupported in legacy mode, " 554 "try SandyBridge or newer", vdev->vbasedev.name); 555 return; 556 } 557 558 /* 559 * Most of what we're doing here is to enable the ROM to run, so if 560 * there's no ROM, there's no point in setting up this quirk. 561 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. 562 */ 563 ret = vfio_get_region_info(&vdev->vbasedev, 564 VFIO_PCI_ROM_REGION_INDEX, &rom); 565 if ((ret || !rom->size) && !vdev->pdev.romfile) { 566 error_report("IGD device %s has no ROM, legacy mode disabled", 567 vdev->vbasedev.name); 568 return; 569 } 570 571 /* 572 * Ignore the hotplug corner case, mark the ROM failed, we can't 573 * create the devices we need for legacy mode in the hotplug scenario. 574 */ 575 if (vdev->pdev.qdev.hotplugged) { 576 error_report("IGD device %s hotplugged, ROM disabled, " 577 "legacy mode disabled", vdev->vbasedev.name); 578 vdev->rom_read_failed = true; 579 return; 580 } 581 582 /* 583 * Check whether we have all the vfio device specific regions to 584 * support legacy mode (added in Linux v4.6). If not, bail. 585 */ 586 ret = vfio_get_dev_region_info(&vdev->vbasedev, 587 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 588 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); 589 if (ret) { 590 error_report("IGD device %s does not support OpRegion access," 591 "legacy mode disabled", vdev->vbasedev.name); 592 return; 593 } 594 595 ret = vfio_get_dev_region_info(&vdev->vbasedev, 596 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 597 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); 598 if (ret) { 599 error_report("IGD device %s does not support host bridge access," 600 "legacy mode disabled", vdev->vbasedev.name); 601 return; 602 } 603 604 ret = vfio_get_dev_region_info(&vdev->vbasedev, 605 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, 606 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); 607 if (ret) { 608 error_report("IGD device %s does not support LPC bridge access," 609 "legacy mode disabled", vdev->vbasedev.name); 610 return; 611 } 612 613 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); 614 615 /* 616 * If IGD VGA Disable is clear (expected) and VGA is not already enabled, 617 * try to enable it. Probably shouldn't be using legacy mode without VGA, 618 * but also no point in us enabling VGA if disabled in hardware. 619 */ 620 if (!(gmch & 0x2) && !vdev->vga && !vfio_populate_vga(vdev, &err)) { 621 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 622 error_report("IGD device %s failed to enable VGA access, " 623 "legacy mode disabled", vdev->vbasedev.name); 624 return; 625 } 626 627 /* Create our LPC/ISA bridge */ 628 ret = vfio_pci_igd_lpc_init(vdev, lpc); 629 if (ret) { 630 error_report("IGD device %s failed to create LPC bridge, " 631 "legacy mode disabled", vdev->vbasedev.name); 632 return; 633 } 634 635 /* Stuff some host values into the VM PCI host bridge */ 636 ret = vfio_pci_igd_host_init(vdev, host); 637 if (ret) { 638 error_report("IGD device %s failed to modify host bridge, " 639 "legacy mode disabled", vdev->vbasedev.name); 640 return; 641 } 642 643 /* Setup OpRegion access */ 644 if (!vfio_pci_igd_opregion_init(vdev, opregion, &err)) { 645 error_append_hint(&err, "IGD legacy mode disabled\n"); 646 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name); 647 return; 648 } 649 650 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ 651 quirk = vfio_quirk_alloc(2); 652 igd = quirk->data = g_malloc0(sizeof(*igd)); 653 igd->vdev = vdev; 654 igd->index = ~0; 655 if (gen < 11) { 656 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4); 657 } else { 658 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM_GEN11, 4); 659 igd->bdsm |= 660 (uint64_t)vfio_pci_read_config(&vdev->pdev, IGD_BDSM_GEN11 + 4, 4) << 32; 661 } 662 igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */ 663 664 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, 665 igd, "vfio-igd-index-quirk", 4); 666 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 667 0, &quirk->mem[0], 1); 668 669 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, 670 igd, "vfio-igd-data-quirk", 4); 671 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 672 4, &quirk->mem[1], 1); 673 674 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); 675 676 /* Determine the size of stolen memory needed for GTT */ 677 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; 678 if (gen > 6) { 679 ggms_mb = 1 << ggms_mb; 680 } 681 682 gms_mb = igd_get_stolen_mb(gen, gmch); 683 684 /* 685 * Request reserved memory for stolen memory via fw_cfg. VM firmware 686 * must allocate a 1MB aligned reserved memory region below 4GB with 687 * the requested size (in bytes) for use by the Intel PCI class VGA 688 * device at VM address 00:02.0. The base address of this reserved 689 * memory region must be written to the device BDSM register at PCI 690 * config offset 0x5C. 691 */ 692 bdsm_size = g_malloc(sizeof(*bdsm_size)); 693 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB); 694 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", 695 bdsm_size, sizeof(*bdsm_size)); 696 697 /* GMCH is read-only, emulated */ 698 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); 699 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); 700 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); 701 702 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ 703 if (gen < 11) { 704 pci_set_long(vdev->pdev.config + IGD_BDSM, 0); 705 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); 706 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); 707 } else { 708 pci_set_quad(vdev->pdev.config + IGD_BDSM_GEN11, 0); 709 pci_set_quad(vdev->pdev.wmask + IGD_BDSM_GEN11, ~0); 710 pci_set_quad(vdev->emulated_config_bits + IGD_BDSM_GEN11, ~0); 711 } 712 713 /* 714 * This IOBAR gives us access to GTTADR, which allows us to write to 715 * the GTT itself. So let's go ahead and write zero to all the GTT 716 * entries to avoid spurious DMA faults. Be sure I/O access is enabled 717 * before talking to the device. 718 */ 719 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 720 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 721 error_report("IGD device %s - failed to read PCI command register", 722 vdev->vbasedev.name); 723 } 724 725 cmd = cmd_orig | PCI_COMMAND_IO; 726 727 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), 728 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { 729 error_report("IGD device %s - failed to write PCI command register", 730 vdev->vbasedev.name); 731 } 732 733 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { 734 vfio_region_write(&vdev->bars[4].region, 0, i, 4); 735 vfio_region_write(&vdev->bars[4].region, 4, 0, 4); 736 } 737 738 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), 739 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { 740 error_report("IGD device %s - failed to restore PCI command register", 741 vdev->vbasedev.name); 742 } 743 744 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); 745 } 746